Spaces:
Running
on
Zero
Running
on
Zero
patrickligardes
commited on
Commit
β’
57522c3
1
Parent(s):
b38dc63
Update utils_mask.py
Browse files- utils_mask.py +33 -23
utils_mask.py
CHANGED
@@ -62,51 +62,61 @@ def get_mask_location(model_type, category, model_parse: Image.Image, keypoint:
|
|
62 |
else:
|
63 |
raise ValueError("model_type must be 'hd' or 'dc'!")
|
64 |
|
65 |
-
parse_head = (parse_array ==
|
66 |
-
(parse_array ==
|
67 |
-
(parse_array ==
|
68 |
|
69 |
parser_mask_fixed = (parse_array == label_map["left_shoe"]).astype(np.float32) + \
|
70 |
(parse_array == label_map["right_shoe"]).astype(np.float32) + \
|
71 |
-
(parse_array == label_map["hat"]).astype(np.float32) + \
|
72 |
(parse_array == label_map["sunglasses"]).astype(np.float32) + \
|
73 |
-
(parse_array == label_map["bag"]).astype(np.float32)
|
|
|
74 |
|
75 |
parser_mask_changeable = (parse_array == label_map["background"]).astype(np.float32)
|
76 |
|
77 |
-
arms_left = (parse_array ==
|
78 |
-
arms_right = (parse_array ==
|
79 |
|
80 |
if category == 'dresses':
|
81 |
-
#
|
82 |
parse_mask_upper = (parse_array == 4).astype(np.float32) + (parse_array == 7).astype(np.float32)
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
parse_mask_legs = cv2.dilate(parse_mask_legs.astype(np.uint8), np.ones((6, 6), np.uint8), iterations=6)
|
92 |
-
|
93 |
# Combine the upper body mask with the leg mask
|
94 |
parse_mask = np.maximum(parse_mask_upper, parse_mask_legs)
|
95 |
|
96 |
-
|
97 |
elif category == 'upper_body':
|
98 |
parse_mask = (parse_array == 4).astype(np.float32) + (parse_array == 7).astype(np.float32)
|
99 |
parser_mask_fixed_lower_cloth = (parse_array == label_map["skirt"]).astype(np.float32) + \
|
100 |
(parse_array == label_map["pants"]).astype(np.float32)
|
101 |
parser_mask_fixed += parser_mask_fixed_lower_cloth
|
|
|
|
|
102 |
elif category == 'lower_body':
|
103 |
parse_mask = (parse_array == 6).astype(np.float32) + \
|
104 |
(parse_array == 12).astype(np.float32) + \
|
105 |
(parse_array == 13).astype(np.float32) + \
|
106 |
(parse_array == 5).astype(np.float32)
|
107 |
parser_mask_fixed += (parse_array == label_map["upper_clothes"]).astype(np.float32) + \
|
108 |
-
(parse_array ==
|
109 |
-
(parse_array ==
|
|
|
110 |
else:
|
111 |
raise NotImplementedError
|
112 |
|
@@ -130,7 +140,7 @@ def get_mask_location(model_type, category, model_parse: Image.Image, keypoint:
|
|
130 |
size_left = [shoulder_left[0] - ARM_LINE_WIDTH // 2, shoulder_left[1] - ARM_LINE_WIDTH // 2, shoulder_left[0] + ARM_LINE_WIDTH // 2, shoulder_left[1] + ARM_LINE_WIDTH // 2]
|
131 |
size_right = [shoulder_right[0] - ARM_LINE_WIDTH // 2, shoulder_right[1] - ARM_LINE_WIDTH // 2, shoulder_right[0] + ARM_LINE_WIDTH // 2,
|
132 |
shoulder_right[1] + ARM_LINE_WIDTH // 2]
|
133 |
-
|
134 |
if wrist_right[0] <= 1. and wrist_right[1] <= 1.:
|
135 |
im_arms_right = arms_right
|
136 |
else:
|
@@ -150,10 +160,10 @@ def get_mask_location(model_type, category, model_parse: Image.Image, keypoint:
|
|
150 |
parser_mask_fixed += hands_left + hands_right
|
151 |
|
152 |
parser_mask_fixed = np.logical_or(parser_mask_fixed, parse_head)
|
153 |
-
parse_mask = cv2.dilate(parse_mask
|
154 |
if category == 'dresses' or category == 'upper_body':
|
155 |
neck_mask = (parse_array == 18).astype(np.float32)
|
156 |
-
neck_mask = cv2.dilate(neck_mask
|
157 |
neck_mask = np.logical_and(neck_mask, np.logical_not(parse_head))
|
158 |
parse_mask = np.logical_or(parse_mask, neck_mask)
|
159 |
arm_mask = cv2.dilate(np.logical_or(im_arms_left, im_arms_right).astype('float32'), np.ones((5, 5), np.uint8), iterations=4)
|
|
|
62 |
else:
|
63 |
raise ValueError("model_type must be 'hd' or 'dc'!")
