Spaces:
Sleeping
Sleeping
# Copyright (c) Facebook, Inc. and its affiliates. | |
import logging | |
import os | |
from detectron2.data import DatasetCatalog, MetadataCatalog | |
from detectron2.structures import BoxMode | |
from detectron2.utils.file_io import PathManager | |
from fvcore.common.timer import Timer | |
from .builtin_meta import _get_coco_instances_meta | |
from .lvis_v0_5_categories import LVIS_CATEGORIES as LVIS_V0_5_CATEGORIES | |
from .lvis_v1_categories import LVIS_CATEGORIES as LVIS_V1_CATEGORIES | |
from .lvis_v1_category_image_count import ( | |
LVIS_CATEGORY_IMAGE_COUNT as LVIS_V1_CATEGORY_IMAGE_COUNT, | |
) | |
""" | |
This file contains functions to parse LVIS-format annotations into dicts in the | |
"Detectron2 format". | |
""" | |
logger = logging.getLogger(__name__) | |
__all__ = ["load_lvis_json", "register_lvis_instances", "get_lvis_instances_meta"] | |
def register_lvis_instances(name, metadata, json_file, image_root): | |
""" | |
Register a dataset in LVIS's json annotation format for instance detection and segmentation. | |
Args: | |
name (str): a name that identifies the dataset, e.g. "lvis_v0.5_train". | |
metadata (dict): extra metadata associated with this dataset. It can be an empty dict. | |
json_file (str): path to the json instance annotation file. | |
image_root (str or path-like): directory which contains all the images. | |
""" | |
DatasetCatalog.register(name, lambda: load_lvis_json(json_file, image_root, name)) | |
MetadataCatalog.get(name).set( | |
json_file=json_file, image_root=image_root, evaluator_type="lvis", **metadata | |
) | |
def load_lvis_json( | |
json_file, image_root, dataset_name=None, extra_annotation_keys=None | |
): | |
""" | |
Load a json file in LVIS's annotation format. | |
Args: | |
json_file (str): full path to the LVIS json annotation file. | |
image_root (str): the directory where the images in this json file exists. | |
dataset_name (str): the name of the dataset (e.g., "lvis_v0.5_train"). | |
If provided, this function will put "thing_classes" into the metadata | |
associated with this dataset. | |
extra_annotation_keys (list[str]): list of per-annotation keys that should also be | |
loaded into the dataset dict (besides "bbox", "bbox_mode", "category_id", | |
"segmentation"). The values for these keys will be returned as-is. | |
Returns: | |
list[dict]: a list of dicts in Detectron2 standard format. (See | |
`Using Custom Datasets </tutorials/datasets.html>`_ ) | |
Notes: | |
1. This function does not read the image files. | |
The results do not have the "image" field. | |
""" | |
from lvis import LVIS | |
json_file = PathManager.get_local_path(json_file) | |
timer = Timer() | |
lvis_api = LVIS(json_file) | |
if timer.seconds() > 1: | |
logger.info( | |
"Loading {} takes {:.2f} seconds.".format(json_file, timer.seconds()) | |
) | |
if dataset_name is not None: | |
meta = get_lvis_instances_meta(dataset_name) | |
MetadataCatalog.get(dataset_name).set(**meta) | |
# sort indices for reproducible results | |
img_ids = sorted(lvis_api.imgs.keys()) | |
# imgs is a list of dicts, each looks something like: | |
# {'license': 4, | |
# 'url': 'http://farm6.staticflickr.com/5454/9413846304_881d5e5c3b_z.jpg', | |
# 'file_name': 'COCO_val2014_000000001268.jpg', | |
# 'height': 427, | |
# 'width': 640, | |
# 'date_captured': '2013-11-17 05:57:24', | |
# 'id': 1268} | |
imgs = lvis_api.load_imgs(img_ids) | |
# anns is a list[list[dict]], where each dict is an annotation | |
# record for an object. The inner list enumerates the objects in an image | |
# and the outer list enumerates over images. Example of anns[0]: | |
# [{'segmentation': [[192.81, | |
# 247.09, | |
# ... | |
# 219.03, | |
# 249.06]], | |
# 'area': 1035.749, | |
# 'image_id': 1268, | |
# 'bbox': [192.81, 224.8, 74.73, 33.43], | |
# 'category_id': 16, | |
# 'id': 42986}, | |
# ...] | |
anns = [lvis_api.img_ann_map[img_id] for img_id in img_ids] | |
# Sanity check that each annotation has a unique id | |
ann_ids = [ann["id"] for anns_per_image in anns for ann in anns_per_image] | |
assert len(set(ann_ids)) == len( | |
ann_ids | |
), "Annotation ids in '{}' are not unique".format(json_file) | |
imgs_anns = list(zip(imgs, anns)) | |
logger.info( | |
"Loaded {} images in the LVIS format from {}".format(len(imgs_anns), json_file) | |
) | |
if extra_annotation_keys: | |
logger.info( | |
"The following extra annotation keys will be loaded: {} ".format( | |
extra_annotation_keys | |
) | |
) | |
else: | |
extra_annotation_keys = [] | |
def get_file_name(img_root, img_dict): | |
