Spaces:
Sleeping
Sleeping
# Copyright (c) Facebook, Inc. and its affiliates. | |
# ------------------------------------------------------------------------------ | |
# Copyright (c) Microsoft | |
# Licensed under the MIT License. | |
# Written by Bin Xiao ([email protected]) | |
# Modified by Bowen Cheng ([email protected]) | |
# Adapted from https://github.com/HRNet/Higher-HRNet-Human-Pose-Estimation/blob/master/lib/models/pose_higher_hrnet.py # noqa | |
# ------------------------------------------------------------------------------ | |
from __future__ import absolute_import, division, print_function | |
import logging | |
import torch.nn as nn | |
from detectron2.layers import ShapeSpec | |
from detectron2.modeling.backbone import BACKBONE_REGISTRY | |
from detectron2.modeling.backbone.backbone import Backbone | |
BN_MOMENTUM = 0.1 | |
logger = logging.getLogger(__name__) | |
__all__ = ["build_pose_hrnet_backbone", "PoseHigherResolutionNet"] | |
def conv3x3(in_planes, out_planes, stride=1): | |
"""3x3 convolution with padding""" | |
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) | |
class BasicBlock(nn.Module): | |
expansion = 1 | |
def __init__(self, inplanes, planes, stride=1, downsample=None): | |
super(BasicBlock, self).__init__() | |
self.conv1 = conv3x3(inplanes, planes, stride) | |
self.bn1 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM) | |
self.relu = nn.ReLU(inplace=True) | |
self.conv2 = conv3x3(planes, planes) | |
self.bn2 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM) | |
self.downsample = downsample | |
self.stride = stride | |
def forward(self, x): | |
residual = x | |
out = self.conv1(x) | |
out = self.bn1(out) | |
out = self.relu(out) | |
out = self.conv2(out) | |
out = self.bn2(out) | |
if self.downsample is not None: | |
residual = self.downsample(x) | |
out += residual | |
out = self.relu(out) | |
return out | |
class Bottleneck(nn.Module): | |
expansion = 4 | |
def __init__(self, inplanes, planes, stride=1, downsample=None): | |
super(Bottleneck, self).__init__() | |
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) | |
self.bn1 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM) | |
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) | |
self.bn2 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM) | |
self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, bias=False) | |
self.bn3 = nn.BatchNorm2d(planes * self.expansion, momentum=BN_MOMENTUM) | |
self.relu = nn.ReLU(inplace=True) | |
self.downsample = downsample | |
self.stride = stride | |
def forward(self, x): | |
residual = x | |
out = self.conv1(x) | |
out = self.bn1(out) | |
out = self.relu(out) | |
out = self.conv2(out) | |
out = self.bn2(out) | |
out = self.relu(out) | |
out = self.conv3(out) | |
out = self.bn3(out) | |
if self.downsample is not None: | |
residual = self.downsample(x) | |
out += residual | |
out = self.relu(out) | |
return out | |
class HighResolutionModule(nn.Module): | |
"""HighResolutionModule | |
Building block of the PoseHigherResolutionNet (see lower) | |
arXiv: https://arxiv.org/abs/1908.10357 | |
Args: | |
num_branches (int): number of branches of the modyle | |
blocks (str): type of block of the module | |
num_blocks (int): number of blocks of the module | |
num_inchannels (int): number of input channels of the module | |
num_channels (list): number of channels of each branch | |
multi_scale_output (bool): only used by the last module of PoseHigherResolutionNet | |
""" | |
def __init__( | |
self, | |
num_branches, | |
blocks, | |
num_blocks, | |
num_inchannels, | |
