Spaces:
Sleeping
Sleeping
File size: 9,040 Bytes
938e515 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
# Copyright (c) Facebook, Inc. and its affiliates.
import numpy as np
from typing import Dict, List, Optional
import fvcore.nn.weight_init as weight_init
import torch
import torch.nn as nn
from torch.nn import functional as F
from detectron2.layers import Conv2d, ShapeSpec, get_norm
from detectron2.modeling import ROI_HEADS_REGISTRY, StandardROIHeads
from detectron2.modeling.poolers import ROIPooler
from detectron2.modeling.roi_heads import select_foreground_proposals
from detectron2.structures import ImageList, Instances
from .. import (
build_densepose_data_filter,
build_densepose_embedder,
build_densepose_head,
build_densepose_losses,
build_densepose_predictor,
densepose_inference,
)
class Decoder(nn.Module):
"""
A semantic segmentation head described in detail in the Panoptic Feature Pyramid Networks paper
(https://arxiv.org/abs/1901.02446). It takes FPN features as input and merges information from
all levels of the FPN into single output.
"""
def __init__(self, cfg, input_shape: Dict[str, ShapeSpec], in_features):
super(Decoder, self).__init__()
# fmt: off
self.in_features = in_features
feature_strides = {k: v.stride for k, v in input_shape.items()}
feature_channels = {k: v.channels for k, v in input_shape.items()}
num_classes = cfg.MODEL.ROI_DENSEPOSE_HEAD.DECODER_NUM_CLASSES
conv_dims = cfg.MODEL.ROI_DENSEPOSE_HEAD.DECODER_CONV_DIMS
self.common_stride = cfg.MODEL.ROI_DENSEPOSE_HEAD.DECODER_COMMON_STRIDE
norm = cfg.MODEL.ROI_DENSEPOSE_HEAD.DECODER_NORM
# fmt: on
self.scale_heads = []
for in_feature in self.in_features:
head_ops = []
head_length = max(
1, int(np.log2(feature_strides[in_feature]) - np.log2(self.common_stride))
)
for k in range(head_length):
conv = Conv2d(
feature_channels[in_feature] if k == 0 else conv_dims,
conv_dims,
kernel_size=3,
stride=1,
padding=1,
bias=not norm,
norm=get_norm(norm, conv_dims),
activation=F.relu,
)
weight_init.c2_msra_fill(conv)
head_ops.append(conv)
if feature_strides[in_feature] != self.common_stride:
head_ops.append(
nn.Upsample(scale_factor=2, mode="bilinear", align_corners=False)
)
self.scale_heads.append(nn.Sequential(*head_ops))
self.add_module(in_feature, self.scale_heads[-1])
self.predictor = Conv2d(conv_dims, num_classes, kernel_size=1, stride=1, padding=0)
weight_init.c2_msra_fill(self.predictor)
def forward(self, features: List[torch.Tensor]):
for i, _ in enumerate(self.in_features):
if i == 0:
x = self.scale_heads[i](features[i])
else:
x = x + self.scale_heads[i](features[i])
x = self.predictor(x)
return x
@ROI_HEADS_REGISTRY.register()
class DensePoseROIHeads(StandardROIHeads):
"""
A Standard ROIHeads which contains an addition of DensePose head.
