Spaces:
Sleeping
Sleeping
// Copyright (c) Facebook, Inc. and its affiliates. | |
// TODO make it in a common file | |
// Note: this implementation originates from the Caffe2 ROIAlignRotated Op | |
// and PyTorch ROIAlign (non-rotated) Op implementations. | |
// The key difference between this implementation and those ones is | |
// we don't do "legacy offset" in this version, as there aren't many previous | |
// works, if any, using the "legacy" ROIAlignRotated Op. | |
// This would make the interface a bit cleaner. | |
namespace detectron2 { | |
namespace { | |
template <typename T> | |
__device__ T bilinear_interpolate( | |
const T* input, | |
const int height, | |
const int width, | |
T y, | |
T x) { | |
// deal with cases that inverse elements are out of feature map boundary | |
if (y < -1.0 || y > height || x < -1.0 || x > width) { | |
// empty | |
return 0; | |
} | |
if (y < 0) { | |
y = 0; | |
} | |
if (x < 0) { | |
x = 0; | |
} | |
int y_low = (int)y; | |
int x_low = (int)x; | |
int y_high; | |
int x_high; | |
if (y_low >= height - 1) { | |
y_high = y_low = height - 1; | |
y = (T)y_low; | |
} else { | |
y_high = y_low + 1; | |
} | |
if (x_low >= width - 1) { | |
x_high = x_low = width - 1; | |
x = (T)x_low; | |
} else { | |
x_high = x_low + 1; | |
} | |
T ly = y - y_low; | |
T lx = x - x_low; | |
T hy = 1. - ly, hx = 1. - lx; | |
// do bilinear interpolation | |
T v1 = input[y_low * width + x_low]; | |
T v2 = input[y_low * width + x_high]; | |
T v3 = input[y_high * width + x_low]; | |
T v4 = input[y_high * width + x_high]; | |
T w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx; | |
T val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4); | |
return val; | |
} | |
template <typename T> | |
__device__ void bilinear_interpolate_gradient( | |
const int height, | |
const int width, | |
T y, | |
T x, | |
T& w1, | |
T& w2, | |
T& w3, | |
T& w4, | |
int& x_low, | |
int& x_high, | |
int& y_low, | |
int& y_high) { | |
// deal with cases that inverse elements are out of feature map boundary | |
if (y < -1.0 || y > height || x < -1.0 || x > width) { | |
// empty | |
w1 = w2 = w3 = w4 = 0.; | |
x_low = x_high = y_low = y_high = -1; | |
return; | |
} | |
if (y < 0) { | |
y = 0; | |
} | |
if (x < 0) { | |
x = 0; | |
} | |
y_low = (int)y; | |
x_low = (int)x; | |
if (y_low >= height - 1) { | |
y_high = y_low = height - 1; | |
y = (T)y_low; | |
} else { | |
y_high = y_low + 1; | |
} | |
if (x_low >= width - 1) { | |
x_high = x_low = width - 1; | |
x = (T)x_low; | |
} else { | |
x_high = x_low + 1; | |
} | |
T ly = y - y_low; | |
T lx = x - x_low; | |
T hy = 1. - ly, hx = 1. - lx; | |
// reference in forward | |
// T v1 = input[y_low * width + x_low]; | |
// T v2 = input[y_low * width + x_high]; | |
// T v3 = input[y_high * width + x_low]; | |
// T v4 = input[y_high * width + x_high]; | |
// T val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4); | |
w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx; | |
return; | |
} | |
} // namespace | |
template <typename T> | |
__global__ void RoIAlignRotatedForward( | |
const int nthreads, | |
const T* input, | |
const T spatial_scale, | |
const int channels, | |
const int height, | |
const int width, | |
const int pooled_height, | |
const int pooled_width, | |
const int sampling_ratio, | |
const T* rois, | |
T* top_data) { | |
