Spaces:
Sleeping
Sleeping
# Copyright (c) Facebook, Inc. and its affiliates. | |
from __future__ import division | |
from typing import Any, Dict, List, Optional, Tuple | |
import torch | |
from torch import device | |
from torch.nn import functional as F | |
from detectron2.layers.wrappers import move_device_like, shapes_to_tensor | |
class ImageList: | |
""" | |
Structure that holds a list of images (of possibly | |
varying sizes) as a single tensor. | |
This works by padding the images to the same size. | |
The original sizes of each image is stored in `image_sizes`. | |
Attributes: | |
image_sizes (list[tuple[int, int]]): each tuple is (h, w). | |
During tracing, it becomes list[Tensor] instead. | |
""" | |
def __init__(self, tensor: torch.Tensor, image_sizes: List[Tuple[int, int]]): | |
""" | |
Arguments: | |
tensor (Tensor): of shape (N, H, W) or (N, C_1, ..., C_K, H, W) where K >= 1 | |
image_sizes (list[tuple[int, int]]): Each tuple is (h, w). It can | |
be smaller than (H, W) due to padding. | |
""" | |
self.tensor = tensor | |
self.image_sizes = image_sizes | |
def __len__(self) -> int: | |
return len(self.image_sizes) | |
def __getitem__(self, idx) -> torch.Tensor: | |
""" | |
Access the individual image in its original size. | |
Args: | |
idx: int or slice | |
Returns: | |
Tensor: an image of shape (H, W) or (C_1, ..., C_K, H, W) where K >= 1 | |
""" | |
size = self.image_sizes[idx] | |
return self.tensor[idx, ..., : size[0], : size[1]] | |
def to(self, *args: Any, **kwargs: Any) -> "ImageList": | |
cast_tensor = self.tensor.to(*args, **kwargs) | |
return ImageList(cast_tensor, self.image_sizes) | |
def device(self) -> device: | |
return self.tensor.device | |
def from_tensors( | |
tensors: List[torch.Tensor], | |
size_divisibility: int = 0, | |
pad_value: float = 0.0, | |
padding_constraints: Optional[Dict[str, int]] = None, | |
) -> "ImageList": | |
""" | |
Args: | |
tensors: a tuple or list of `torch.Tensor`, each of shape (Hi, Wi) or | |
(C_1, ..., C_K, Hi, Wi) where K >= 1. The Tensors will be padded | |
to the same shape with `pad_value`. | |
size_divisibility (int): If `size_divisibility > 0`, add padding to ensure | |
the common height and width is divisible by `size_divisibility`. | |
This depends on the model and many models need a divisibility of 32. | |
pad_value (float): value to pad. | |
padding_constraints (optional[Dict]): If given, it would follow the format as | |
{"size_divisibility": int, "square_size": int}, where `size_divisibility` will | |
overwrite the above one if presented and `square_size` indicates the | |
square padding size if `square_size` > 0. | |
Returns: | |
an `ImageList`. | |
""" | |
assert len(tensors) > 0 | |
assert isinstance(tensors, (tuple, list)) | |
for t in tensors: | |
assert isinstance(t, torch.Tensor), type(t) | |
assert t.shape[:-2] == tensors[0].shape[:-2], t.shape | |
image_sizes = [(im.shape[-2], im.shape[-1]) for im in tensors] | |
image_sizes_tensor = [shapes_to_tensor(x) for x in image_sizes] | |
max_size = torch.stack(image_sizes_tensor).max(0).values | |
if padding_constraints is not None: | |
square_size = padding_constraints.get("square_size", 0) | |
if square_size > 0: | |
# pad to square. | |
max_size[0] = max_size[1] = square_size | |
if "size_divisibility" in padding_constraints: | |
size_divisibility = padding_constraints["size_divisibility"] | |
if size_divisibility > 1: | |
stride = size_divisibility | |
# the last two dims are H,W, both subject to divisibility requirement | |
max_size = (max_size + (stride - 1)).div(stride, rounding_mode="floor") * stride | |
# handle weirdness of scripting and tracing ... | |
if torch.jit.is_scripting(): | |
max_size: List[int] = max_size.to(dtype=torch.long).tolist() | |
else: | |
if torch.jit.is_tracing(): | |
image_sizes = image_sizes_tensor | |
if len(tensors) == 1: | |
# This seems slightly (2%) faster. | |
# TODO: check whether it's faster for multiple images as well | |
image_size = image_sizes[0] | |
padding_size = [0, max_size[-1] - image_size[1], 0, max_size[-2] - image_size[0]] | |
batched_imgs = F.pad(tensors[0], padding_size, value=pad_value).unsqueeze_(0) | |
else: | |
# max_size can be a tensor in tracing mode, therefore convert to list | |
batch_shape = [len(tensors)] + list(tensors[0].shape[:-2]) + list(max_size) | |
device = ( | |
None if torch.jit.is_scripting() else ("cpu" if torch.jit.is_tracing() else None) | |
) | |
batched_imgs = tensors[0].new_full(batch_shape, pad_value, device=device) | |
batched_imgs = move_device_like(batched_imgs, tensors[0]) | |
for i, img in enumerate(tensors): | |
# Use `batched_imgs` directly instead of `img, pad_img = zip(tensors, batched_imgs)` | |
# Tracing mode cannot capture `copy_()` of temporary locals | |
batched_imgs[i, ..., : img.shape[-2], : img.shape[-1]].copy_(img) | |
return ImageList(batched_imgs.contiguous(), image_sizes) | |