Spaces:
Sleeping
Sleeping
# Copyright (c) Facebook, Inc. and its affiliates. | |
import copy | |
import json | |
import os | |
from detectron2.data import DatasetCatalog, MetadataCatalog | |
from detectron2.utils.file_io import PathManager | |
from .coco import load_coco_json, load_sem_seg | |
__all__ = ["register_coco_panoptic", "register_coco_panoptic_separated"] | |
def load_coco_panoptic_json(json_file, image_dir, gt_dir, meta): | |
""" | |
Args: | |
image_dir (str): path to the raw dataset. e.g., "~/coco/train2017". | |
gt_dir (str): path to the raw annotations. e.g., "~/coco/panoptic_train2017". | |
json_file (str): path to the json file. e.g., "~/coco/annotations/panoptic_train2017.json". | |
Returns: | |
list[dict]: a list of dicts in Detectron2 standard format. (See | |
`Using Custom Datasets </tutorials/datasets.html>`_ ) | |
""" | |
def _convert_category_id(segment_info, meta): | |
if segment_info["category_id"] in meta["thing_dataset_id_to_contiguous_id"]: | |
segment_info["category_id"] = meta["thing_dataset_id_to_contiguous_id"][ | |
segment_info["category_id"] | |
] | |
segment_info["isthing"] = True | |
else: | |
segment_info["category_id"] = meta["stuff_dataset_id_to_contiguous_id"][ | |
segment_info["category_id"] | |
] | |
segment_info["isthing"] = False | |
return segment_info | |
with PathManager.open(json_file) as f: | |
json_info = json.load(f) | |
ret = [] | |
for ann in json_info["annotations"]: | |
image_id = int(ann["image_id"]) | |
# TODO: currently we assume image and label has the same filename but | |
# different extension, and images have extension ".jpg" for COCO. Need | |
# to make image extension a user-provided argument if we extend this | |
# function to support other COCO-like datasets. | |
image_file = os.path.join(image_dir, os.path.splitext(ann["file_name"])[0] + ".jpg") | |
label_file = os.path.join(gt_dir, ann["file_name"]) | |
segments_info = [_convert_category_id(x, meta) for x in ann["segments_info"]] | |
ret.append( | |
{ | |
"file_name": image_file, | |
"image_id": image_id, | |
"pan_seg_file_name": label_file, | |
"segments_info": segments_info, | |
} | |
) | |
assert len(ret), f"No images found in {image_dir}!" | |
assert PathManager.isfile(ret[0]["file_name"]), ret[0]["file_name"] | |
assert PathManager.isfile(ret[0]["pan_seg_file_name"]), ret[0]["pan_seg_file_name"] | |
return ret | |
def register_coco_panoptic( | |
name, metadata, image_root, panoptic_root, panoptic_json, instances_json=None | |
): | |
""" | |
Register a "standard" version of COCO panoptic segmentation dataset named `name`. | |
The dictionaries in this registered dataset follows detectron2's standard format. | |
Hence it's called "standard". | |
Args: | |
name (str): the name that identifies a dataset, | |
e.g. "coco_2017_train_panoptic" | |
metadata (dict): extra metadata associated with this dataset. | |
image_root (str): directory which contains all the images | |
panoptic_root (str): directory which contains panoptic annotation images in COCO format | |
panoptic_json (str): path to the json panoptic annotation file in COCO format | |
sem_seg_root (none): not used, to be consistent with | |
`register_coco_panoptic_separated`. | |
instances_json (str): path to the json instance annotation file | |
""" | |
panoptic_name = name | |
DatasetCatalog.register( | |
panoptic_name, | |
lambda: load_coco_panoptic_json(panoptic_json, image_root, panoptic_root, metadata), | |
) | |
MetadataCatalog.get(panoptic_name).set( | |
panoptic_root=panoptic_root, | |
image_root=image_root, | |
panoptic_json=panoptic_json, | |
json_file=instances_json, | |
evaluator_type="coco_panoptic_seg", | |
ignore_label=255, | |
label_divisor=1000, | |
**metadata, | |
) | |
def register_coco_panoptic_separated( | |
name, metadata, image_root, panoptic_root, panoptic_json, sem_seg_root, instances_json | |
): | |
""" | |
Register a "separated" version of COCO panoptic segmentation dataset named `name`. | |
The annotations in this registered dataset will contain both instance annotations and | |
semantic annotations, each with its own contiguous ids. Hence it's called "separated". | |
It follows the setting used by the PanopticFPN paper: | |
1. The instance annotations directly come from polygons in the COCO | |