CUDA_1D_KERNEL_LOOP(index, nthreads) { | |
// (n, c, ph, pw) is an element in the pooled output | |
int pw = index % pooled_width; | |
int ph = (index / pooled_width) % pooled_height; | |
int c = (index / pooled_width / pooled_height) % channels; | |
int n = index / pooled_width / pooled_height / channels; | |
const T* current_roi = rois + n * 6; | |
int roi_batch_ind = current_roi[0]; | |
// Do not use rounding; this implementation detail is critical | |
// ROIAlignRotated supports align == true, i.e., continuous coordinate | |
// by default, thus the 0.5 offset | |
T offset = (T)0.5; | |
T roi_center_w = current_roi[1] * spatial_scale - offset; | |
T roi_center_h = current_roi[2] * spatial_scale - offset; | |
T roi_width = current_roi[3] * spatial_scale; | |
T roi_height = current_roi[4] * spatial_scale; | |
T theta = current_roi[5] * M_PI / 180.0; | |
T cos_theta = cos(theta); | |
T sin_theta = sin(theta); | |
T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height); | |
T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width); | |
const T* offset_input = | |
input + (roi_batch_ind * channels + c) * height * width; | |
// We use roi_bin_grid to sample the grid and mimic integral | |
int roi_bin_grid_h = (sampling_ratio > 0) | |
? sampling_ratio | |
: ceil(roi_height / pooled_height); // e.g., = 2 | |
int roi_bin_grid_w = | |
(sampling_ratio > 0) ? sampling_ratio : ceil(roi_width / pooled_width); | |
// roi_start_h and roi_start_w are computed wrt the center of RoI (x, y). | |
// Appropriate translation needs to be applied after. | |
T roi_start_h = -roi_height / 2.0; | |
T roi_start_w = -roi_width / 2.0; | |
// We do average (inte gral) pooling inside a bin | |
const T count = max(roi_bin_grid_h * roi_bin_grid_w, 1); // e.g. = 4 | |
T output_val = 0.; | |
for (int iy = 0; iy < roi_bin_grid_h; iy++) // e.g., iy = 0, 1 | |
{ | |
const T yy = roi_start_h + ph * bin_size_h + | |
static_cast<T>(iy + .5f) * bin_size_h / | |
static_cast<T>(roi_bin_grid_h); // e.g., 0.5, 1.5 | |
for (int ix = 0; ix < roi_bin_grid_w; ix++) { | |
const T xx = roi_start_w + pw * bin_size_w + | |
static_cast<T>(ix + .5f) * bin_size_w / | |
static_cast<T>(roi_bin_grid_w); | |
// Rotate by theta around the center and translate | |
T y = yy * cos_theta - xx * sin_theta + roi_center_h; | |
T x = yy * sin_theta + xx * cos_theta + roi_center_w; | |
T val = bilinear_interpolate(offset_input, height, width, y, x); | |
output_val += val; | |
} | |
} | |
output_val /= count; | |
top_data[index] = output_val; | |
} | |
} | |
template <typename T> | |
__global__ void RoIAlignRotatedBackwardFeature( | |
const int nthreads, | |
const T* top_diff, | |
const int num_rois, | |
const T spatial_scale, | |
const int channels, | |
const int height, | |
const int width, | |
const int pooled_height, | |
const int pooled_width, | |
const int sampling_ratio, | |
T* bottom_diff, | |
const T* rois) { | |
CUDA_1D_KERNEL_LOOP(index, nthreads) { | |
// (n, c, ph, pw) is an element in the pooled output | |
int pw = index % pooled_width; | |
int ph = (index / pooled_width) % pooled_height; | |
int c = (index / pooled_width / pooled_height) % channels; | |
int n = index / pooled_width / pooled_height / channels; | |
const T* current_roi = rois + n * 6; | |
int roi_batch_ind = current_roi[0]; | |
