Spaces:
Sleeping
Sleeping
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved | |
import json | |
import numpy as np | |
from functools import lru_cache | |
from typing import Dict, List, Optional, Tuple | |
import cv2 | |
import torch | |
from detectron2.utils.file_io import PathManager | |
from densepose.modeling import build_densepose_embedder | |
from densepose.modeling.cse.utils import get_closest_vertices_mask_from_ES | |
from ..data.utils import get_class_to_mesh_name_mapping | |
from ..structures import DensePoseEmbeddingPredictorOutput | |
from ..structures.mesh import create_mesh | |
from .base import Boxes, Image, MatrixVisualizer | |
from .densepose_results_textures import get_texture_atlas | |
def get_xyz_vertex_embedding(mesh_name: str, device: torch.device): | |
if mesh_name == "smpl_27554": | |
embed_path = PathManager.get_local_path( | |
"https://dl.fbaipublicfiles.com/densepose/data/cse/mds_d=256.npy" | |
) | |
embed_map, _ = np.load(embed_path, allow_pickle=True) | |
embed_map = torch.tensor(embed_map).float()[:, 0] | |
embed_map -= embed_map.min() | |
embed_map /= embed_map.max() | |
else: | |
mesh = create_mesh(mesh_name, device) | |
embed_map = mesh.vertices.sum(dim=1) | |
embed_map -= embed_map.min() | |
embed_map /= embed_map.max() | |
embed_map = embed_map**2 | |
return embed_map | |
class DensePoseOutputsVertexVisualizer: | |
def __init__( | |
self, | |
cfg, | |
inplace=True, | |
cmap=cv2.COLORMAP_JET, | |
alpha=0.7, | |
device="cuda", | |
default_class=0, | |
**kwargs, | |
): | |
self.mask_visualizer = MatrixVisualizer( | |
inplace=inplace, cmap=cmap, val_scale=1.0, alpha=alpha | |
) | |
self.class_to_mesh_name = get_class_to_mesh_name_mapping(cfg) | |
self.embedder = build_densepose_embedder(cfg) | |
self.device = torch.device(device) | |
self.default_class = default_class | |
self.mesh_vertex_embeddings = { | |
mesh_name: self.embedder(mesh_name).to(self.device) | |
for mesh_name in self.class_to_mesh_name.values() | |
if self.embedder.has_embeddings(mesh_name) | |
} | |
def visualize( | |
self, | |
image_bgr: Image, | |
outputs_boxes_xywh_classes: Tuple[ | |
Optional[DensePoseEmbeddingPredictorOutput], Optional[Boxes], Optional[List[int]] | |
], | |
) -> Image: | |
if outputs_boxes_xywh_classes[0] is None: | |
return image_bgr | |
S, E, N, bboxes_xywh, pred_classes = self.extract_and_check_outputs_and_boxes( | |
outputs_boxes_xywh_classes | |
) | |
for n in range(N): | |
x, y, w, h = bboxes_xywh[n].int().tolist() | |
mesh_name = self.class_to_mesh_name[pred_classes[n]] | |
closest_vertices, mask = get_closest_vertices_mask_from_ES( | |
E[[n]], | |
S[[n]], | |
h, | |
w, | |
self.mesh_vertex_embeddings[mesh_name], | |
self.device, | |
) | |
embed_map = get_xyz_vertex_embedding(mesh_name, self.device) | |
vis = (embed_map[closest_vertices].clip(0, 1) * 255.0).cpu().numpy() | |
mask_numpy = mask.cpu().numpy().astype(dtype=np.uint8) | |
image_bgr = self.mask_visualizer.visualize(image_bgr, mask_numpy, vis, [x, y, w, h]) | |
return image_bgr | |
def extract_and_check_outputs_and_boxes(self, outputs_boxes_xywh_classes): | |
densepose_output, bboxes_xywh, pred_classes = outputs_boxes_xywh_classes | |
if pred_classes is None: | |
pred_classes = [self.default_class] * len(bboxes_xywh) | |
assert isinstance( | |
densepose_output, DensePoseEmbeddingPredictorOutput | |
), "DensePoseEmbeddingPredictorOutput expected, {} encountered".format( | |
type(densepose_output) | |
) | |
S = densepose_output.coarse_segm | |
E = densepose_output.embedding | |
N = S.size(0) | |
assert N == E.size( | |
0 | |
), "CSE coarse_segm {} and embeddings {}" " should have equal first dim size".format( | |
S.size(), E.size() | |
) | |
assert N == len( | |
bboxes_xywh | |
