Spaces:
Running
Running
File size: 33,584 Bytes
44925e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 |
from calendar import c
import os
# os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
# os.environ['TORCH_USE_CUDA_DSA'] = '1'
os.environ['OPENCV_IO_ENABLE_OPENEXR'] = '1'
import yaml
import shutil
import collections
import torch
import torch.utils.data
import torch.nn.functional as F
import numpy as np
import cv2 as cv
import glob
import datetime
import trimesh
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
import importlib
# import config
from omegaconf import OmegaConf
import json
# AnimatableGaussians part
from AnimatableGaussians.network.lpips import LPIPS
from AnimatableGaussians.dataset.dataset_pose import PoseDataset
import AnimatableGaussians.utils.net_util as net_util
import AnimatableGaussians.utils.visualize_util as visualize_util
from AnimatableGaussians.utils.renderer import Renderer
from AnimatableGaussians.utils.net_util import to_cuda
from AnimatableGaussians.utils.obj_io import save_mesh_as_ply
from AnimatableGaussians.gaussians.obj_io import save_gaussians_as_ply
import AnimatableGaussians.config as ag_config
# Gaussian-Head-Avatar part
from GHA.config.config import config_reenactment
from GHA.lib.dataset.Dataset import ReenactmentDataset
from GHA.lib.dataset.DataLoaderX import DataLoaderX
from GHA.lib.module.GaussianHeadModule import GaussianHeadModule
from GHA.lib.module.SuperResolutionModule import SuperResolutionModule
from GHA.lib.module.CameraModule import CameraModule
from GHA.lib.recorder.Recorder import ReenactmentRecorder
from GHA.lib.apps.Reenactment import Reenactment
# cat utils
from calc_offline_rendering_param import calc_offline_rendering_param
import ipdb
class Avatar:
def __init__(self, config):
self.config = config
self.device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
# animateble gaussians part init
self.body = config.animatablegaussians
self.body.mode = 'test'
ag_config.set_opt(self.body)
avatar_module = self.body['model'].get('module', 'AnimatableGaussians.network.avatar')
print('Import AvatarNet from %s' % avatar_module)
AvatarNet = importlib.import_module(avatar_module).AvatarNet
self.avatar_net = AvatarNet(self.body.model).to(self.device)
self.random_bg_color = self.body['train'].get('random_bg_color', True)
self.bg_color = (1., 1., 1.)
self.bg_color_cuda = torch.from_numpy(np.asarray(self.bg_color)).to(torch.float32).to(self.device)
self.loss_weight = self.body['train']['loss_weight']
self.finetune_color = self.body['train']['finetune_color']
print('# Parameter number of AvatarNet is %d' % (sum([p.numel() for p in self.avatar_net.parameters()])))
# gaussian head avatar part init
self.head = config.gha
self.head_config = config_reenactment()
self.head_config.load(self.head.config_path)
self.head_config = self.head_config.get_cfg()
# cat utils part init
self.cat = config.cat
@torch.no_grad()
def test_body(self):
# run the animatable gaussian test
self.avatar_net.eval()
dataset_module = self.body.get('dataset', 'MvRgbDatasetAvatarReX')
MvRgbDataset = importlib.import_module('AnimatableGaussians.dataset.dataset_mv_rgb').__getattribute__(dataset_module)
training_dataset = MvRgbDataset(**self.body['train']['data'], training = False)
if self.body['test'].get('n_pca', -1) >= 1:
training_dataset.compute_pca(n_components = self.body['test']['n_pca'])
if 'pose_data' in self.body.test:
testing_dataset = PoseDataset(**self.body['test']['pose_data'], smpl_shape = training_dataset.smpl_data['betas'][0])
dataset_name = testing_dataset.dataset_name
seq_name = testing_dataset.seq_name
else:
# throw an error
raise ValueError('No pose data in test config')
self.dataset = testing_dataset
# iter_idx = self.load_ckpt(self.body['test']['prev_ckpt'], False)[1]
output_dir = self.body['test'].get('output_dir', None)
if output_dir is None:
raise ValueError('No output_dir in test config')
use_pca = self.body['test'].get('n_pca', -1) >= 1
if use_pca:
output_dir += '/pca_%d_sigma_%.2f' % (self.body['test'].get('n_pca', -1), float(self.body['test'].get('sigma_pca', 1.)))