// Do not use rounding; this implementation detail is critical | |
// ROIAlignRotated supports align == true, i.e., continuous coordinate | |
// by default, thus the 0.5 offset | |
T offset = (T)0.5; | |
T roi_center_w = current_roi[1] * spatial_scale - offset; | |
T roi_center_h = current_roi[2] * spatial_scale - offset; | |
T roi_width = current_roi[3] * spatial_scale; | |
T roi_height = current_roi[4] * spatial_scale; | |
T theta = current_roi[5] * M_PI / 180.0; | |
T cos_theta = cos(theta); | |
T sin_theta = sin(theta); | |
T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height); | |
T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width); | |
T* offset_bottom_diff = | |
bottom_diff + (roi_batch_ind * channels + c) * height * width; | |
int top_offset = (n * channels + c) * pooled_height * pooled_width; | |
const T* offset_top_diff = top_diff + top_offset; | |
const T top_diff_this_bin = offset_top_diff[ph * pooled_width + pw]; | |
// We use roi_bin_grid to sample the grid and mimic integral | |
int roi_bin_grid_h = (sampling_ratio > 0) | |
? sampling_ratio | |
: ceil(roi_height / pooled_height); // e.g., = 2 | |
int roi_bin_grid_w = | |
(sampling_ratio > 0) ? sampling_ratio : ceil(roi_width / pooled_width); | |
// roi_start_h and roi_start_w are computed wrt the center of RoI (x, y). | |
// Appropriate translation needs to be applied after. | |
T roi_start_h = -roi_height / 2.0; | |
T roi_start_w = -roi_width / 2.0; | |
// We do average (integral) pooling inside a bin | |
const T count = roi_bin_grid_h * roi_bin_grid_w; // e.g. = 4 | |
for (int iy = 0; iy < roi_bin_grid_h; iy++) // e.g., iy = 0, 1 | |
{ | |
const T yy = roi_start_h + ph * bin_size_h + | |
static_cast<T>(iy + .5f) * bin_size_h / | |
static_cast<T>(roi_bin_grid_h); // e.g., 0.5, 1.5 | |
for (int ix = 0; ix < roi_bin_grid_w; ix++) { | |
const T xx = roi_start_w + pw * bin_size_w + | |
static_cast<T>(ix + .5f) * bin_size_w / | |
static_cast<T>(roi_bin_grid_w); | |
// Rotate by theta around the center and translate | |
T y = yy * cos_theta - xx * sin_theta + roi_center_h; | |
T x = yy * sin_theta + xx * cos_theta + roi_center_w; | |
T w1, w2, w3, w4; | |
int x_low, x_high, y_low, y_high; | |
bilinear_interpolate_gradient( | |
height, width, y, x, w1, w2, w3, w4, x_low, x_high, y_low, y_high); | |
T g1 = top_diff_this_bin * w1 / count; | |
T g2 = top_diff_this_bin * w2 / count; | |
T g3 = top_diff_this_bin * w3 / count; | |
T g4 = top_diff_this_bin * w4 / count; | |
if (x_low >= 0 && x_high >= 0 && y_low >= 0 && y_high >= 0) { | |
atomicAdd( | |
offset_bottom_diff + y_low * width + x_low, static_cast<T>(g1)); | |
atomicAdd( | |
offset_bottom_diff + y_low * width + x_high, static_cast<T>(g2)); | |
atomicAdd( | |
offset_bottom_diff + y_high * width + x_low, static_cast<T>(g3)); | |
atomicAdd( | |
offset_bottom_diff + y_high * width + x_high, static_cast<T>(g4)); | |
} // if | |
} // ix | |
} // iy | |
} // CUDA_1D_KERNEL_LOOP | |
} // RoIAlignRotatedBackward | |
at::Tensor ROIAlignRotated_forward_cuda( | |
const at::Tensor& input, | |
const at::Tensor& rois, | |
const float spatial_scale, | |
const int pooled_height, | |
const int pooled_width, | |
const int sampling_ratio) { | |
AT_ASSERTM(input.device().is_cuda(), "input must be a CUDA tensor"); | |
AT_ASSERTM(rois.device().is_cuda(), "rois must be a CUDA tensor"); | |
