patrickligardes commited on
Commit
0605b48
β€’
1 Parent(s): 63bd92e

Update utils_mask.py

Browse files
Files changed (1) hide show
  1. utils_mask.py +27 -37
utils_mask.py CHANGED
@@ -62,48 +62,39 @@ def get_mask_location(model_type, category, model_parse: Image.Image, keypoint:
62
  else:
63
  raise ValueError("model_type must be 'hd' or 'dc'!")
64
 
65
- parse_head = (parse_array == label_map["hat"]).astype(np.float32) + \
66
- (parse_array == label_map["hair"]).astype(np.float32) + \
67
- (parse_array == label_map["head"]).astype(np.float32)
68
 
69
  parser_mask_fixed = (parse_array == label_map["left_shoe"]).astype(np.float32) + \
70
  (parse_array == label_map["right_shoe"]).astype(np.float32) + \
 
71
  (parse_array == label_map["sunglasses"]).astype(np.float32) + \
72
- (parse_array == label_map["bag"]).astype(np.float32) + \
73
- (parse_array == label_map["scarf"]).astype(np.float32)
74
 
75
  parser_mask_changeable = (parse_array == label_map["background"]).astype(np.float32)
76
 
77
- arms_left = (parse_array == label_map["left_arm"]).astype(np.float32)
78
- arms_right = (parse_array == label_map["right_arm"]).astype(np.float32)
79
 
80
  if category == 'dresses':
81
- # Combine upper body category logic
82
- parse_mask_upper = (parse_array == 4).astype(np.float32) + (parse_array == 7).astype(np.float32)
83
  parser_mask_fixed_lower_cloth = (parse_array == label_map["skirt"]).astype(np.float32) + \
84
- (parse_array == label_map["pants"]).astype(np.float32)
85
- parser_mask_fixed += parser_mask_fixed_lower_cloth
86
- parser_mask_changeable = np.logical_and(parse_array, np.logical_not(parser_mask_fixed))
87
-
88
- # Combine lower body category logic
89
- parse_mask_legs = (parse_array == 6).astype(np.float32) + \
90
- (parse_array == 12).astype(np.float32) + \
91
- (parse_array == 13).astype(np.float32) + \
92
- (parse_array == 5).astype(np.float32)
93
- parser_mask_fixed += (parse_array == label_map["upper_clothes"]).astype(np.float32) + \
94
- (parse_array == label_map["left_arm"]).astype(np.float32) + \
95
- (parse_array == label_map["right_arm"]).astype(np.float32)
96
-
97
- # Include parse_mask_legs in parser_mask_changeable
98
- parser_mask_changeable = np.logical_or(parser_mask_changeable, parse_mask_legs)
99
-
100
- parse_mask_legs = cv2.dilate(parse_mask_legs.astype(np.uint8), np.ones((6, 6), np.uint8), iterations=6)
101
-
102
- # Combine the upper body mask with the leg mask
103
- parse_mask = np.logical_and(parser_mask_changeable, np.logical_not(parse_mask))
104
 
105
-
 
106
 
 
 
107
 
108
  elif category == 'upper_body':
109
  parse_mask = (parse_array == 4).astype(np.float32) + (parse_array == 7).astype(np.float32)
@@ -111,15 +102,14 @@ def get_mask_location(model_type, category, model_parse: Image.Image, keypoint:
111
  (parse_array == label_map["pants"]).astype(np.float32)
112
  parser_mask_fixed += parser_mask_fixed_lower_cloth
113
  parser_mask_changeable += np.logical_and(parse_array, np.logical_not(parser_mask_fixed))
114
-
115
  elif category == 'lower_body':
116
  parse_mask = (parse_array == 6).astype(np.float32) + \
117
  (parse_array == 12).astype(np.float32) + \
118
  (parse_array == 13).astype(np.float32) + \
119
  (parse_array == 5).astype(np.float32)
120
  parser_mask_fixed += (parse_array == label_map["upper_clothes"]).astype(np.float32) + \
121
- (parse_array == label_map["left_arm"]).astype(np.float32) + \
122
- (parse_array == label_map["right_arm"]).astype(np.float32)
123
  parser_mask_changeable += np.logical_and(parse_array, np.logical_not(parser_mask_fixed))
124
  else:
125
  raise NotImplementedError
@@ -144,7 +134,7 @@ def get_mask_location(model_type, category, model_parse: Image.Image, keypoint:
144
  size_left = [shoulder_left[0] - ARM_LINE_WIDTH // 2, shoulder_left[1] - ARM_LINE_WIDTH // 2, shoulder_left[0] + ARM_LINE_WIDTH // 2, shoulder_left[1] + ARM_LINE_WIDTH // 2]
145
  size_right = [shoulder_right[0] - ARM_LINE_WIDTH // 2, shoulder_right[1] - ARM_LINE_WIDTH // 2, shoulder_right[0] + ARM_LINE_WIDTH // 2,
146
  shoulder_right[1] + ARM_LINE_WIDTH // 2]
147
-
148
  if wrist_right[0] <= 1. and wrist_right[1] <= 1.:
149
  im_arms_right = arms_right
150
  else:
@@ -164,13 +154,13 @@ def get_mask_location(model_type, category, model_parse: Image.Image, keypoint:
164
  parser_mask_fixed += hands_left + hands_right
165
 