else:
output_dir += '/vanilla'
print('# Output dir: \033[1;31m%s\033[0m' % output_dir)
os.makedirs(output_dir + '/live_skeleton', exist_ok = True)
os.makedirs(output_dir + '/rgb_map', exist_ok = True)
os.makedirs(output_dir + '/rgb_map_wo_hand', exist_ok = True)
os.makedirs(output_dir + '/torso_map', exist_ok = True)
os.makedirs(output_dir + '/mask_map', exist_ok = True)
os.makedirs(output_dir + '/posed_gaussians', exist_ok = True)
os.makedirs(output_dir + '/posed_params', exist_ok = True)
os.makedirs(output_dir + '/full_body_mask', exist_ok = True)
os.makedirs(output_dir + '/hand_only_mask', exist_ok = True)
geo_renderer = None
item_0 = self.dataset.getitem(0, training = False)
object_center = item_0['live_bounds'].mean(0)
global_orient = item_0['global_orient'].cpu().numpy() if isinstance(item_0['global_orient'], torch.Tensor) else item_0['global_orient']
# set x and z to 0
global_orient[0] = 0
global_orient[2] = 0
global_orient = cv.Rodrigues(global_orient)[0]
time_start = torch.cuda.Event(enable_timing = True)
time_start_all = torch.cuda.Event(enable_timing = True)
time_end = torch.cuda.Event(enable_timing = True)
data_num = len(self.dataset)
if self.body['test'].get('fix_hand', False):
self.avatar_net.generate_mean_hands()
log_time = False
extr_list = []
intr_list = []
img_h_list = []
img_w_list = []
for idx in tqdm(range(data_num), desc = 'Rendering avatars...'):
if log_time:
time_start.record()
time_start_all.record()
img_scale = self.body['test'].get('img_scale', 1.0)
view_setting = self.body['test'].get('view_setting', 'free')
if view_setting == 'camera':
# training view setting
cam_id = self.body['test']['render_view_idx']
intr = self.dataset.intr_mats[cam_id].copy()
intr[:2] *= img_scale
extr = self.dataset.extr_mats[cam_id].copy()
img_h, img_w = int(self.dataset.img_heights[cam_id] * img_scale), int(self.dataset.img_widths[cam_id] * img_scale)
elif view_setting.startswith('free'):
# free view setting
# frame_num_per_circle = 360
# print(self.opt['test'].get('global_orient', False))
frame_num_per_circle = 360
rot_Y = (idx % frame_num_per_circle) / float(frame_num_per_circle) * 2 * np.pi
extr = visualize_util.calc_free_mv(object_center,
tar_pos = np.array([0, 0, 2.5]),
rot_Y = rot_Y,
rot_X = 0.3 if view_setting.endswith('bird') else 0.,
global_orient = global_orient if self.body['test'].get('global_orient', False) else None)
intr = np.array([[1100, 0, 512], [0, 1100, 512], [0, 0, 1]], np.float32)
intr[:2] *= img_scale
img_h = int(1024 * img_scale)
img_w = int(1024 * img_scale)
extr_list.append(extr)
intr_list.append(intr)
img_h_list.append(img_h)
img_w_list.append(img_w)
elif view_setting.startswith('degree120'):
print('we render 120 degree')
# +- 60 degree
frame_per_cycle = 480
max_degree = 60
frame_half_cycle = frame_per_cycle // 2
if idx%frame_per_cycle < frame_per_cycle/2:
rot_Y = -max_degree + (2 * max_degree / frame_half_cycle) * (idx%frame_half_cycle)
# rot_Y = (idx % frame_per_60) / float(frame_per_60) * 2 * np.pi
else:
rot_Y = max_degree - (2 * max_degree / frame_half_cycle) * (idx%frame_half_cycle)
# to radian
rot_Y = rot_Y * np.pi / 180
if rot_Y<0:
rot_Y = rot_Y + 2 * np.pi
# print('rot_Y: ', rot_Y)
extr = visualize_util.calc_free_mv(object_center,
tar_pos = np.array([0, 0, 2.5]),
rot_Y = rot_Y,
rot_X = 0.3 if view_setting.endswith('bird') else 0.,
global_orient = global_orient if self.body['test'].get('global_orient', False) else None)
intr = np.array([[1100, 0, 512], [0, 1100, 512], [0, 0, 1]], np.float32)
intr[:2] *= img_scale
img_h = int(1024 * img_scale)
img_w = int(1024 * img_scale)