num_channels, | |
multi_scale_output=True, | |
): | |
super(HighResolutionModule, self).__init__() | |
self._check_branches(num_branches, blocks, num_blocks, num_inchannels, num_channels) | |
self.num_inchannels = num_inchannels | |
self.num_branches = num_branches | |
self.multi_scale_output = multi_scale_output | |
self.branches = self._make_branches(num_branches, blocks, num_blocks, num_channels) | |
self.fuse_layers = self._make_fuse_layers() | |
self.relu = nn.ReLU(True) | |
def _check_branches(self, num_branches, blocks, num_blocks, num_inchannels, num_channels): | |
if num_branches != len(num_blocks): | |
error_msg = "NUM_BRANCHES({}) <> NUM_BLOCKS({})".format(num_branches, len(num_blocks)) | |
logger.error(error_msg) | |
raise ValueError(error_msg) | |
if num_branches != len(num_channels): | |
error_msg = "NUM_BRANCHES({}) <> NUM_CHANNELS({})".format( | |
num_branches, len(num_channels) | |
) | |
logger.error(error_msg) | |
raise ValueError(error_msg) | |
if num_branches != len(num_inchannels): | |
error_msg = "NUM_BRANCHES({}) <> NUM_INCHANNELS({})".format( | |
num_branches, len(num_inchannels) | |
) | |
logger.error(error_msg) | |
raise ValueError(error_msg) | |
def _make_one_branch(self, branch_index, block, num_blocks, num_channels, stride=1): | |
downsample = None | |
if ( | |
stride != 1 | |
or self.num_inchannels[branch_index] != num_channels[branch_index] * block.expansion | |
): | |
downsample = nn.Sequential( | |
nn.Conv2d( | |
self.num_inchannels[branch_index], | |
num_channels[branch_index] * block.expansion, | |
kernel_size=1, | |
stride=stride, | |
bias=False, | |
), | |
nn.BatchNorm2d(num_channels[branch_index] * block.expansion, momentum=BN_MOMENTUM), | |
) | |
layers = [] | |
layers.append( | |
block(self.num_inchannels[branch_index], num_channels[branch_index], stride, downsample) | |
) | |
self.num_inchannels[branch_index] = num_channels[branch_index] * block.expansion | |
for _ in range(1, num_blocks[branch_index]): | |
layers.append(block(self.num_inchannels[branch_index], num_channels[branch_index])) | |
return nn.Sequential(*layers) | |
def _make_branches(self, num_branches, block, num_blocks, num_channels): | |
branches = [] | |
for i in range(num_branches): | |
branches.append(self._make_one_branch(i, block, num_blocks, num_channels)) | |
return nn.ModuleList(branches) | |
def _make_fuse_layers(self): | |
if self.num_branches == 1: | |
return None | |
num_branches = self.num_branches | |
num_inchannels = self.num_inchannels | |
fuse_layers = [] | |
for i in range(num_branches if self.multi_scale_output else 1): | |
fuse_layer = [] | |
for j in range(num_branches): | |
if j > i: | |
fuse_layer.append( | |
nn.Sequential( | |
nn.Conv2d(num_inchannels[j], num_inchannels[i], 1, 1, 0, bias=False), | |
nn.BatchNorm2d(num_inchannels[i]), | |
nn.Upsample(scale_factor=2 ** (j - i), mode="nearest"), | |
) | |
) | |
elif j == i: | |
fuse_layer.append(None) | |
else: | |
conv3x3s = [] | |
for k in range(i - j): | |
if k == i - j - 1: | |
num_outchannels_conv3x3 = num_inchannels[i] | |
conv3x3s.append( | |
nn.Sequential( | |
nn.Conv2d( | |
num_inchannels[j], | |
num_outchannels_conv3x3, | |
3, | |
2, | |
1, | |
bias=False, | |
), | |
nn.BatchNorm2d(num_outchannels_conv3x3), | |
) | |
) | |
else: | |
num_outchannels_conv3x3 = num_inchannels[j] | |
conv3x3s.append( | |
nn.Sequential( | |
nn.Conv2d( | |
num_inchannels[j], | |
num_outchannels_conv3x3, | |
3, | |
2, | |
1, | |
bias=False, | |
), | |
nn.BatchNorm2d(num_outchannels_conv3x3), | |
nn.ReLU(True), | |
) | |
) | |
