Spaces:
Sleeping
Sleeping
patrickligardes
commited on
Commit
β’
58491f9
1
Parent(s):
027c136
Update utils_mask.py
Browse files- utils_mask.py +33 -25
utils_mask.py
CHANGED
@@ -62,53 +62,58 @@ def get_mask_location(model_type, category, model_parse: Image.Image, keypoint:
|
|
62 |
else:
|
63 |
raise ValueError("model_type must be 'hd' or 'dc'!")
|
64 |
|
65 |
-
parse_head = (parse_array ==
|
66 |
-
(parse_array ==
|
67 |
-
(parse_array ==
|
|
|
68 |
|
69 |
parser_mask_fixed = (parse_array == label_map["left_shoe"]).astype(np.float32) + \
|
70 |
(parse_array == label_map["right_shoe"]).astype(np.float32) + \
|
71 |
-
(parse_array == label_map["
|
72 |
-
(parse_array == label_map["
|
73 |
-
(parse_array == label_map["bag"]).astype(np.float32)
|
74 |
|
75 |
parser_mask_changeable = (parse_array == label_map["background"]).astype(np.float32)
|
76 |
|
77 |
-
arms_left = (parse_array ==
|
78 |
-
arms_right = (parse_array ==
|
79 |
|
80 |
if category == 'dresses':
|
81 |
-
parse_mask_upper = (parse_array ==
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
|
|
|
|
86 |
|
87 |
# Fill gaps between the legs
|
88 |
parse_mask_legs = (parse_array == label_map["left_leg"]).astype(np.float32) + \
|
89 |
-
|
90 |
parse_mask_legs_dilated = cv2.dilate(parse_mask_legs.astype(np.uint8), np.ones((5, 5), np.uint8), iterations=6)
|
91 |
parse_mask_lower = np.maximum(parse_mask_lower, parse_mask_legs_dilated)
|
92 |
|
93 |
# Combine upper and filled lower body masks
|
94 |
parse_mask = np.logical_or(parse_mask_upper, parse_mask_lower)
|
95 |
|
96 |
-
|
97 |
-
|
98 |
elif category == 'upper_body':
|
99 |
-
parse_mask = (parse_array ==
|
|
|
100 |
parser_mask_changeable += np.logical_and(parse_array, np.logical_not(parser_mask_fixed))
|
|
|
101 |
elif category == 'lower_body':
|
102 |
-
parse_mask = (parse_array ==
|
103 |
-
(parse_array ==
|
104 |
-
(parse_array ==
|
105 |
-
(parse_array ==
|
|
|
106 |
parser_mask_fixed += (parse_array == label_map["upper_clothes"]).astype(np.float32) + \
|
107 |
-
(parse_array ==
|
108 |
-
(parse_array ==
|
|
|
109 |
parser_mask_changeable += np.logical_and(parse_array, np.logical_not(parser_mask_fixed))
|
|
|
110 |
else:
|
111 |
-
raise NotImplementedError
|
112 |
|
113 |
# Load pose points
|
114 |
pose_data = keypoint["pose_keypoints_2d"]
|
@@ -119,6 +124,7 @@ def get_mask_location(model_type, category, model_parse: Image.Image, keypoint:
|
|
119 |
im_arms_right = Image.new('L', (width, height))
|
120 |
arms_draw_left = ImageDraw.Draw(im_arms_left)
|
121 |
arms_draw_right = ImageDraw.Draw(im_arms_right)
|
|
|
122 |
if category == 'dresses' or category == 'upper_body':
|
123 |
shoulder_right = np.multiply(tuple(pose_data[2][:2]), height / 512.0)
|
124 |
shoulder_left = np.multiply(tuple(pose_data[5][:2]), height / 512.0)
|
@@ -150,7 +156,9 @@ def get_mask_location(model_type, category, model_parse: Image.Image, keypoint:
|
|
150 |
parser_mask_fixed += hands_left + hands_right
|
151 |
|
152 |
parser_mask_fixed = np.logical_or(parser_mask_fixed, parse_head)
|
153 |
-
parse_mask = cv2.dilate(parse_mask, np.ones((5, 5), np.
|
|
|
|
|
154 |
if category == 'dresses' or category == 'upper_body':
|
155 |
neck_mask = (parse_array == 18).astype(np.float32)
|
156 |
neck_mask = cv2.dilate(neck_mask, np.ones((5, 5), np.uint16), iterations=1)
|
|
|
62 |
else:
|
63 |
raise ValueError("model_type must be 'hd' or 'dc'!")
