Spaces:
Sleeping
Sleeping
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved | |
import random | |
from typing import Tuple | |
import torch | |
from torch import nn | |
from torch.nn import functional as F | |
from detectron2.config import CfgNode | |
from densepose.structures.mesh import create_mesh | |
from .utils import sample_random_indices | |
class ShapeToShapeCycleLoss(nn.Module): | |
""" | |
Cycle Loss for Shapes. | |
Inspired by: | |
"Mapping in a Cycle: Sinkhorn Regularized Unsupervised Learning for Point Cloud Shapes". | |
""" | |
def __init__(self, cfg: CfgNode): | |
super().__init__() | |
self.shape_names = list(cfg.MODEL.ROI_DENSEPOSE_HEAD.CSE.EMBEDDERS.keys()) | |
self.all_shape_pairs = [ | |
(x, y) for i, x in enumerate(self.shape_names) for y in self.shape_names[i + 1 :] | |
] | |
random.shuffle(self.all_shape_pairs) | |
self.cur_pos = 0 | |
self.norm_p = cfg.MODEL.ROI_DENSEPOSE_HEAD.CSE.SHAPE_TO_SHAPE_CYCLE_LOSS.NORM_P | |
self.temperature = cfg.MODEL.ROI_DENSEPOSE_HEAD.CSE.SHAPE_TO_SHAPE_CYCLE_LOSS.TEMPERATURE | |
self.max_num_vertices = ( | |
cfg.MODEL.ROI_DENSEPOSE_HEAD.CSE.SHAPE_TO_SHAPE_CYCLE_LOSS.MAX_NUM_VERTICES | |
) | |
def _sample_random_pair(self) -> Tuple[str, str]: | |
""" | |
Produce a random pair of different mesh names | |
Return: | |
tuple(str, str): a pair of different mesh names | |
""" | |
if self.cur_pos >= len(self.all_shape_pairs): | |
random.shuffle(self.all_shape_pairs) | |
self.cur_pos = 0 | |
shape_pair = self.all_shape_pairs[self.cur_pos] | |
self.cur_pos += 1 | |
return shape_pair | |
def forward(self, embedder: nn.Module): | |
""" | |
Do a forward pass with a random pair (src, dst) pair of shapes | |
Args: | |
embedder (nn.Module): module that computes vertex embeddings for different meshes | |
""" | |
src_mesh_name, dst_mesh_name = self._sample_random_pair() | |
return self._forward_one_pair(embedder, src_mesh_name, dst_mesh_name) | |
def fake_value(self, embedder: nn.Module): | |
losses = [] | |
for mesh_name in embedder.mesh_names: | |
losses.append(embedder(mesh_name).sum() * 0) | |
return torch.mean(torch.stack(losses)) | |
def _get_embeddings_and_geodists_for_mesh( | |
self, embedder: nn.Module, mesh_name: str | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
""" | |
Produces embeddings and geodesic distance tensors for a given mesh. May subsample | |
the mesh, if it contains too many vertices (controlled by | |
SHAPE_CYCLE_LOSS_MAX_NUM_VERTICES parameter). | |
Args: | |
embedder (nn.Module): module that computes embeddings for mesh vertices | |
mesh_name (str): mesh name | |
Return: | |
embeddings (torch.Tensor of size [N, D]): embeddings for selected mesh | |
vertices (N = number of selected vertices, D = embedding space dim) | |
geodists (torch.Tensor of size [N, N]): geodesic distances for the selected | |
mesh vertices (N = number of selected vertices) | |
""" | |
embeddings = embedder(mesh_name) | |
indices = sample_random_indices( | |
embeddings.shape[0], self.max_num_vertices, embeddings.device | |
) | |
mesh = create_mesh(mesh_name, embeddings.device) | |
geodists = mesh.geodists | |
if indices is not None: | |
embeddings = embeddings[indices] | |
geodists = geodists[torch.meshgrid(indices, indices)] | |
return embeddings, geodists | |
def _forward_one_pair( | |
self, embedder: nn.Module, mesh_name_1: str, mesh_name_2: str | |
) -> torch.Tensor: | |
""" | |
Do a forward pass with a selected pair of meshes | |
Args: | |
embedder (nn.Module): module that computes vertex embeddings for different meshes | |
mesh_name_1 (str): first mesh name | |
mesh_name_2 (str): second mesh name | |
Return: | |
Tensor containing the loss value | |
""" | |
embeddings_1, geodists_1 = self._get_embeddings_and_geodists_for_mesh(embedder, mesh_name_1) | |
embeddings_2, geodists_2 = self._get_embeddings_and_geodists_for_mesh(embedder, mesh_name_2) | |
sim_matrix_12 = embeddings_1.mm(embeddings_2.T) | |
c_12 = F.softmax(sim_matrix_12 / self.temperature, dim=1) | |
c_21 = F.softmax(sim_matrix_12.T / self.temperature, dim=1) | |
c_11 = c_12.mm(c_21) | |
c_22 = c_21.mm(c_12) | |
loss_cycle_11 = torch.norm(geodists_1 * c_11, p=self.norm_p) | |
loss_cycle_22 = torch.norm(geodists_2 * c_22, p=self.norm_p) | |
return loss_cycle_11 + loss_cycle_22 | |