|
64 |
|
65 |
+
parse_head = (parse_array == label_map["hat"]).astype(np.float32) + \
|
66 |
+
(parse_array == label_map["hair"]).astype(np.float32) + \
|
67 |
+
(parse_array == label_map["head"]).astype(np.float32)
|
68 |
|
69 |
parser_mask_fixed = (parse_array == label_map["left_shoe"]).astype(np.float32) + \
|
70 |
(parse_array == label_map["right_shoe"]).astype(np.float32) + \
|
|
|
71 |
(parse_array == label_map["sunglasses"]).astype(np.float32) + \
|
72 |
+
(parse_array == label_map["bag"]).astype(np.float32) + \
|
73 |
+
(parse_array == label_map["scarf"]).astype(np.float32)
|
74 |
|
75 |
parser_mask_changeable = (parse_array == label_map["background"]).astype(np.float32)
|
76 |
|
77 |
+
arms_left = (parse_array == label_map["left_arm"]).astype(np.float32)
|
78 |
+
arms_right = (parse_array == label_map["right_arm"]).astype(np.float32)
|
79 |
|
80 |
if category == 'dresses':
|
81 |
+
# Combine upper body category logic
|
82 |
parse_mask_upper = (parse_array == 4).astype(np.float32) + (parse_array == 7).astype(np.float32)
|
83 |
+
parser_mask_fixed_lower_cloth = (parse_array == label_map["skirt"]).astype(np.float32) + \
|
84 |
+
(parse_array == label_map["pants"]).astype(np.float32)
|
85 |
+
parser_mask_fixed += parser_mask_fixed_lower_cloth
|
86 |
+
parser_mask_changeable += np.logical_and(parse_array, np.logical_not(parser_mask_fixed))
|
87 |
+
|
88 |
+
# Combine lower body category logic
|
89 |
+
parse_mask_legs = (parse_array == 6).astype(np.float32) + \
|
90 |
+
(parse_array == 12).astype(np.float32) + \
|
91 |
+
(parse_array == 13).astype(np.float32) + \
|
92 |
+
(parse_array == 5).astype(np.float32)
|
93 |
+
parser_mask_fixed += (parse_array == label_map["upper_clothes"]).astype(np.float32) + \
|
94 |
+
(parse_array == label_map["left_arm"]).astype(np.float32) + \
|
95 |
+
(parse_array == label_map["right_arm"]).astype(np.float32)
|
96 |
+
parser_mask_changeable += np.logical_and(parse_array, np.logical_not(parser_mask_fixed))
|
97 |
+
|
98 |
+
# Fill gaps between legs
|
99 |
parse_mask_legs = cv2.dilate(parse_mask_legs.astype(np.uint8), np.ones((6, 6), np.uint8), iterations=6)
|
100 |
+
|
101 |
# Combine the upper body mask with the leg mask
|
102 |
parse_mask = np.maximum(parse_mask_upper, parse_mask_legs)
|
103 |
|
|
|
104 |
elif category == 'upper_body':
|
105 |
parse_mask = (parse_array == 4).astype(np.float32) + (parse_array == 7).astype(np.float32)
|
106 |
parser_mask_fixed_lower_cloth = (parse_array == label_map["skirt"]).astype(np.float32) + \
|
107 |
(parse_array == label_map["pants"]).astype(np.float32)
|
108 |
parser_mask_fixed += parser_mask_fixed_lower_cloth
|
109 |
+
parser_mask_changeable += np.logical_and(parse_array, np.logical_not(parser_mask_fixed))
|
110 |
+
|
111 |
elif category == 'lower_body':
|
112 |
parse_mask = (parse_array == 6).astype(np.float32) + \
|
113 |
(parse_array == 12).astype(np.float32) + \
|
114 |
(parse_array == 13).astype(np.float32) + \
|
115 |
(parse_array == 5).astype(np.float32)
|
116 |
parser_mask_fixed += (parse_array == label_map["upper_clothes"]).astype(np.float32) + \
|
117 |
+
(parse_array == label_map["left_arm"]).astype(np.float32) + \
|
118 |
+
(parse_array == label_map["right_arm"]).astype(np.float32)
|
119 |
+
parser_mask_changeable += np.logical_and(parse_array, np.logical_not(parser_mask_fixed))
|
120 |
else:
|
121 |
raise NotImplementedError
|
122 |
|
|
|
140 |
size_left = [shoulder_left[0] - ARM_LINE_WIDTH // 2, shoulder_left[1] - ARM_LINE_WIDTH // 2, shoulder_left[0] + ARM_LINE_WIDTH // 2, shoulder_left[1] + ARM_LINE_WIDTH // 2]
|
141 |
size_right = [shoulder_right[0] - ARM_LINE_WIDTH // 2, shoulder_right[1] - ARM_LINE_WIDTH // 2, shoulder_right[0] + ARM_LINE_WIDTH // 2,
|
142 |
shoulder_right[1] + ARM_LINE_WIDTH // 2]
|
143 |
+
|
144 |
if wrist_right[0] <= 1. and wrist_right[1] <= 1.:
|
145 |
im_arms_right = arms_right
|
146 |
else:
|
|
|
160 |
parser_mask_fixed += hands_left + hands_right
|
161 |
|
162 |
parser_mask_fixed = np.logical_or(parser_mask_fixed, parse_head)
|
163 |
+
parse_mask = cv2.dilate(parse_mask, np.ones((5, 5), np.uint8), iterations=5)
|
164 |
if category == 'dresses' or category == 'upper_body':
|
165 |
neck_mask = (parse_array == 18).astype(np.float32)
|
166 |
+
neck_mask = cv2.dilate(neck_mask, np.ones((5, 5), np.uint8), iterations=1)
|
167 |
neck_mask = np.logical_and(neck_mask, np.logical_not(parse_head))
|
168 |
parse_mask = np.logical_or(parse_mask, neck_mask)
|
169 |
arm_mask = cv2.dilate(np.logical_or(im_arms_left, im_arms_right).astype('float32'), np.ones((5, 5), np.uint8), iterations=4)
|