extr_list.append(extr)
intr_list.append(intr)
img_h_list.append(img_h)
img_w_list.append(img_w)
elif view_setting.startswith('degree90'):
print('we render 90 degree')
# +- 60 degree
frame_per_cycle = 360
max_degree = 45
frame_half_cycle = frame_per_cycle // 2
if idx%frame_per_cycle < frame_per_cycle/2:
rot_Y = -max_degree + (2 * max_degree / frame_half_cycle) * (idx%frame_half_cycle)
# rot_Y = (idx % frame_per_60) / float(frame_per_60) * 2 * np.pi
else:
rot_Y = max_degree - (2 * max_degree / frame_half_cycle) * (idx%frame_half_cycle)
# to radian
rot_Y = rot_Y * np.pi / 180
if rot_Y<0:
rot_Y = rot_Y + 2 * np.pi
# print('rot_Y: ', rot_Y)
extr = visualize_util.calc_free_mv(object_center,
tar_pos = np.array([0, 0, 2.5]),
rot_Y = rot_Y,
rot_X = 0.3 if view_setting.endswith('bird') else 0.,
global_orient = global_orient if self.body['test'].get('global_orient', False) else None)
intr = np.array([[1100, 0, 512], [0, 1100, 512], [0, 0, 1]], np.float32)
intr[:2] *= img_scale
img_h = int(1024 * img_scale)
img_w = int(1024 * img_scale)
extr_list.append(extr)
intr_list.append(intr)
img_h_list.append(img_h)
img_w_list.append(img_w)
elif view_setting.startswith('front'):
# front view setting
extr = visualize_util.calc_free_mv(object_center,
tar_pos = np.array([0, 0, 2.5]),
rot_Y = 0.,
rot_X = 0.3 if view_setting.endswith('bird') else 0.,
global_orient = global_orient if self.body['test'].get('global_orient', False) else None)
intr = np.array([[1100, 0, 512], [0, 1100, 512], [0, 0, 1]], np.float32)
intr[:2] *= img_scale
img_h = int(1024 * img_scale)
img_w = int(1024 * img_scale)
extr_list.append(extr)
intr_list.append(intr)
img_h_list.append(img_h)
img_w_list.append(img_w)
# print('extr: ', extr)
# print('intr: ', intr)
# print('img_h: ', img_h)
# print('img_w: ', img_w)
# exit()
elif view_setting.startswith('back'):
# back view setting
extr = visualize_util.calc_free_mv(object_center,
tar_pos = np.array([0, 0, 2.5]),
rot_Y = np.pi,
rot_X = 0.5 * np.pi / 4. if view_setting.endswith('bird') else 0.,
global_orient = global_orient if self.body['test'].get('global_orient', False) else None)
intr = np.array([[1100, 0, 512], [0, 1100, 512], [0, 0, 1]], np.float32)
intr[:2] *= img_scale
img_h = int(1024 * img_scale)
img_w = int(1024 * img_scale)
elif view_setting.startswith('moving'):
# moving camera setting
extr = visualize_util.calc_free_mv(object_center,
# tar_pos = np.array([0, 0, 3.0]),
# rot_Y = -0.3,
tar_pos = np.array([0, 0, 2.5]),
rot_Y = 0.,
rot_X = 0.3 if view_setting.endswith('bird') else 0.,
global_orient = global_orient if self.body['test'].get('global_orient', False) else None)
intr = np.array([[1100, 0, 512], [0, 1100, 512], [0, 0, 1]], np.float32)
intr[:2] *= img_scale
img_h = int(1024 * img_scale)
img_w = int(1024 * img_scale)
elif view_setting.startswith('cano'):
cano_center = self.dataset.cano_bounds.mean(0)
extr = np.identity(4, np.float32)
extr[:3, 3] = -cano_center
rot_x = np.identity(4, np.float32)
rot_x[:3, :3] = cv.Rodrigues(np.array([np.pi, 0, 0], np.float32))[0]
extr = rot_x @ extr
f_len = 5000
extr[2, 3] += f_len / 512
intr = np.array([[f_len, 0, 512], [0, f_len, 512], [0, 0, 1]], np.float32)
# item = self.dataset.getitem(idx,
# training = False,
# extr = extr,
# intr = intr,
# img_w = 1024,
# img_h = 1024)
img_w, img_h = 1024, 1024
# item['live_smpl_v'] = item['cano_smpl_v']
# item['cano2live_jnt_mats'] = torch.eye(4, dtype = torch.float32)[None].expand(item['cano2live_jnt_mats'].shape[0], -1, -1)
# item['live_bounds'] = item['cano_bounds']
else:
raise ValueError('Invalid view setting for animation!')
