Spaces:
Sleeping
Sleeping
# Copyright (c) Facebook, Inc. and its affiliates. | |
import copy | |
import itertools | |
import json | |
import logging | |
import os | |
import pickle | |
from collections import OrderedDict | |
import torch | |
import detectron2.utils.comm as comm | |
from detectron2.config import CfgNode | |
from detectron2.data import MetadataCatalog | |
from detectron2.structures import Boxes, BoxMode, pairwise_iou | |
from detectron2.utils.file_io import PathManager | |
from detectron2.utils.logger import create_small_table | |
from .coco_evaluation import instances_to_coco_json | |
from .evaluator import DatasetEvaluator | |
class LVISEvaluator(DatasetEvaluator): | |
""" | |
Evaluate object proposal and instance detection/segmentation outputs using | |
LVIS's metrics and evaluation API. | |
""" | |
def __init__( | |
self, | |
dataset_name, | |
tasks=None, | |
distributed=True, | |
output_dir=None, | |
*, | |
max_dets_per_image=None, | |
): | |
""" | |
Args: | |
dataset_name (str): name of the dataset to be evaluated. | |
It must have the following corresponding metadata: | |
"json_file": the path to the LVIS format annotation | |
tasks (tuple[str]): tasks that can be evaluated under the given | |
configuration. A task is one of "bbox", "segm". | |
By default, will infer this automatically from predictions. | |
distributed (True): if True, will collect results from all ranks for evaluation. | |
Otherwise, will evaluate the results in the current process. | |
output_dir (str): optional, an output directory to dump results. | |
max_dets_per_image (None or int): limit on maximum detections per image in evaluating AP | |
This limit, by default of the LVIS dataset, is 300. | |
""" | |
from lvis import LVIS | |
self._logger = logging.getLogger(__name__) | |
if tasks is not None and isinstance(tasks, CfgNode): | |
self._logger.warn( | |
"COCO Evaluator instantiated using config, this is deprecated behavior." | |
" Please pass in explicit arguments instead." | |
) | |
self._tasks = None # Infering it from predictions should be better | |
else: | |
self._tasks = tasks | |
self._distributed = distributed | |
self._output_dir = output_dir | |
self._max_dets_per_image = max_dets_per_image | |
self._cpu_device = torch.device("cpu") | |
self._metadata = MetadataCatalog.get(dataset_name) | |
json_file = PathManager.get_local_path(self._metadata.json_file) | |
self._lvis_api = LVIS(json_file) | |
# Test set json files do not contain annotations (evaluation must be | |
# performed using the LVIS evaluation server). | |
self._do_evaluation = len(self._lvis_api.get_ann_ids()) > 0 | |
def reset(self): | |
self._predictions = [] | |
def process(self, inputs, outputs): | |
""" | |
Args: | |
inputs: the inputs to a LVIS model (e.g., GeneralizedRCNN). | |
It is a list of dict. Each dict corresponds to an image and | |
contains keys like "height", "width", "file_name", "image_id". | |
outputs: the outputs of a LVIS model. It is a list of dicts with key | |
"instances" that contains :class:`Instances`. | |
""" | |
for input, output in zip(inputs, outputs): | |
prediction = {"image_id": input["image_id"]} | |
if "instances" in output: | |
instances = output["instances"].to(self._cpu_device) | |
prediction["instances"] = instances_to_coco_json(instances, input["image_id"]) | |
if "proposals" in output: | |
prediction["proposals"] = output["proposals"].to(self._cpu_device) | |
self._predictions.append(prediction) | |
def evaluate(self): | |
if self._distributed: | |
comm.synchronize() | |
predictions = comm.gather(self._predictions, dst=0) | |
predictions = list(itertools.chain(*predictions)) | |
if not comm.is_main_process(): | |
return | |
else: | |
predictions = self._predictions | |
if len(predictions) == 0: | |
self._logger.warning("[LVISEvaluator] Did not receive valid predictions.") | |
return {} | |
if self._output_dir: | |
PathManager.mkdirs(self._output_dir) | |
file_path = os.path.join(self._output_dir, "instances_predictions.pth") | |
with PathManager.open(file_path, "wb") as f: | |
torch.save(predictions, f) | |
self._results = OrderedDict() | |
if "proposals" in predictions[0]: | |
self._eval_box_proposals(predictions) | |
if "instances" in predictions[0]: | |
self._eval_predictions(predictions) | |
# Copy so the caller can do whatever with results | |
return copy.deepcopy(self._results) | |
def _tasks_from_predictions(self, predictions): | |
for pred in predictions: | |
if "segmentation" in pred: | |