# Determine the path including the split folder ("train2017", "val2017", "test2017") from | |
# the coco_url field. Example: | |
# 'coco_url': 'http://images.cocodataset.org/train2017/000000155379.jpg' | |
split_folder, file_name = img_dict["coco_url"].split("/")[-2:] | |
return os.path.join(img_root + split_folder, file_name) | |
dataset_dicts = [] | |
for (img_dict, anno_dict_list) in imgs_anns: | |
record = {} | |
record["file_name"] = get_file_name(image_root, img_dict) | |
record["height"] = img_dict["height"] | |
record["width"] = img_dict["width"] | |
record["not_exhaustive_category_ids"] = img_dict.get( | |
"not_exhaustive_category_ids", [] | |
) | |
record["neg_category_ids"] = img_dict.get("neg_category_ids", []) | |
image_id = record["image_id"] = img_dict["id"] | |
objs = [] | |
for anno in anno_dict_list: | |
# Check that the image_id in this annotation is the same as | |
# the image_id we're looking at. | |
# This fails only when the data parsing logic or the annotation file is buggy. | |
assert anno["image_id"] == image_id | |
obj = {"bbox": anno["bbox"], "bbox_mode": BoxMode.XYWH_ABS} | |
# LVIS data loader can be used to load COCO dataset categories. In this case `meta` | |
# variable will have a field with COCO-specific category mapping. | |
if dataset_name is not None and "thing_dataset_id_to_contiguous_id" in meta: | |
obj["category_id"] = meta["thing_dataset_id_to_contiguous_id"][ | |
anno["category_id"] | |
] | |
else: | |
obj["category_id"] = ( | |
anno["category_id"] - 1 | |
) # Convert 1-indexed to 0-indexed | |
segm = anno["segmentation"] # list[list[float]] | |
# filter out invalid polygons (< 3 points) | |
valid_segm = [ | |
poly for poly in segm if len(poly) % 2 == 0 and len(poly) >= 6 | |
] | |
assert len(segm) == len( | |
valid_segm | |
), "Annotation contains an invalid polygon with < 3 points" | |
assert len(segm) > 0 | |
obj["segmentation"] = segm | |
for extra_ann_key in extra_annotation_keys: | |
obj[extra_ann_key] = anno[extra_ann_key] | |
objs.append(obj) | |
record["annotations"] = objs | |
dataset_dicts.append(record) | |
return dataset_dicts | |
def get_lvis_instances_meta(dataset_name): | |
""" | |
Load LVIS metadata. | |
Args: | |
dataset_name (str): LVIS dataset name without the split name (e.g., "lvis_v0.5"). | |
Returns: | |
dict: LVIS metadata with keys: thing_classes | |
""" | |
if "cocofied" in dataset_name: | |
return _get_coco_instances_meta() | |
if "v0.5" in dataset_name: | |
return _get_lvis_instances_meta_v0_5() | |
elif "v1" in dataset_name: | |
return _get_lvis_instances_meta_v1() | |
raise ValueError("No built-in metadata for dataset {}".format(dataset_name)) | |
def _get_lvis_instances_meta_v0_5(): | |
assert len(LVIS_V0_5_CATEGORIES) == 1230 | |
cat_ids = [k["id"] for k in LVIS_V0_5_CATEGORIES] | |
assert min(cat_ids) == 1 and max(cat_ids) == len( | |
cat_ids | |
), "Category ids are not in [1, #categories], as expected" | |
# Ensure that the category list is sorted by id | |
lvis_categories = sorted(LVIS_V0_5_CATEGORIES, key=lambda x: x["id"]) | |
thing_classes = [k["synonyms"][0] for k in lvis_categories] | |
meta = {"thing_classes": thing_classes} | |
return meta | |
def _get_lvis_instances_meta_v1(): | |
assert len(LVIS_V1_CATEGORIES) == 1203 | |
cat_ids = [k["id"] for k in LVIS_V1_CATEGORIES] | |
assert min(cat_ids) == 1 and max(cat_ids) == len( | |
cat_ids | |
), "Category ids are not in [1, #categories], as expected" | |
# Ensure that the category list is sorted by id | |
lvis_categories = sorted(LVIS_V1_CATEGORIES, key=lambda x: x["id"]) | |
thing_classes = [k["synonyms"][0] for k in lvis_categories] | |
meta = { | |
"thing_classes": thing_classes, | |
"class_image_count": LVIS_V1_CATEGORY_IMAGE_COUNT, | |
} | |
return meta | |
def main() -> None: | |
global logger | |
""" | |
Test the LVIS json dataset loader. | |
Usage: | |
python -m detectron2.data.datasets.lvis \ | |
path/to/json path/to/image_root dataset_name vis_limit | |
""" | |
import sys | |
import detectron2.data.datasets # noqa # add pre-defined metadata | |
import numpy as np | |
from detectron2.utils.logger import setup_logger | |
from detectron2.utils.visualizer import Visualizer | |
from PIL import Image | |
logger = setup_logger(name=__name__) | |
meta = MetadataCatalog.get(sys.argv[3]) | |
dicts = load_lvis_json(sys.argv[1], sys.argv[2], sys.argv[3]) | |
logger.info("Done loading {} samples.".format(len(dicts))) | |
dirname = "lvis-data-vis" | |
os.makedirs(dirname, exist_ok=True) | |
for d in dicts[: int(sys.argv[4])]: | |
img = np.array(Image.open(d["file_name"])) | |
visualizer = Visualizer(img, metadata=meta) | |
vis = visualizer.draw_dataset_dict(d) | |
fpath = os.path.join(dirname, os.path.basename(d["file_name"])) | |
vis.save(fpath) | |
if __name__ == "__main__": | |
main() # pragma: no cover | |