self.dump_renderer_info(output_dir, extr_list, intr_list, img_h_list, img_w_list)
# also save the extr and intr and img_h and img_w to json
camera_info = []
for i in range(len(extr_list)):
camera = {}
camera['extr'] = extr_list[i].tolist()
camera['intr'] = intr_list[i].tolist()
camera['img_h'] = img_h_list[i]
camera['img_w'] = img_w_list[i]
camera_info.append(camera)
with open(os.path.join(output_dir, 'camera_info.json'), 'w') as fp:
json.dump(camera_info, fp)
getitem_func = self.dataset.getitem_fast if hasattr(self.dataset, 'getitem_fast') else self.dataset.getitem
item = getitem_func(
idx,
training = False,
extr = extr,
intr = intr,
img_w = img_w,
img_h = img_h
)
items = to_cuda(item, add_batch = False)
if view_setting.startswith('moving') or view_setting == 'free_moving':
current_center = items['live_bounds'].cpu().numpy().mean(0)
delta = current_center - object_center
object_center[0] += delta[0]
# object_center[1] += delta[1]
# object_center[2] += delta[2]
if log_time:
time_end.record()
torch.cuda.synchronize()
print('Loading data costs %.4f secs' % (time_start.elapsed_time(time_end) / 1000.))
time_start.record()
if self.body['test'].get('render_skeleton', False):
from AnimatableGaussians.utils.visualize_skeletons import construct_skeletons
skel_vertices, skel_faces = construct_skeletons(item['joints'].cpu().numpy(), item['kin_parent'].cpu().numpy())
skel_mesh = trimesh.Trimesh(skel_vertices, skel_faces, process = False)
if geo_renderer is None:
geo_renderer = Renderer(item['img_w'], item['img_h'], shader_name = 'phong_geometry', bg_color = (1, 1, 1))
extr, intr = item['extr'], item['intr']
geo_renderer.set_camera(extr, intr)
geo_renderer.set_model(skel_vertices[skel_faces.reshape(-1)], skel_mesh.vertex_normals.astype(np.float32)[skel_faces.reshape(-1)])
skel_img = geo_renderer.render()[:, :, :3]
skel_img = (skel_img * 255).astype(np.uint8)
cv.imwrite(output_dir + '/live_skeleton/%08d.jpg' % item['data_idx'], skel_img)
if log_time:
time_end.record()
torch.cuda.synchronize()
print('Rendering skeletons costs %.4f secs' % (time_start.elapsed_time(time_end) / 1000.))
time_start.record()
if 'smpl_pos_map' not in items:
self.avatar_net.get_pose_map(items)
# pca
if use_pca:
mask = training_dataset.pos_map_mask
live_pos_map = items['smpl_pos_map'].permute(1, 2, 0).cpu().numpy()
front_live_pos_map, back_live_pos_map = np.split(live_pos_map, [3], 2)
pose_conds = front_live_pos_map[mask]
new_pose_conds = training_dataset.transform_pca(pose_conds, sigma_pca = float(self.body['test'].get('sigma_pca', 2.)))
front_live_pos_map[mask] = new_pose_conds
live_pos_map = np.concatenate([front_live_pos_map, back_live_pos_map], 2)
items.update({
'smpl_pos_map_pca': torch.from_numpy(live_pos_map).to(self.device).permute(2, 0, 1)
})
if log_time:
time_end.record()
torch.cuda.synchronize()
print('Rendering pose conditions costs %.4f secs' % (time_start.elapsed_time(time_end) / 1000.))
time_start.record()
output = self.avatar_net.render(items, bg_color = self.bg_color, use_pca = use_pca)
output_wo_hand = self.avatar_net.render_wo_hand(items, bg_color = self.bg_color, use_pca = use_pca)
mask_output = self.avatar_net.render_mask(items, bg_color = self.bg_color, use_pca = use_pca)
if log_time:
time_end.record()
torch.cuda.synchronize()
print('Rendering avatar costs %.4f secs' % (time_start.elapsed_time(time_end) / 1000.))