fuse_layer.append(nn.Sequential(*conv3x3s)) | |
fuse_layers.append(nn.ModuleList(fuse_layer)) | |
return nn.ModuleList(fuse_layers) | |
def get_num_inchannels(self): | |
return self.num_inchannels | |
def forward(self, x): | |
if self.num_branches == 1: | |
return [self.branches[0](x[0])] | |
for i in range(self.num_branches): | |
x[i] = self.branches[i](x[i]) | |
x_fuse = [] | |
for i in range(len(self.fuse_layers)): | |
y = x[0] if i == 0 else self.fuse_layers[i][0](x[0]) | |
for j in range(1, self.num_branches): | |
if i == j: | |
y = y + x[j] | |
else: | |
z = self.fuse_layers[i][j](x[j])[:, :, : y.shape[2], : y.shape[3]] | |
y = y + z | |
x_fuse.append(self.relu(y)) | |
return x_fuse | |
blocks_dict = {"BASIC": BasicBlock, "BOTTLENECK": Bottleneck} | |
class PoseHigherResolutionNet(Backbone): | |
"""PoseHigherResolutionNet | |
Composed of several HighResolutionModule tied together with ConvNets | |
Adapted from the GitHub version to fit with HRFPN and the Detectron2 infrastructure | |
arXiv: https://arxiv.org/abs/1908.10357 | |
""" | |
def __init__(self, cfg, **kwargs): | |
self.inplanes = cfg.MODEL.HRNET.STEM_INPLANES | |
super(PoseHigherResolutionNet, self).__init__() | |
# stem net | |
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=2, padding=1, bias=False) | |
self.bn1 = nn.BatchNorm2d(64, momentum=BN_MOMENTUM) | |
self.conv2 = nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1, bias=False) | |
self.bn2 = nn.BatchNorm2d(64, momentum=BN_MOMENTUM) | |
self.relu = nn.ReLU(inplace=True) | |
self.layer1 = self._make_layer(Bottleneck, 64, 4) | |
self.stage2_cfg = cfg.MODEL.HRNET.STAGE2 | |
num_channels = self.stage2_cfg.NUM_CHANNELS | |
block = blocks_dict[self.stage2_cfg.BLOCK] | |
num_channels = [num_channels[i] * block.expansion for i in range(len(num_channels))] | |
self.transition1 = self._make_transition_layer([256], num_channels) | |
self.stage2, pre_stage_channels = self._make_stage(self.stage2_cfg, num_channels) | |
self.stage3_cfg = cfg.MODEL.HRNET.STAGE3 | |
num_channels = self.stage3_cfg.NUM_CHANNELS | |
block = blocks_dict[self.stage3_cfg.BLOCK] | |
num_channels = [num_channels[i] * block.expansion for i in range(len(num_channels))] | |
self.transition2 = self._make_transition_layer(pre_stage_channels, num_channels) | |
self.stage3, pre_stage_channels = self._make_stage(self.stage3_cfg, num_channels) | |
self.stage4_cfg = cfg.MODEL.HRNET.STAGE4 | |
num_channels = self.stage4_cfg.NUM_CHANNELS | |
block = blocks_dict[self.stage4_cfg.BLOCK] | |
num_channels = [num_channels[i] * block.expansion for i in range(len(num_channels))] | |
self.transition3 = self._make_transition_layer(pre_stage_channels, num_channels) | |
self.stage4, pre_stage_channels = self._make_stage( | |
self.stage4_cfg, num_channels, multi_scale_output=True | |
) | |
self._out_features = [] | |
self._out_feature_channels = {} | |
self._out_feature_strides = {} | |
for i in range(cfg.MODEL.HRNET.STAGE4.NUM_BRANCHES): | |
self._out_features.append("p%d" % (i + 1)) | |
self._out_feature_channels.update( | |
{self._out_features[-1]: cfg.MODEL.HRNET.STAGE4.NUM_CHANNELS[i]} | |
) | |
self._out_feature_strides.update({self._out_features[-1]: 1}) | |
def _get_deconv_cfg(self, deconv_kernel): | |
if deconv_kernel == 4: | |
padding = 1 | |
output_padding = 0 | |
elif deconv_kernel == 3: | |
padding = 1 | |
output_padding = 1 | |
elif deconv_kernel == 2: | |
padding = 0 | |
output_padding = 0 | |
return deconv_kernel, padding, output_padding | |
def _make_transition_layer(self, num_channels_pre_layer, num_channels_cur_layer): | |