166
  parser_mask_fixed = np.logical_or(parser_mask_fixed, parse_head)
167
- parse_mask = cv2.dilate(parse_mask, np.ones((5, 5), np.uint8), iterations=5)
168
  if category == 'dresses' or category == 'upper_body':
169
  neck_mask = (parse_array == 18).astype(np.float32)
170
- neck_mask = cv2.dilate(neck_mask, np.ones((5, 5), np.uint8), iterations=1)
171
  neck_mask = np.logical_and(neck_mask, np.logical_not(parse_head))
172
  parse_mask = np.logical_or(parse_mask, neck_mask)
173
- arm_mask = cv2.dilate(np.logical_or(im_arms_left, im_arms_right).astype('float32'), np.ones((5, 5), np.uint8), iterations=4)
174
  parse_mask += np.logical_or(parse_mask, arm_mask)
175
 
176
  parse_mask = np.logical_and(parser_mask_changeable, np.logical_not(parse_mask))
 
62
  else:
63
  raise ValueError("model_type must be 'hd' or 'dc'!")
64
 
65
+ parse_head = (parse_array == 1).astype(np.float32) + \
66
+ (parse_array == 3).astype(np.float32) + \
67
+ (parse_array == 11).astype(np.float32)
68
 
69
  parser_mask_fixed = (parse_array == label_map["left_shoe"]).astype(np.float32) + \
70
  (parse_array == label_map["right_shoe"]).astype(np.float32) + \
71
+ (parse_array == label_map["hat"]).astype(np.float32) + \
72
  (parse_array == label_map["sunglasses"]).astype(np.float32) + \
73
+ (parse_array == label_map["bag"]).astype(np.float32)
 
74
 
75
  parser_mask_changeable = (parse_array == label_map["background"]).astype(np.float32)
76
 
77
+ arms_left = (parse_array == 14).astype(np.float32)
78
+ arms_right = (parse_array == 15).astype(np.float32)
79
 
80
  if category == 'dresses':
81
+ # Initial dress mask for the upper body
82
+ parse_mask_upper = np.logical_or((parse_array == label_map["upper_clothes"]), (parse_array == label_map["dress"])).astype(np.float32)
83
  parser_mask_fixed_lower_cloth = (parse_array == label_map["skirt"]).astype(np.float32) + \
84
+ (parse_array == label_map["pants"]).astype(np.float32)
85
+ parser_mask_fixed += parser_mask_fixed_lower_cloth
86
+
87
+ # Create a mask for the legs (including skirts and pants)
88
+ parse_mask_legs = (parse_array == label_map["skirt"]).astype(np.float32) + \
89
+ (parse_array == label_map["pants"]).astype(np.float32) + \
90
+ (parse_array == label_map["left_leg"]).astype(np.float32) + \
91
+ (parse_array == label_map["right_leg"]).astype(np.float32)
 
 
 
 
 
 
 
 
 
 
 
 
92
 
93
+ # Dilate the leg mask to ensure coverage and fill gaps
94
+ parse_mask_legs = cv2.dilate(parse_mask_legs.astype(np.uint8), np.ones((6, 6), np.uint8), iterations=6)
95
 
96
+ # Combine the upper body mask with the leg mask
97
+ parse_mask = np.maximum(parse_mask_upper, parse_mask_legs)
98
 
99
  elif category == 'upper_body':
100
  parse_mask = (parse_array == 4).astype(np.float32) + (parse_array == 7).astype(np.float32)
 
102
  (parse_array == label_map["pants"]).astype(np.float32)
103
  parser_mask_fixed += parser_mask_fixed_lower_cloth
104
  parser_mask_changeable += np.logical_and(parse_array, np.logical_not(parser_mask_fixed))
 
105
  elif category == 'lower_body':
106
  parse_mask = (parse_array == 6).astype(np.float32) + \
107
  (parse_array == 12).astype(np.float32) + \
108
  (parse_array == 13).astype(np.float32) + \
109
  (parse_array == 5).astype(np.float32)
110
  parser_mask_fixed += (parse_array == label_map["upper_clothes"]).astype(np.float32) + \
111
+ (parse_array == 14).astype(np.float32) + \
112
+ (parse_array == 15).astype(np.float32)
113
  parser_mask_changeable += np.logical_and(parse_array, np.logical_not(parser_mask_fixed))
114
  else:
115
  raise NotImplementedError
 
134
  size_left = [shoulder_left[0] - ARM_LINE_WIDTH // 2, shoulder_left[1] - ARM_LINE_WIDTH // 2, shoulder_left[0] + ARM_LINE_WIDTH // 2, shoulder_left[1] + ARM_LINE_WIDTH // 2]
135
  size_right = [shoulder_right[0] - ARM_LINE_WIDTH // 2, shoulder_right[1] - ARM_LINE_WIDTH // 2, shoulder_right[0] + ARM_LINE_WIDTH // 2,
136
  shoulder_right[1] + ARM_LINE_WIDTH // 2]
137
+
138
  if wrist_right[0] <= 1. and wrist_right[1] <= 1.:
139
  im_arms_right = arms_right
140
  else:
 
154
  parser_mask_fixed += hands_left + hands_right
155
 
156
  parser_mask_fixed = np.logical_or(parser_mask_fixed, parse_head)
157
+ parse_mask = cv2.dilate(parse_mask, np.ones((5, 5), np.uint16), iterations=5)
158
  if category == 'dresses' or category == 'upper_body':
159
  neck_mask = (parse_array == 18).astype(np.float32)
160
+ neck_mask = cv2.dilate(neck_mask, np.ones((5, 5), np.uint16), iterations=1)
161
  neck_mask = np.logical_and(neck_mask, np.logical_not(parse_head))
162
  parse_mask = np.logical_or(parse_mask, neck_mask)
163
+ arm_mask = cv2.dilate(np.logical_or(im_arms_left, im_arms_right).astype('float32'), np.ones((5, 5), np.uint16), iterations=4)
164
  parse_mask += np.logical_or(parse_mask, arm_mask)
165
 
166
  parse_mask = np.logical_and(parser_mask_changeable, np.logical_not(parse_mask))