time_start.record()
if 'rgb_map' in output_wo_hand:
rgb_map_wo_hand = output_wo_hand['rgb_map']
if 'full_body_rgb_map' in mask_output:
os.makedirs(output_dir + '/full_body_mask', exist_ok = True)
full_body_mask = mask_output['full_body_rgb_map']
full_body_mask.clip_(0., 1.)
full_body_mask = (full_body_mask * 255).to(torch.uint8)
cv.imwrite(output_dir + '/full_body_mask/%08d.png' % item['data_idx'], full_body_mask.cpu().numpy())
if 'hand_only_rgb_map' in mask_output:
os.makedirs(output_dir + '/hand_only_mask', exist_ok = True)
hand_only_mask = mask_output['hand_only_rgb_map']
hand_only_mask.clip_(0., 1.)
hand_only_mask = (hand_only_mask * 255).to(torch.uint8)
cv.imwrite(output_dir + '/hand_only_mask/%08d.png' % item['data_idx'], hand_only_mask.cpu().numpy())
if 'full_body_rgb_map' in mask_output and 'hand_only_rgb_map' in mask_output:
# mask only covers hand
body_red_mask = (mask_output['full_body_rgb_map'] - torch.tensor([1., 0., 0.], device = mask_output['full_body_rgb_map'].device))
body_red_mask = (body_red_mask*body_red_mask).sum(dim=2) < 0.01 # need save
hand_red_mask = (mask_output['hand_only_rgb_map'] - torch.tensor([1., 0., 0.], device = mask_output['hand_only_rgb_map'].device))
hand_red_mask = (hand_red_mask*hand_red_mask).sum(dim=2) < 0.01
if_mask_r_hand = abs(body_red_mask.sum() - hand_red_mask.sum()) / hand_red_mask.sum() > 0.95
if_mask_r_hand = if_mask_r_hand.cpu().numpy()
body_blue_mask = (mask_output['full_body_rgb_map'] - torch.tensor([0., 0., 1.], device = mask_output['full_body_rgb_map'].device))
body_blue_mask = (body_blue_mask*body_blue_mask).sum(dim=2) < 0.01 # need save
hand_blue_mask = (mask_output['hand_only_rgb_map'] - torch.tensor([0., 0., 1.], device = mask_output['hand_only_rgb_map'].device))
hand_blue_mask = (hand_blue_mask*hand_blue_mask).sum(dim=2) < 0.01
if_mask_l_hand = abs(body_blue_mask.sum() - hand_blue_mask.sum()) / hand_blue_mask.sum() > 0.95
if_mask_l_hand = if_mask_l_hand.cpu().numpy()
# 保存左右手被遮挡部分的mask
red_mask = hand_red_mask ^ (hand_red_mask & body_red_mask)
blue_mask = hand_blue_mask ^ (hand_blue_mask & body_blue_mask)
all_mask = red_mask | blue_mask
# now save 3 mask to 3 folders
os.makedirs(output_dir + '/hand_mask', exist_ok = True)
os.makedirs(output_dir + '/r_hand_mask', exist_ok = True)
os.makedirs(output_dir + '/l_hand_mask', exist_ok = True)
os.makedirs(output_dir + '/hand_visual', exist_ok = True)
all_mask = (all_mask * 255).to(torch.uint8)
cv.imwrite(output_dir + '/hand_mask/%08d.png' % item['data_idx'], all_mask.cpu().numpy())
r_hand_mask = (body_red_mask * 255).to(torch.uint8)
cv.imwrite(output_dir + '/r_hand_mask/%08d.png' % item['data_idx'], r_hand_mask.cpu().numpy())
l_hand_mask = (body_blue_mask * 255).to(torch.uint8)
cv.imwrite(output_dir + '/l_hand_mask/%08d.png' % item['data_idx'], l_hand_mask.cpu().numpy())
hand_visual = [if_mask_r_hand, if_mask_l_hand]
# save to npy
with open(output_dir + '/hand_visual/%08d.npy' % item['data_idx'], 'wb') as f:
np.save(f, hand_visual)
# now build sleeve_mask
if 'left_hand_rgb_map' in mask_output and 'right_hand_rgb_map' in mask_output:
os.makedirs(output_dir + '/left_sleeve_mask', exist_ok = True)
os.makedirs(output_dir + '/right_sleeve_mask', exist_ok = True)
mask = (r_hand_mask>128) | (l_hand_mask>128)| (all_mask>128)
mask = mask.cpu().numpy().astype(np.uint8)
# 定义一个结构元素,可以调整其大小以改变膨胀的程度
kernel = np.ones((5, 5), np.uint8)
# 应用膨胀操作
mask = cv.dilate(mask, kernel, iterations=3)
mask = torch.tensor(mask).to(self.device)
left_hand_mask = mask_output['left_hand_rgb_map']
left_hand_mask.clip_(0., 1.)