"""
def __init__(self, cfg, input_shape):
super().__init__(cfg, input_shape)
self._init_densepose_head(cfg, input_shape)
def _init_densepose_head(self, cfg, input_shape):
# fmt: off
self.densepose_on = cfg.MODEL.DENSEPOSE_ON
if not self.densepose_on:
return
self.densepose_data_filter = build_densepose_data_filter(cfg)
dp_pooler_resolution = cfg.MODEL.ROI_DENSEPOSE_HEAD.POOLER_RESOLUTION
dp_pooler_sampling_ratio = cfg.MODEL.ROI_DENSEPOSE_HEAD.POOLER_SAMPLING_RATIO
dp_pooler_type = cfg.MODEL.ROI_DENSEPOSE_HEAD.POOLER_TYPE
self.use_decoder = cfg.MODEL.ROI_DENSEPOSE_HEAD.DECODER_ON
# fmt: on
if self.use_decoder:
dp_pooler_scales = (1.0 / input_shape[self.in_features[0]].stride,)
else:
dp_pooler_scales = tuple(1.0 / input_shape[k].stride for k in self.in_features)
in_channels = [input_shape[f].channels for f in self.in_features][0]
if self.use_decoder:
self.decoder = Decoder(cfg, input_shape, self.in_features)
self.densepose_pooler = ROIPooler(
output_size=dp_pooler_resolution,
scales=dp_pooler_scales,
sampling_ratio=dp_pooler_sampling_ratio,
pooler_type=dp_pooler_type,
)
self.densepose_head = build_densepose_head(cfg, in_channels)
self.densepose_predictor = build_densepose_predictor(
cfg, self.densepose_head.n_out_channels
)
self.densepose_losses = build_densepose_losses(cfg)
self.embedder = build_densepose_embedder(cfg)
def _forward_densepose(self, features: Dict[str, torch.Tensor], instances: List[Instances]):
"""
Forward logic of the densepose prediction branch.
Args:
features (dict[str, Tensor]): input data as a mapping from feature
map name to tensor. Axis 0 represents the number of images `N` in
the input data; axes 1-3 are channels, height, and width, which may
vary between feature maps (e.g., if a feature pyramid is used).
instances (list[Instances]): length `N` list of `Instances`. The i-th
`Instances` contains instances for the i-th input image,
In training, they can be the proposals.
In inference, they can be the predicted boxes.
Returns:
In training, a dict of losses.
In inference, update `instances` with new fields "densepose" and return it.
"""
if not self.densepose_on:
return {} if self.training else instances
features_list = [features[f] for f in self.in_features]
if self.training:
proposals, _ = select_foreground_proposals(instances, self.num_classes)
features_list, proposals = self.densepose_data_filter(features_list, proposals)
if len(proposals) > 0:
proposal_boxes = [x.proposal_boxes for x in proposals]
if self.use_decoder:
features_list = [self.decoder(features_list)]
features_dp = self.densepose_pooler(features_list, proposal_boxes)
densepose_head_outputs = self.densepose_head(features_dp)
densepose_predictor_outputs = self.densepose_predictor(densepose_head_outputs)
densepose_loss_dict = self.densepose_losses(
proposals, densepose_predictor_outputs, embedder=self.embedder
)
return densepose_loss_dict
else:
pred_boxes = [x.pred_boxes for x in instances]
if self.use_decoder:
features_list = [self.decoder(features_list)]
features_dp = self.densepose_pooler(features_list, pred_boxes)
if len(features_dp) > 0:
densepose_head_outputs = self.densepose_head(features_dp)
densepose_predictor_outputs = self.densepose_predictor(densepose_head_outputs)
else:
densepose_predictor_outputs = None
densepose_inference(densepose_predictor_outputs, instances)
return instances
def forward(
self,
images: ImageList,
features: Dict[str, torch.Tensor],
proposals: List[Instances],
targets: Optional[List[Instances]] = None,
):
instances, losses = super().forward(images, features, proposals, targets)
del targets, images
if self.training:
losses.update(self._forward_densepose(features, instances))
return instances, losses
def forward_with_given_boxes(
self, features: Dict[str, torch.Tensor], instances: List[Instances]
):
"""
Use the given boxes in `instances` to produce other (non-box) per-ROI outputs.
This is useful for downstream tasks where a box is known, but need to obtain
other attributes (outputs of other heads).
Test-time augmentation also uses this.
Args:
features: same as in `forward()`
instances (list[Instances]): instances to predict other outputs. Expect the keys
"pred_boxes" and "pred_classes" to exist.
Returns:
instances (list[Instances]):
the same `Instances` objects, with extra
fields such as `pred_masks` or `pred_keypoints`.
"""
instances = super().forward_with_given_boxes(features, instances)
instances = self._forward_densepose(features, instances)
return instances
|