instances annotation task, rather than from the masks in the COCO panoptic annotations. | |
The two format have small differences: | |
Polygons in the instance annotations may have overlaps. | |
The mask annotations are produced by labeling the overlapped polygons | |
with depth ordering. | |
2. The semantic annotations are converted from panoptic annotations, where | |
all "things" are assigned a semantic id of 0. | |
All semantic categories will therefore have ids in contiguous | |
range [1, #stuff_categories]. | |
This function will also register a pure semantic segmentation dataset | |
named ``name + '_stuffonly'``. | |
Args: | |
name (str): the name that identifies a dataset, | |
e.g. "coco_2017_train_panoptic" | |
metadata (dict): extra metadata associated with this dataset. | |
image_root (str): directory which contains all the images | |
panoptic_root (str): directory which contains panoptic annotation images | |
panoptic_json (str): path to the json panoptic annotation file | |
sem_seg_root (str): directory which contains all the ground truth segmentation annotations. | |
instances_json (str): path to the json instance annotation file | |
""" | |
panoptic_name = name + "_separated" | |
DatasetCatalog.register( | |
panoptic_name, | |
lambda: merge_to_panoptic( | |
load_coco_json(instances_json, image_root, panoptic_name), | |
load_sem_seg(sem_seg_root, image_root), | |
), | |
) | |
MetadataCatalog.get(panoptic_name).set( | |
panoptic_root=panoptic_root, | |
image_root=image_root, | |
panoptic_json=panoptic_json, | |
sem_seg_root=sem_seg_root, | |
json_file=instances_json, # TODO rename | |
evaluator_type="coco_panoptic_seg", | |
ignore_label=255, | |
**metadata, | |
) | |
semantic_name = name + "_stuffonly" | |
DatasetCatalog.register(semantic_name, lambda: load_sem_seg(sem_seg_root, image_root)) | |
MetadataCatalog.get(semantic_name).set( | |
sem_seg_root=sem_seg_root, | |
image_root=image_root, | |
evaluator_type="sem_seg", | |
ignore_label=255, | |
**metadata, | |
) | |
def merge_to_panoptic(detection_dicts, sem_seg_dicts): | |
""" | |
Create dataset dicts for panoptic segmentation, by | |
merging two dicts using "file_name" field to match their entries. | |
Args: | |
detection_dicts (list[dict]): lists of dicts for object detection or instance segmentation. | |
sem_seg_dicts (list[dict]): lists of dicts for semantic segmentation. | |
Returns: | |
list[dict] (one per input image): Each dict contains all (key, value) pairs from dicts in | |
both detection_dicts and sem_seg_dicts that correspond to the same image. | |
The function assumes that the same key in different dicts has the same value. | |
""" | |
results = [] | |
sem_seg_file_to_entry = {x["file_name"]: x for x in sem_seg_dicts} | |
assert len(sem_seg_file_to_entry) > 0 | |
for det_dict in detection_dicts: | |
dic = copy.copy(det_dict) | |
dic.update(sem_seg_file_to_entry[dic["file_name"]]) | |
results.append(dic) | |
return results | |
if __name__ == "__main__": | |
""" | |
Test the COCO panoptic dataset loader. | |
Usage: | |
python -m detectron2.data.datasets.coco_panoptic \ | |
path/to/image_root path/to/panoptic_root path/to/panoptic_json dataset_name 10 | |
"dataset_name" can be "coco_2017_train_panoptic", or other | |
pre-registered ones | |
""" | |
from detectron2.utils.logger import setup_logger | |
from detectron2.utils.visualizer import Visualizer | |
import detectron2.data.datasets # noqa # add pre-defined metadata | |
import sys | |
from PIL import Image | |
import numpy as np | |
logger = setup_logger(name=__name__) | |
assert sys.argv[4] in DatasetCatalog.list() | |
meta = MetadataCatalog.get(sys.argv[4]) | |
dicts = load_coco_panoptic_json(sys.argv[3], sys.argv[1], sys.argv[2], meta.as_dict()) | |
logger.info("Done loading {} samples.".format(len(dicts))) | |
dirname = "coco-data-vis" | |
os.makedirs(dirname, exist_ok=True) | |
num_imgs_to_vis = int(sys.argv[5]) | |
for i, d in enumerate(dicts): | |
img = np.array(Image.open(d["file_name"])) | |
visualizer = Visualizer(img, metadata=meta) | |
vis = visualizer.draw_dataset_dict(d) | |
fpath = os.path.join(dirname, os.path.basename(d["file_name"])) | |
vis.save(fpath) | |
if i + 1 >= num_imgs_to_vis: | |
break | |