Spaces:
Runtime error
Runtime error
#!/usr/bin/env python | |
# coding: utf-8 | |
# In[ ]: | |
#Importing all the necessary packages | |
import nltk | |
import librosa | |
import IPython.display | |
import torch | |
import gradio as gr | |
from transformers import Wav2Vec2Tokenizer, Wav2Vec2ForCTC | |
nltk.download("punkt") | |
# In[ ]: | |
#Loading the model and the tokenizer | |
model_name = "facebook/wav2vec2-base-960h" | |
#model_name = "facebook/wav2vec2-large-xlsr-53" | |
tokenizer = Wav2Vec2Tokenizer.from_pretrained(model_name)#omdel_name | |
model = Wav2Vec2ForCTC.from_pretrained(model_name) | |
# In[ ]: | |
def load_data(input_file): | |
""" Function for resampling to ensure that the speech input is sampled at 16KHz. | |
""" | |
#read the file | |
speech, sample_rate = librosa.load(input_file) | |
#make it 1-D | |
if len(speech.shape) > 1: | |
speech = speech[:,0] + speech[:,1] | |
#Resampling at 16KHz since wav2vec2-base-960h is pretrained and fine-tuned on speech audio sampled at 16 KHz. | |
if sample_rate !=16000: | |
speech = librosa.resample(speech, sample_rate,16000) | |
#speeches = librosa.effects.split(speech) | |
return speech | |
# In[ ]: | |
def correct_casing(input_sentence): | |
""" This function is for correcting the casing of the generated transcribed text | |
""" | |
sentences = nltk.sent_tokenize(input_sentence) | |
return (' '.join([s.replace(s[0],s[0].capitalize(),1) for s in sentences])) | |
# In[ ]: | |
def asr_transcript(input_file): | |
"""This function generates transcripts for the provided audio input | |
""" | |
speech = load_data(input_file) | |
#Tokenize | |
input_values = tokenizer(speech, return_tensors="pt").input_values | |
#Take logits | |
logits = model(input_values).logits | |
#Take argmax | |
predicted_ids = torch.argmax(logits, dim=-1) | |
#Get the words from predicted word ids | |
transcription = tokenizer.decode(predicted_ids[0]) | |
#Output is all upper case | |
transcription = correct_casing(transcription.lower()) | |
return transcription | |
# In[ ]: | |
def asr_transcript_long(input_file,tokenizer=tokenizer, model=model ): | |
transcript = "" | |
# Ensure that the sample rate is 16k | |
sample_rate = librosa.get_samplerate(input_file) | |
# Stream over 10 seconds chunks rather than load the full file | |
stream = librosa.stream( | |
input_file, | |
block_length=20, #number of seconds to split the batch | |
frame_length=sample_rate, #16000, | |
hop_length=sample_rate, #16000 | |
) | |
for speech in stream: | |
if len(speech.shape) > 1: | |
speech = speech[:, 0] + speech[:, 1] | |
if sample_rate !=16000: | |
speech = librosa.resample(speech, sample_rate,16000) | |
input_values = tokenizer(speech, return_tensors="pt").input_values | |
logits = model(input_values).logits | |
predicted_ids = torch.argmax(logits, dim=-1) | |
transcription = tokenizer.decode(predicted_ids[0]) | |
#transcript += transcription.lower() | |
transcript += correct_casing(transcription.lower()) | |
#transcript += " " | |
return transcript[:3800] | |
# In[ ]: | |
gr.Interface(asr_transcript_long, | |
#inputs = gr.inputs.Audio(source="microphone", type="filepath", optional=True, label="Please record your voice"), | |
inputs = gr.inputs.Audio(source="upload", type="filepath", optional=True, label="Upload your file here"), | |
outputs = gr.outputs.Textbox(type="str",label="Output Text"), | |
title="Transcript and Translate", | |
description = "This application displays transcribed text for given audio input", | |
examples = [["Test_File1.wav"], ["Test_File2.wav"], ["Test_File3.wav"]], theme="grass").launch() | |