Spaces:
Sleeping
Sleeping
import inspect | |
import torch | |
from detectron2.utils.env import TORCH_VERSION | |
try: | |
from torch.fx._symbolic_trace import is_fx_tracing as is_fx_tracing_current | |
tracing_current_exists = True | |
except ImportError: | |
tracing_current_exists = False | |
try: | |
from torch.fx._symbolic_trace import _orig_module_call | |
tracing_legacy_exists = True | |
except ImportError: | |
tracing_legacy_exists = False | |
def is_fx_tracing_legacy() -> bool: | |
""" | |
Returns a bool indicating whether torch.fx is currently symbolically tracing a module. | |
Can be useful for gating module logic that is incompatible with symbolic tracing. | |
""" | |
return torch.nn.Module.__call__ is not _orig_module_call | |
def is_fx_tracing() -> bool: | |
"""Returns whether execution is currently in | |
Torch FX tracing mode""" | |
if torch.jit.is_scripting(): | |
return False | |
if TORCH_VERSION >= (1, 10) and tracing_current_exists: | |
return is_fx_tracing_current() | |
elif tracing_legacy_exists: | |
return is_fx_tracing_legacy() | |
else: | |
# Can't find either current or legacy tracing indication code. | |
# Enabling this assert_fx_safe() call regardless of tracing status. | |
return False | |
def assert_fx_safe(condition: bool, message: str) -> torch.Tensor: | |
"""An FX-tracing safe version of assert. | |
Avoids erroneous type assertion triggering when types are masked inside | |
an fx.proxy.Proxy object during tracing. | |
Args: condition - either a boolean expression or a string representing | |
the condition to test. If this assert triggers an exception when tracing | |
due to dynamic control flow, try encasing the expression in quotation | |
marks and supplying it as a string.""" | |
# Must return a concrete tensor for compatibility with PyTorch <=1.8. | |
# If <=1.8 compatibility is not needed, return type can be converted to None | |
if torch.jit.is_scripting() or is_fx_tracing(): | |
return torch.zeros(1) | |
return _do_assert_fx_safe(condition, message) | |
def _do_assert_fx_safe(condition: bool, message: str) -> torch.Tensor: | |
try: | |
if isinstance(condition, str): | |
caller_frame = inspect.currentframe().f_back | |
torch._assert(eval(condition, caller_frame.f_globals, caller_frame.f_locals), message) | |
return torch.ones(1) | |
else: | |
torch._assert(condition, message) | |
return torch.ones(1) | |
except torch.fx.proxy.TraceError as e: | |
print( | |
"Found a non-FX compatible assertion. Skipping the check. Failure is shown below" | |
+ str(e) | |
) | |