return ("bbox", "segm") | |
return ("bbox",) | |
def _eval_predictions(self, predictions): | |
""" | |
Evaluate predictions. Fill self._results with the metrics of the tasks. | |
Args: | |
predictions (list[dict]): list of outputs from the model | |
""" | |
self._logger.info("Preparing results in the LVIS format ...") | |
lvis_results = list(itertools.chain(*[x["instances"] for x in predictions])) | |
tasks = self._tasks or self._tasks_from_predictions(lvis_results) | |
# LVIS evaluator can be used to evaluate results for COCO dataset categories. | |
# In this case `_metadata` variable will have a field with COCO-specific category mapping. | |
if hasattr(self._metadata, "thing_dataset_id_to_contiguous_id"): | |
reverse_id_mapping = { | |
v: k for k, v in self._metadata.thing_dataset_id_to_contiguous_id.items() | |
} | |
for result in lvis_results: | |
result["category_id"] = reverse_id_mapping[result["category_id"]] | |
else: | |
# unmap the category ids for LVIS (from 0-indexed to 1-indexed) | |
for result in lvis_results: | |
result["category_id"] += 1 | |
if self._output_dir: | |
file_path = os.path.join(self._output_dir, "lvis_instances_results.json") | |
self._logger.info("Saving results to {}".format(file_path)) | |
with PathManager.open(file_path, "w") as f: | |
f.write(json.dumps(lvis_results)) | |
f.flush() | |
if not self._do_evaluation: | |
self._logger.info("Annotations are not available for evaluation.") | |
return | |
self._logger.info("Evaluating predictions ...") | |
for task in sorted(tasks): | |
res = _evaluate_predictions_on_lvis( | |
self._lvis_api, | |
lvis_results, | |
task, | |
max_dets_per_image=self._max_dets_per_image, | |
class_names=self._metadata.get("thing_classes"), | |
) | |
self._results[task] = res | |
def _eval_box_proposals(self, predictions): | |
""" | |
Evaluate the box proposals in predictions. | |
Fill self._results with the metrics for "box_proposals" task. | |
""" | |
if self._output_dir: | |
# Saving generated box proposals to file. | |
# Predicted box_proposals are in XYXY_ABS mode. | |
bbox_mode = BoxMode.XYXY_ABS.value | |
ids, boxes, objectness_logits = [], [], [] | |
for prediction in predictions: | |
ids.append(prediction["image_id"]) | |
boxes.append(prediction["proposals"].proposal_boxes.tensor.numpy()) | |
objectness_logits.append(prediction["proposals"].objectness_logits.numpy()) | |
proposal_data = { | |
"boxes": boxes, | |
"objectness_logits": objectness_logits, | |
"ids": ids, | |
"bbox_mode": bbox_mode, | |
} | |
with PathManager.open(os.path.join(self._output_dir, "box_proposals.pkl"), "wb") as f: | |
pickle.dump(proposal_data, f) | |
if not self._do_evaluation: | |
self._logger.info("Annotations are not available for evaluation.") | |
return | |
self._logger.info("Evaluating bbox proposals ...") | |
res = {} | |
areas = {"all": "", "small": "s", "medium": "m", "large": "l"} | |
for limit in [100, 1000]: | |
for area, suffix in areas.items(): | |
stats = _evaluate_box_proposals(predictions, self._lvis_api, area=area, limit=limit) | |
key = "AR{}@{:d}".format(suffix, limit) | |
res[key] = float(stats["ar"].item() * 100) | |
self._logger.info("Proposal metrics: \n" + create_small_table(res)) | |
self._results["box_proposals"] = res | |
# inspired from Detectron: | |
# https://github.com/facebookresearch/Detectron/blob/a6a835f5b8208c45d0dce217ce9bbda915f44df7/detectron/datasets/json_dataset_evaluator.py#L255 # noqa | |
def _evaluate_box_proposals(dataset_predictions, lvis_api, thresholds=None, area="all", limit=None): | |
""" | |
Evaluate detection proposal recall metrics. This function is a much | |
faster alternative to the official LVIS API recall evaluation code. However, | |
it produces slightly different results. | |
""" | |
# Record max overlap value for each gt box | |
# Return vector of overlap values | |
areas = { | |
"all": 0, | |
"small": 1, | |
"medium": 2, | |
"large": 3, | |
"96-128": 4, | |
"128-256": 5, | |
"256-512": 6, | |
"512-inf": 7, | |
} | |
area_ranges = [ | |
[0**2, 1e5**2], # all | |
[0**2, 32**2], # small | |
[32**2, 96**2], # medium | |
[96**2, 1e5**2], # large | |
[96**2, 128**2], # 96-128 | |
[128**2, 256**2], # 128-256 | |
[256**2, 512**2], # 256-512 | |
[512**2, 1e5**2], | |
] # 512-inf | |
assert area in areas, "Unknown area range: {}".format(area) | |
area_range = area_ranges[areas[area]] | |
gt_overlaps = [] | |
num_pos = 0 | |
for prediction_dict in dataset_predictions: | |
predictions = prediction_dict["proposals"] | |