# non white part is mask
left_hand_mask = (torch.tensor([1., 1., 1.], device = left_hand_mask.device) - left_hand_mask)
left_hand_mask = (left_hand_mask*left_hand_mask).sum(dim=2) > 0.01
# dele two hand mask
left_hand_mask = left_hand_mask & ~mask
right_hand_mask = mask_output['right_hand_rgb_map']
right_hand_mask.clip_(0., 1.)
right_hand_mask = (torch.tensor([1., 1., 1.], device = right_hand_mask.device) - right_hand_mask)
right_hand_mask = (right_hand_mask*right_hand_mask).sum(dim=2) > 0.01
right_hand_mask = right_hand_mask & ~mask
# save
left_hand_mask = (left_hand_mask * 255).to(torch.uint8)
cv.imwrite(output_dir + '/left_sleeve_mask/%08d.png' % item['data_idx'], left_hand_mask.cpu().numpy())
right_hand_mask = (right_hand_mask * 255).to(torch.uint8)
cv.imwrite(output_dir + '/right_sleeve_mask/%08d.png' % item['data_idx'], right_hand_mask.cpu().numpy())
rgb_map = output['rgb_map']
rgb_map.clip_(0., 1.)
rgb_map = (rgb_map * 255).to(torch.uint8).cpu().numpy()
cv.imwrite(output_dir + '/rgb_map/%08d.jpg' % item['data_idx'], rgb_map)
# 利用 r_hand_mask 和 l_hand_mask,将wo_hand图像中的mask部分覆盖rgb_map
if 'rgb_map' in output_wo_hand and 'full_body_rgb_map' in mask_output and 'hand_only_rgb_map' in mask_output:
rgb_map_wo_hand = output_wo_hand['rgb_map']
rgb_map_wo_hand.clip_(0., 1.)
rgb_map_wo_hand = (rgb_map_wo_hand * 255).to(torch.uint8).cpu().numpy()
r_mask = (r_hand_mask>128).cpu().numpy()
l_mask = (l_hand_mask>128).cpu().numpy()
mask = r_mask | l_mask
mask = mask.astype(np.uint8)
# 定义一个结构元素,可以调整其大小以改变膨胀的程度
kernel = np.ones((5, 5), np.uint8)
# 应用膨胀操作
mask = cv.dilate(mask, kernel, iterations=3)
mask = mask.astype(np.bool_)
mask = np.expand_dims(mask, axis=2)
# print('mask shape: ', mask.shape)
import ipdb
# ipdb.set_trace()
mix = rgb_map_wo_hand.copy() * mask + rgb_map * ~mask
cv.imwrite(output_dir + '/rgb_map_wo_hand/%08d.png' % item['data_idx'], mix)
if 'torso_map' in output:
os.makedirs(output_dir + '/torso_map', exist_ok = True)
torso_map = output['torso_map'][:, :, 0]
torso_map.clip_(0., 1.)
torso_map = (torso_map * 255).to(torch.uint8)
cv.imwrite(output_dir + '/torso_map/%08d.png' % item['data_idx'], torso_map.cpu().numpy())
if 'mask_map' in output:
os.makedirs(output_dir + '/mask_map', exist_ok = True)
mask_map = output['mask_map'][:, :, 0]
mask_map.clip_(0., 1.)
mask_map = (mask_map * 255).to(torch.uint8)
cv.imwrite(output_dir + '/mask_map/%08d.png' % item['data_idx'], mask_map.cpu().numpy())
if self.body['test'].get('save_tex_map', False):
os.makedirs(output_dir + '/cano_tex_map', exist_ok = True)
cano_tex_map = output['cano_tex_map']
cano_tex_map.clip_(0., 1.)