num_branches_cur = len(num_channels_cur_layer) | |
num_branches_pre = len(num_channels_pre_layer) | |
transition_layers = [] | |
for i in range(num_branches_cur): | |
if i < num_branches_pre: | |
if num_channels_cur_layer[i] != num_channels_pre_layer[i]: | |
transition_layers.append( | |
nn.Sequential( | |
nn.Conv2d( | |
num_channels_pre_layer[i], | |
num_channels_cur_layer[i], | |
3, | |
1, | |
1, | |
bias=False, | |
), | |
nn.BatchNorm2d(num_channels_cur_layer[i]), | |
nn.ReLU(inplace=True), | |
) | |
) | |
else: | |
transition_layers.append(None) | |
else: | |
conv3x3s = [] | |
for j in range(i + 1 - num_branches_pre): | |
inchannels = num_channels_pre_layer[-1] | |
outchannels = ( | |
num_channels_cur_layer[i] if j == i - num_branches_pre else inchannels | |
) | |
conv3x3s.append( | |
nn.Sequential( | |
nn.Conv2d(inchannels, outchannels, 3, 2, 1, bias=False), | |
nn.BatchNorm2d(outchannels), | |
nn.ReLU(inplace=True), | |
) | |
) | |
transition_layers.append(nn.Sequential(*conv3x3s)) | |
return nn.ModuleList(transition_layers) | |
def _make_layer(self, block, planes, blocks, stride=1): | |
downsample = None | |
if stride != 1 or self.inplanes != planes * block.expansion: | |
downsample = nn.Sequential( | |
nn.Conv2d( | |
self.inplanes, | |
planes * block.expansion, | |
kernel_size=1, | |
stride=stride, | |
bias=False, | |
), | |
nn.BatchNorm2d(planes * block.expansion, momentum=BN_MOMENTUM), | |
) | |
layers = [] | |
layers.append(block(self.inplanes, planes, stride, downsample)) | |
self.inplanes = planes * block.expansion | |
for _ in range(1, blocks): | |
layers.append(block(self.inplanes, planes)) | |
return nn.Sequential(*layers) | |
def _make_stage(self, layer_config, num_inchannels, multi_scale_output=True): | |
num_modules = layer_config["NUM_MODULES"] | |
num_branches = layer_config["NUM_BRANCHES"] | |
num_blocks = layer_config["NUM_BLOCKS"] | |
num_channels = layer_config["NUM_CHANNELS"] | |
block = blocks_dict[layer_config["BLOCK"]] | |
modules = [] | |
for i in range(num_modules): | |
# multi_scale_output is only used last module | |
if not multi_scale_output and i == num_modules - 1: | |
reset_multi_scale_output = False | |
else: | |
reset_multi_scale_output = True | |
modules.append( | |
HighResolutionModule( | |
num_branches, | |
block, | |
num_blocks, | |
num_inchannels, | |
num_channels, | |
reset_multi_scale_output, | |
) | |
) | |
num_inchannels = modules[-1].get_num_inchannels() | |
return nn.Sequential(*modules), num_inchannels | |
def forward(self, x): | |
x = self.conv1(x) | |
x = self.bn1(x) | |
x = self.relu(x) | |
x = self.conv2(x) | |
x = self.bn2(x) | |
x = self.relu(x) | |
x = self.layer1(x) | |
x_list = [] | |
for i in range(self.stage2_cfg.NUM_BRANCHES): | |
if self.transition1[i] is not None: | |
x_list.append(self.transition1[i](x)) | |
else: | |
x_list.append(x) | |
y_list = self.stage2(x_list) | |
x_list = [] | |
for i in range(self.stage3_cfg.NUM_BRANCHES): | |
if self.transition2[i] is not None: | |
x_list.append(self.transition2[i](y_list[-1])) | |
else: | |
x_list.append(y_list[i]) | |
y_list = self.stage3(x_list) | |
x_list = [] | |
for i in range(self.stage4_cfg.NUM_BRANCHES): | |
if self.transition3[i] is not None: | |
x_list.append(self.transition3[i](y_list[-1])) | |
else: | |
x_list.append(y_list[i]) | |
y_list = self.stage4(x_list) | |
assert len(self._out_features) == len(y_list) | |
return dict(zip(self._out_features, y_list)) # final_outputs | |
def build_pose_hrnet_backbone(cfg, input_shape: ShapeSpec): | |
model = PoseHigherResolutionNet(cfg) | |
return model | |