at::TensorArg input_t{input, "input", 1}, rois_t{rois, "rois", 2}; | |
at::CheckedFrom c = "ROIAlignRotated_forward_cuda"; | |
at::checkAllSameGPU(c, {input_t, rois_t}); | |
at::checkAllSameType(c, {input_t, rois_t}); | |
at::cuda::CUDAGuard device_guard(input.device()); | |
auto num_rois = rois.size(0); | |
auto channels = input.size(1); | |
auto height = input.size(2); | |
auto width = input.size(3); | |
auto output = at::empty( | |
{num_rois, channels, pooled_height, pooled_width}, input.options()); | |
auto output_size = num_rois * pooled_height * pooled_width * channels; | |
cudaStream_t stream = at::cuda::getCurrentCUDAStream(); | |
dim3 grid(std::min( | |
at::cuda::ATenCeilDiv( | |
static_cast<int64_t>(output_size), static_cast<int64_t>(512)), | |
static_cast<int64_t>(4096))); | |
dim3 block(512); | |
if (output.numel() == 0) { | |
AT_CUDA_CHECK(cudaGetLastError()); | |
return output; | |
} | |
auto input_ = input.contiguous(), rois_ = rois.contiguous(); | |
AT_DISPATCH_FLOATING_TYPES( | |
input.scalar_type(), "ROIAlignRotated_forward", [&] { | |
RoIAlignRotatedForward<scalar_t><<<grid, block, 0, stream>>>( | |
output_size, | |
input_.data_ptr<scalar_t>(), | |
spatial_scale, | |
channels, | |
height, | |
width, | |
pooled_height, | |
pooled_width, | |
sampling_ratio, | |
rois_.data_ptr<scalar_t>(), | |
output.data_ptr<scalar_t>()); | |
}); | |
cudaDeviceSynchronize(); | |
AT_CUDA_CHECK(cudaGetLastError()); | |
return output; | |
} | |
// TODO remove the dependency on input and use instead its sizes -> save memory | |
at::Tensor ROIAlignRotated_backward_cuda( | |
const at::Tensor& grad, | |
const at::Tensor& rois, | |
const float spatial_scale, | |
const int pooled_height, | |
const int pooled_width, | |
const int batch_size, | |
const int channels, | |
const int height, | |
const int width, | |
const int sampling_ratio) { | |
AT_ASSERTM(grad.device().is_cuda(), "grad must be a CUDA tensor"); | |
AT_ASSERTM(rois.device().is_cuda(), "rois must be a CUDA tensor"); | |
at::TensorArg grad_t{grad, "grad", 1}, rois_t{rois, "rois", 2}; | |
at::CheckedFrom c = "ROIAlign_backward_cuda"; | |
at::checkAllSameGPU(c, {grad_t, rois_t}); | |
at::checkAllSameType(c, {grad_t, rois_t}); | |
at::cuda::CUDAGuard device_guard(grad.device()); | |
auto num_rois = rois.size(0); | |
auto grad_input = | |
at::zeros({batch_size, channels, height, width}, grad.options()); | |
cudaStream_t stream = at::cuda::getCurrentCUDAStream(); | |
dim3 grid(std::min( | |
at::cuda::ATenCeilDiv( | |
static_cast<int64_t>(grad.numel()), static_cast<int64_t>(512)), | |
static_cast<int64_t>(4096))); | |
dim3 block(512); | |
// handle possibly empty gradients | |
if (grad.numel() == 0) { | |
AT_CUDA_CHECK(cudaGetLastError()); | |
return grad_input; | |
} | |
auto grad_ = grad.contiguous(), rois_ = rois.contiguous(); | |
AT_DISPATCH_FLOATING_TYPES( | |
grad.scalar_type(), "ROIAlignRotated_backward", [&] { | |
RoIAlignRotatedBackwardFeature<scalar_t><<<grid, block, 0, stream>>>( | |
grad.numel(), | |
grad_.data_ptr<scalar_t>(), | |
num_rois, | |
spatial_scale, | |
channels, | |
height, | |
width, | |
pooled_height, | |
pooled_width, | |
sampling_ratio, | |
grad_input.data_ptr<scalar_t>(), | |
rois_.data_ptr<scalar_t>()); | |
}); | |
AT_CUDA_CHECK(cudaGetLastError()); | |
return grad_input; | |
} | |
} // namespace detectron2 | |