cano_tex_map = (cano_tex_map * 255).to(torch.uint8)
cv.imwrite(output_dir + '/cano_tex_map/%08d.png' % item['data_idx'], cano_tex_map.cpu().numpy())
if self.body['test'].get('save_ply', False):
if item['data_idx'] == 0:
save_gaussians_as_ply(output_dir + '/posed_gaussians/%08d.ply' % item['data_idx'], output['posed_gaussians'])
for k in output['posed_gaussians'].keys():
if isinstance(output['posed_gaussians'][k], torch.Tensor):
output['posed_gaussians'][k] = output['posed_gaussians'][k].detach().cpu().numpy()
np.savez(output_dir + '/posed_gaussians/%08d.npz' % item['data_idx'], **output['posed_gaussians'])
np.savez(output_dir + ('/posed_params/%08d.npz' % item['data_idx']),
betas=training_dataset.smpl_data['betas'].reshape([-1]).detach().cpu().numpy(),
global_orient=item['global_orient'].reshape([-1]).detach().cpu().numpy(),
transl=item['transl'].reshape([-1]).detach().cpu().numpy(),
body_pose=item['body_pose'].reshape([-1]).detach().cpu().numpy())
if log_time:
time_end.record()
torch.cuda.synchronize()
print('Saving images costs %.4f secs' % (time_start.elapsed_time(time_end) / 1000.))
print('Animating one frame costs %.4f secs' % (time_start_all.elapsed_time(time_end) / 1000.))
torch.cuda.empty_cache()
def dump_renderer_info(self, dump_dir, extrs, intrs, img_heights, img_widths):
with open(os.path.join(dump_dir, 'cfg_args'), 'w') as fp:
outstr = "Namespace(sh_degree=%d, source_path='%s', model_path='%s', images='images', resolution=-1, " \
"white_background=False, data_device='cuda', eval=False)" % (
3, self.body['train']['data']['data_dir'], dump_dir)
fp.write(outstr)
with open(os.path.join(dump_dir, 'cameras.json'), 'w') as fp:
cam_jsons = []
for ci in range(len(extrs)):
extr, intr = extrs[ci], intrs[ci]
img_h, img_w = img_heights[ci], img_widths[ci]
w2c = extr
c2w = np.linalg.inv(w2c)
pos = c2w[:3, 3]
rot = c2w[:3, :3]
serializable_array_2d = [x.tolist() for x in rot]
camera_entry = {
'id': ci,
'img_name': '%08d' % ci,
'width': int(img_w),
'height': int(img_h),
'position': pos.tolist(),
'rotation': serializable_array_2d,
'fy': float(intr[1, 1]),
'fx': float(intr[0, 0]),
}
cam_jsons.append(camera_entry)
json.dump(cam_jsons, fp)
return
def test_head(self):
dataset = ReenactmentDataset(self.head_config.dataset)
dataloader = DataLoaderX(dataset, batch_size=1, shuffle=False, pin_memory=True)
device = torch.device('cuda:%d' % self.head_config.gpu_id)
gaussianhead_state_dict = torch.load(self.head_config.load_gaussianhead_checkpoint, map_location=lambda storage, loc: storage)
gaussianhead = GaussianHeadModule(self.head_config.gaussianheadmodule,
xyz=gaussianhead_state_dict['xyz'],
feature=gaussianhead_state_dict['feature'],
landmarks_3d_neutral=gaussianhead_state_dict['landmarks_3d_neutral']).to(device)
gaussianhead.load_state_dict(gaussianhead_state_dict)
supres = SuperResolutionModule(self.head_config.supresmodule).to(device)
supres.load_state_dict(torch.load(self.head_config.load_supres_checkpoint, map_location=lambda storage, loc: storage))
camera = CameraModule()
recorder = ReenactmentRecorder(self.head_config.recorder)
app = Reenactment(dataloader, gaussianhead, supres, camera, recorder, self.head_config.gpu_id, dataset.freeview)
if self.head.offline_rendering_param_fpath is None:
app.run(stop_fid=800)
else:
app.run_for_offline_stitching(self.head.offline_rendering_param_fpath)
def cal_cat_param(self):
calc_offline_rendering_param(
self.cat.body_gaussian_root_dir,
self.cat.ref_head_gaussian_path,
self.cat.ref_head_param_path,
self.cat.render_cam_fpath,
self.cat.body_head_blending_param_path
)
if __name__ == '__main__':
conf = OmegaConf.load('configs/example.yaml')
avatar = Avatar(conf)
avatar.test_body()
# avatar.test_head() |