pavankay commited on
Commit
70f6074
1 Parent(s): ba17c23

Upload folder using huggingface_hub

Browse files
HW.jpeg ADDED
README.md CHANGED
@@ -1,12 +1,6 @@
1
  ---
2
  title: Upscaler
3
- emoji: 👀
4
- colorFrom: gray
5
- colorTo: gray
6
  sdk: gradio
7
  sdk_version: 4.41.0
8
- app_file: app.py
9
- pinned: false
10
  ---
11
-
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
  ---
2
  title: Upscaler
3
+ app_file: main.py
 
 
4
  sdk: gradio
5
  sdk_version: 4.41.0
 
 
6
  ---
 
 
flagged/Upload Low-Resolution Image/4f885062a26d878bf6ae/clipboard.png ADDED
flagged/log.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ Upload Low-Resolution Image,Upscaling Prompt,Upscaled Image,flag,username,timestamp
2
+ flagged\Upload Low-Resolution Image\4f885062a26d878bf6ae\clipboard.png,Car,,,,2024-08-19 14:23:30.400851
low_res_cat.png ADDED
main.py ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from PIL import Image
3
+ from diffusers import StableDiffusionUpscalePipeline
4
+ import torch
5
+ import numpy as np
6
+
7
+ # Load model and scheduler
8
+ model_id = "stabilityai/stable-diffusion-x4-upscaler"
9
+ pipeline = StableDiffusionUpscalePipeline.from_pretrained(model_id, torch_dtype=torch.float16)
10
+ pipeline = pipeline.to("cuda")
11
+
12
+ def upscale_image(image, prompt):
13
+ # Convert uploaded image to PIL
14
+ low_res_img = Image.fromarray(image).convert("RGB")
15
+
16
+ # Upscale the image
17
+ upscaled_image = pipeline(prompt=prompt, image=low_res_img).images[0]
18
+
19
+ # Convert upscaled PIL image back to numpy array for Gradio
20
+ upscaled_image_np = np.array(upscaled_image)
21
+
22
+ return upscaled_image_np
23
+
24
+ # Create the Gradio interface
25
+ interface = gr.Interface(
26
+ fn=upscale_image,
27
+ inputs=[
28
+ gr.Image(type="numpy", label="Upload Low-Resolution Image"),
29
+ gr.Textbox(label="Upscaling Prompt", placeholder="Enter a prompt, e.g., 'a red box with glasses'")
30
+ ],
31
+ outputs=gr.Image(type="numpy", label="Upscaled Image"),
32
+ title="Image Upscaler",
33
+ description="Upload a low-resolution image and provide a prompt to upscale it using Stable Diffusion."
34
+ )
35
+
36
+ # Launch the Gradio app
37
+ interface.launch(share=True)
test.py ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import requests
2
+ from PIL import Image
3
+ from io import BytesIO
4
+ from diffusers import StableDiffusionUpscalePipeline
5
+ import torch
6
+
7
+ # load model and scheduler
8
+ model_id = "stabilityai/stable-diffusion-x4-upscaler"
9
+ pipeline = StableDiffusionUpscalePipeline.from_pretrained(model_id, torch_dtype=torch.float16)
10
+ pipeline = pipeline.to("cuda")
11
+
12
+ # let's download an image
13
+ url = "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale/low_res_cat.png"
14
+ response = requests.get(url)
15
+ low_res_img = Image.open(BytesIO(response.content)).convert("RGB")
16
+
17
+
18
+ low_res_img.save("low_res_cat.png")
19
+
20
+ prompt = "a white cat"
21
+
22
+ upscaled_image = pipeline(prompt=prompt, image=low_res_img).images[0]
23
+ upscaled_image.save("upsampled_cat.png")
24
+
25
+
upscale.png ADDED
upscale2.png ADDED