), "number of bounding boxes {}" " should be equal to first dim size of outputs {}".format( | |
len(bboxes_xywh), N | |
) | |
assert N == len(pred_classes), ( | |
"number of predicted classes {}" | |
" should be equal to first dim size of outputs {}".format(len(bboxes_xywh), N) | |
) | |
return S, E, N, bboxes_xywh, pred_classes | |
def get_texture_atlases(json_str: Optional[str]) -> Optional[Dict[str, Optional[np.ndarray]]]: | |
""" | |
json_str is a JSON string representing a mesh_name -> texture_atlas_path dictionary | |
""" | |
if json_str is None: | |
return None | |
paths = json.loads(json_str) | |
return {mesh_name: get_texture_atlas(path) for mesh_name, path in paths.items()} | |
class DensePoseOutputsTextureVisualizer(DensePoseOutputsVertexVisualizer): | |
def __init__( | |
self, | |
cfg, | |
texture_atlases_dict, | |
device="cuda", | |
default_class=0, | |
**kwargs, | |
): | |
self.embedder = build_densepose_embedder(cfg) | |
self.texture_image_dict = {} | |
self.alpha_dict = {} | |
for mesh_name in texture_atlases_dict.keys(): | |
if texture_atlases_dict[mesh_name].shape[-1] == 4: # Image with alpha channel | |
self.alpha_dict[mesh_name] = texture_atlases_dict[mesh_name][:, :, -1] / 255.0 | |
self.texture_image_dict[mesh_name] = texture_atlases_dict[mesh_name][:, :, :3] | |
else: | |
self.alpha_dict[mesh_name] = texture_atlases_dict[mesh_name].sum(axis=-1) > 0 | |
self.texture_image_dict[mesh_name] = texture_atlases_dict[mesh_name] | |
self.device = torch.device(device) | |
self.class_to_mesh_name = get_class_to_mesh_name_mapping(cfg) | |
self.default_class = default_class | |
self.mesh_vertex_embeddings = { | |
mesh_name: self.embedder(mesh_name).to(self.device) | |
for mesh_name in self.class_to_mesh_name.values() | |
} | |
def visualize( | |
self, | |
image_bgr: Image, | |
outputs_boxes_xywh_classes: Tuple[ | |
Optional[DensePoseEmbeddingPredictorOutput], Optional[Boxes], Optional[List[int]] | |
], | |
) -> Image: | |
image_target_bgr = image_bgr.copy() | |
if outputs_boxes_xywh_classes[0] is None: | |
return image_target_bgr | |
S, E, N, bboxes_xywh, pred_classes = self.extract_and_check_outputs_and_boxes( | |
outputs_boxes_xywh_classes | |
) | |
meshes = { | |
p: create_mesh(self.class_to_mesh_name[p], self.device) for p in np.unique(pred_classes) | |
} | |
for n in range(N): | |
x, y, w, h = bboxes_xywh[n].int().cpu().numpy() | |
mesh_name = self.class_to_mesh_name[pred_classes[n]] | |
closest_vertices, mask = get_closest_vertices_mask_from_ES( | |
E[[n]], | |
S[[n]], | |
h, | |
w, | |
self.mesh_vertex_embeddings[mesh_name], | |
self.device, | |
) | |
uv_array = meshes[pred_classes[n]].texcoords[closest_vertices].permute((2, 0, 1)) | |
uv_array = uv_array.cpu().numpy().clip(0, 1) | |
textured_image = self.generate_image_with_texture( | |
image_target_bgr[y : y + h, x : x + w], | |
uv_array, | |
mask.cpu().numpy(), | |
self.class_to_mesh_name[pred_classes[n]], | |
) | |
if textured_image is None: | |
continue | |
image_target_bgr[y : y + h, x : x + w] = textured_image | |
return image_target_bgr | |
def generate_image_with_texture(self, bbox_image_bgr, uv_array, mask, mesh_name): | |
alpha = self.alpha_dict.get(mesh_name) | |
texture_image = self.texture_image_dict.get(mesh_name) | |
if alpha is None or texture_image is None: | |
return None | |
U, V = uv_array | |
x_index = (U * texture_image.shape[1]).astype(int) | |
y_index = (V * texture_image.shape[0]).astype(int) | |
local_texture = texture_image[y_index, x_index][mask] | |
local_alpha = np.expand_dims(alpha[y_index, x_index][mask], -1) | |
output_image = bbox_image_bgr.copy() | |
output_image[mask] = output_image[mask] * (1 - local_alpha) + local_texture * local_alpha | |
return output_image.astype(np.uint8) | |