|
64 |
|
65 |
+
parse_head = (parse_array == label_map["head"]).astype(np.float32) + \
|
66 |
+
(parse_array == label_map["hat"]).astype(np.float32) + \
|
67 |
+
(parse_array == label_map["hair"]).astype(np.float32) + \
|
68 |
+
(parse_array == label_map["sunglasses"]).astype(np.float32)
|
69 |
|
70 |
parser_mask_fixed = (parse_array == label_map["left_shoe"]).astype(np.float32) + \
|
71 |
(parse_array == label_map["right_shoe"]).astype(np.float32) + \
|
72 |
+
(parse_array == label_map["bag"]).astype(np.float32) + \
|
73 |
+
(parse_array == label_map["scarf"]).astype(np.float32)
|
|
|
74 |
|
75 |
parser_mask_changeable = (parse_array == label_map["background"]).astype(np.float32)
|
76 |
|
77 |
+
arms_left = (parse_array == label_map["left_arm"]).astype(np.float32)
|
78 |
+
arms_right = (parse_array == label_map["right_arm"]).astype(np.float32)
|
79 |
|
80 |
if category == 'dresses':
|
81 |
+
parse_mask_upper = (parse_array == label_map["upper_clothes"]).astype(np.float32) + \
|
82 |
+
(parse_array == label_map["dress"]).astype(np.float32)
|
83 |
+
|
84 |
+
parse_mask_lower = (parse_array == label_map["skirt"]).astype(np.float32) + \
|
85 |
+
(parse_array == label_map["pants"]).astype(np.float32) + \
|
86 |
+
(parse_array == label_map["left_leg"]).astype(np.float32) + \
|
87 |
+
(parse_array == label_map["right_leg"]).astype(np.float32)
|
88 |
|
89 |
# Fill gaps between the legs
|
90 |
parse_mask_legs = (parse_array == label_map["left_leg"]).astype(np.float32) + \
|
91 |
+
(parse_array == label_map["right_leg"]).astype(np.float32)
|
92 |
parse_mask_legs_dilated = cv2.dilate(parse_mask_legs.astype(np.uint8), np.ones((5, 5), np.uint8), iterations=6)
|
93 |
parse_mask_lower = np.maximum(parse_mask_lower, parse_mask_legs_dilated)
|
94 |
|
95 |
# Combine upper and filled lower body masks
|
96 |
parse_mask = np.logical_or(parse_mask_upper, parse_mask_lower)
|
97 |
|
|
|
|
|
98 |
elif category == 'upper_body':
|
99 |
+
parse_mask = (parse_array == label_map["upper_clothes"]).astype(np.float32)
|
100 |
+
|
101 |
parser_mask_changeable += np.logical_and(parse_array, np.logical_not(parser_mask_fixed))
|
102 |
+
|
103 |
elif category == 'lower_body':
|
104 |
+
parse_mask = (parse_array == label_map["pants"]).astype(np.float32) + \
|
105 |
+
(parse_array == label_map["skirt"]).astype(np.float32) + \
|
106 |
+
(parse_array == label_map["left_leg"]).astype(np.float32) + \
|
107 |
+
(parse_array == label_map["right_leg"]).astype(np.float32)
|
108 |
+
|
109 |
parser_mask_fixed += (parse_array == label_map["upper_clothes"]).astype(np.float32) + \
|
110 |
+
(parse_array == label_map["left_arm"]).astype(np.float32) + \
|
111 |
+
(parse_array == label_map["right_arm"]).astype(np.float32)
|
112 |
+
|
113 |
parser_mask_changeable += np.logical_and(parse_array, np.logical_not(parser_mask_fixed))
|
114 |
+
|
115 |
else:
|
116 |
+
raise NotImplementedError("Category not implemented")
|
117 |
|
118 |
# Load pose points
|
119 |
pose_data = keypoint["pose_keypoints_2d"]
|
|
|
124 |
im_arms_right = Image.new('L', (width, height))
|
125 |
arms_draw_left = ImageDraw.Draw(im_arms_left)
|
126 |
arms_draw_right = ImageDraw.Draw(im_arms_right)
|
127 |
+
|
128 |
if category == 'dresses' or category == 'upper_body':
|
129 |
shoulder_right = np.multiply(tuple(pose_data[2][:2]), height / 512.0)
|
130 |
shoulder_left = np.multiply(tuple(pose_data[5][:2]), height / 512.0)
|
|
|
156 |
parser_mask_fixed += hands_left + hands_right
|
157 |
|
158 |
parser_mask_fixed = np.logical_or(parser_mask_fixed, parse_head)
|
159 |
+
parse_mask = cv2.dilate(parse_mask.astype(np.uint8), np.ones((5, 5), np.uint8), iterations=5)
|
160 |
+
|
161 |
+
|
162 |
if category == 'dresses' or category == 'upper_body':
|
163 |
neck_mask = (parse_array == 18).astype(np.float32)
|
164 |
neck_mask = cv2.dilate(neck_mask, np.ones((5, 5), np.uint16), iterations=1)
|