# sort predictions in descending order | |
# TODO maybe remove this and make it explicit in the documentation | |
inds = predictions.objectness_logits.sort(descending=True)[1] | |
predictions = predictions[inds] | |
ann_ids = lvis_api.get_ann_ids(img_ids=[prediction_dict["image_id"]]) | |
anno = lvis_api.load_anns(ann_ids) | |
gt_boxes = [ | |
BoxMode.convert(obj["bbox"], BoxMode.XYWH_ABS, BoxMode.XYXY_ABS) for obj in anno | |
] | |
gt_boxes = torch.as_tensor(gt_boxes).reshape(-1, 4) # guard against no boxes | |
gt_boxes = Boxes(gt_boxes) | |
gt_areas = torch.as_tensor([obj["area"] for obj in anno]) | |
if len(gt_boxes) == 0 or len(predictions) == 0: | |
continue | |
valid_gt_inds = (gt_areas >= area_range[0]) & (gt_areas <= area_range[1]) | |
gt_boxes = gt_boxes[valid_gt_inds] | |
num_pos += len(gt_boxes) | |
if len(gt_boxes) == 0: | |
continue | |
if limit is not None and len(predictions) > limit: | |
predictions = predictions[:limit] | |
overlaps = pairwise_iou(predictions.proposal_boxes, gt_boxes) | |
_gt_overlaps = torch.zeros(len(gt_boxes)) | |
for j in range(min(len(predictions), len(gt_boxes))): | |
# find which proposal box maximally covers each gt box | |
# and get the iou amount of coverage for each gt box | |
max_overlaps, argmax_overlaps = overlaps.max(dim=0) | |
# find which gt box is 'best' covered (i.e. 'best' = most iou) | |
gt_ovr, gt_ind = max_overlaps.max(dim=0) | |
assert gt_ovr >= 0 | |
# find the proposal box that covers the best covered gt box | |
box_ind = argmax_overlaps[gt_ind] | |
# record the iou coverage of this gt box | |
_gt_overlaps[j] = overlaps[box_ind, gt_ind] | |
assert _gt_overlaps[j] == gt_ovr | |
# mark the proposal box and the gt box as used | |
overlaps[box_ind, :] = -1 | |
overlaps[:, gt_ind] = -1 | |
# append recorded iou coverage level | |
gt_overlaps.append(_gt_overlaps) | |
gt_overlaps = ( | |
torch.cat(gt_overlaps, dim=0) if len(gt_overlaps) else torch.zeros(0, dtype=torch.float32) | |
) | |
gt_overlaps, _ = torch.sort(gt_overlaps) | |
if thresholds is None: | |
step = 0.05 | |
thresholds = torch.arange(0.5, 0.95 + 1e-5, step, dtype=torch.float32) | |
recalls = torch.zeros_like(thresholds) | |
# compute recall for each iou threshold | |
for i, t in enumerate(thresholds): | |
recalls[i] = (gt_overlaps >= t).float().sum() / float(num_pos) | |
# ar = 2 * np.trapz(recalls, thresholds) | |
ar = recalls.mean() | |
return { | |
"ar": ar, | |
"recalls": recalls, | |
"thresholds": thresholds, | |
"gt_overlaps": gt_overlaps, | |
"num_pos": num_pos, | |
} | |
def _evaluate_predictions_on_lvis( | |
lvis_gt, lvis_results, iou_type, max_dets_per_image=None, class_names=None | |
): | |
""" | |
Args: | |
iou_type (str): | |
max_dets_per_image (None or int): limit on maximum detections per image in evaluating AP | |
This limit, by default of the LVIS dataset, is 300. | |
class_names (None or list[str]): if provided, will use it to predict | |
per-category AP. | |
Returns: | |
a dict of {metric name: score} | |
""" | |
metrics = { | |
"bbox": ["AP", "AP50", "AP75", "APs", "APm", "APl", "APr", "APc", "APf"], | |
"segm": ["AP", "AP50", "AP75", "APs", "APm", "APl", "APr", "APc", "APf"], | |
}[iou_type] | |
logger = logging.getLogger(__name__) | |
if len(lvis_results) == 0: # TODO: check if needed | |
logger.warn("No predictions from the model!") | |
return {metric: float("nan") for metric in metrics} | |
if iou_type == "segm": | |
lvis_results = copy.deepcopy(lvis_results) | |
# When evaluating mask AP, if the results contain bbox, LVIS API will | |
# use the box area as the area of the instance, instead of the mask area. | |
# This leads to a different definition of small/medium/large. | |
# We remove the bbox field to let mask AP use mask area. | |
for c in lvis_results: | |
c.pop("bbox", None) | |
if max_dets_per_image is None: | |
max_dets_per_image = 300 # Default for LVIS dataset | |
from lvis import LVISEval, LVISResults | |
logger.info(f"Evaluating with max detections per image = {max_dets_per_image}") | |
lvis_results = LVISResults(lvis_gt, lvis_results, max_dets=max_dets_per_image) | |
lvis_eval = LVISEval(lvis_gt, lvis_results, iou_type) | |
lvis_eval.run() | |
lvis_eval.print_results() | |
# Pull the standard metrics from the LVIS results | |
results = lvis_eval.get_results() | |
results = {metric: float(results[metric] * 100) for metric in metrics} | |
logger.info("Evaluation results for {}: \n".format(iou_type) + create_small_table(results)) | |
return results | |