Dressfit / detectron2 /evaluation /fast_eval_api.py
IDM-VTON
update IDM-VTON Demo
938e515
raw
history blame
5.08 kB
# Copyright (c) Facebook, Inc. and its affiliates.
import copy
import logging
import numpy as np
import time
from pycocotools.cocoeval import COCOeval
from detectron2 import _C
logger = logging.getLogger(__name__)
class COCOeval_opt(COCOeval):
"""
This is a slightly modified version of the original COCO API, where the functions evaluateImg()
and accumulate() are implemented in C++ to speedup evaluation
"""
def evaluate(self):
"""
Run per image evaluation on given images and store results in self.evalImgs_cpp, a
datastructure that isn't readable from Python but is used by a c++ implementation of
accumulate(). Unlike the original COCO PythonAPI, we don't populate the datastructure
self.evalImgs because this datastructure is a computational bottleneck.
:return: None
"""
tic = time.time()
p = self.params
# add backward compatibility if useSegm is specified in params
if p.useSegm is not None:
p.iouType = "segm" if p.useSegm == 1 else "bbox"
logger.info("Evaluate annotation type *{}*".format(p.iouType))
p.imgIds = list(np.unique(p.imgIds))
if p.useCats:
p.catIds = list(np.unique(p.catIds))
p.maxDets = sorted(p.maxDets)
self.params = p
self._prepare() # bottleneck
# loop through images, area range, max detection number
catIds = p.catIds if p.useCats else [-1]
if p.iouType == "segm" or p.iouType == "bbox":
computeIoU = self.computeIoU
elif p.iouType == "keypoints":
computeIoU = self.computeOks
self.ious = {
(imgId, catId): computeIoU(imgId, catId) for imgId in p.imgIds for catId in catIds
} # bottleneck
maxDet = p.maxDets[-1]
# <<<< Beginning of code differences with original COCO API
def convert_instances_to_cpp(instances, is_det=False):
# Convert annotations for a list of instances in an image to a format that's fast
# to access in C++
instances_cpp = []
for instance in instances:
instance_cpp = _C.InstanceAnnotation(
int(instance["id"]),
instance["score"] if is_det else instance.get("score", 0.0),
instance["area"],
bool(instance.get("iscrowd", 0)),
bool(instance.get("ignore", 0)),
)
instances_cpp.append(instance_cpp)
return instances_cpp
# Convert GT annotations, detections, and IOUs to a format that's fast to access in C++
ground_truth_instances = [
[convert_instances_to_cpp(self._gts[imgId, catId]) for catId in p.catIds]
for imgId in p.imgIds
]
detected_instances = [
[convert_instances_to_cpp(self._dts[imgId, catId], is_det=True) for catId in p.catIds]
for imgId in p.imgIds
]
ious = [[self.ious[imgId, catId] for catId in catIds] for imgId in p.imgIds]
if not p.useCats:
# For each image, flatten per-category lists into a single list
ground_truth_instances = [[[o for c in i for o in c]] for i in ground_truth_instances]
detected_instances = [[[o for c in i for o in c]] for i in detected_instances]
# Call C++ implementation of self.evaluateImgs()
self._evalImgs_cpp = _C.COCOevalEvaluateImages(
p.areaRng, maxDet, p.iouThrs, ious, ground_truth_instances, detected_instances
)
self._evalImgs = None
self._paramsEval = copy.deepcopy(self.params)
toc = time.time()
logger.info("COCOeval_opt.evaluate() finished in {:0.2f} seconds.".format(toc - tic))
# >>>> End of code differences with original COCO API
def accumulate(self):
"""
Accumulate per image evaluation results and store the result in self.eval. Does not
support changing parameter settings from those used by self.evaluate()
"""
logger.info("Accumulating evaluation results...")
tic = time.time()
assert hasattr(
self, "_evalImgs_cpp"
), "evaluate() must be called before accmulate() is called."
self.eval = _C.COCOevalAccumulate(self._paramsEval, self._evalImgs_cpp)
# recall is num_iou_thresholds X num_categories X num_area_ranges X num_max_detections
self.eval["recall"] = np.array(self.eval["recall"]).reshape(
self.eval["counts"][:1] + self.eval["counts"][2:]
)
# precision and scores are num_iou_thresholds X num_recall_thresholds X num_categories X
# num_area_ranges X num_max_detections
self.eval["precision"] = np.array(self.eval["precision"]).reshape(self.eval["counts"])
self.eval["scores"] = np.array(self.eval["scores"]).reshape(self.eval["counts"])
toc = time.time()
logger.info("COCOeval_opt.accumulate() finished in {:0.2f} seconds.".format(toc - tic))