Spaces:
Sleeping
Sleeping
parsee-mizuhashi
commited on
Commit
•
c3e525b
1
Parent(s):
00c9528
Upload 156 files
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- LICENSE +674 -0
- README.md +4 -4
- app.py +149 -0
- comfy/checkpoint_pickle.py +13 -0
- comfy/cldm/cldm.py +312 -0
- comfy/cli_args.py +126 -0
- comfy/clip_config_bigg.json +23 -0
- comfy/clip_model.py +194 -0
- comfy/clip_vision.py +116 -0
- comfy/clip_vision_config_g.json +18 -0
- comfy/clip_vision_config_h.json +18 -0
- comfy/clip_vision_config_vitl.json +18 -0
- comfy/conds.py +78 -0
- comfy/controlnet.py +544 -0
- comfy/diffusers_convert.py +265 -0
- comfy/diffusers_load.py +36 -0
- comfy/extra_samplers/uni_pc.py +875 -0
- comfy/gligen.py +343 -0
- comfy/k_diffusion/sampling.py +810 -0
- comfy/k_diffusion/utils.py +313 -0
- comfy/latent_formats.py +104 -0
- comfy/ldm/cascade/common.py +161 -0
- comfy/ldm/cascade/controlnet.py +93 -0
- comfy/ldm/cascade/stage_a.py +258 -0
- comfy/ldm/cascade/stage_b.py +257 -0
- comfy/ldm/cascade/stage_c.py +274 -0
- comfy/ldm/cascade/stage_c_coder.py +95 -0
- comfy/ldm/models/autoencoder.py +228 -0
- comfy/ldm/modules/attention.py +800 -0
- comfy/ldm/modules/diffusionmodules/__init__.py +0 -0
- comfy/ldm/modules/diffusionmodules/model.py +650 -0
- comfy/ldm/modules/diffusionmodules/openaimodel.py +889 -0
- comfy/ldm/modules/diffusionmodules/upscaling.py +85 -0
- comfy/ldm/modules/diffusionmodules/util.py +306 -0
- comfy/ldm/modules/distributions/__init__.py +0 -0
- comfy/ldm/modules/distributions/distributions.py +92 -0
- comfy/ldm/modules/ema.py +80 -0
- comfy/ldm/modules/encoders/__init__.py +0 -0
- comfy/ldm/modules/encoders/noise_aug_modules.py +35 -0
- comfy/ldm/modules/sub_quadratic_attention.py +273 -0
- comfy/ldm/modules/temporal_ae.py +245 -0
- comfy/ldm/util.py +197 -0
- comfy/lora.py +234 -0
- comfy/model_base.py +491 -0
- comfy/model_detection.py +363 -0
- comfy/model_management.py +859 -0
- comfy/model_patcher.py +359 -0
- comfy/model_sampling.py +200 -0
- comfy/ops.py +161 -0
- comfy/options.py +6 -0
LICENSE
ADDED
@@ -0,0 +1,674 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
GNU GENERAL PUBLIC LICENSE
|
2 |
+
Version 3, 29 June 2007
|
3 |
+
|
4 |
+
Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
|
5 |
+
Everyone is permitted to copy and distribute verbatim copies
|
6 |
+
of this license document, but changing it is not allowed.
|
7 |
+
|
8 |
+
Preamble
|
9 |
+
|
10 |
+
The GNU General Public License is a free, copyleft license for
|
11 |
+
software and other kinds of works.
|
12 |
+
|
13 |
+
The licenses for most software and other practical works are designed
|
14 |
+
to take away your freedom to share and change the works. By contrast,
|
15 |
+
the GNU General Public License is intended to guarantee your freedom to
|
16 |
+
share and change all versions of a program--to make sure it remains free
|
17 |
+
software for all its users. We, the Free Software Foundation, use the
|
18 |
+
GNU General Public License for most of our software; it applies also to
|
19 |
+
any other work released this way by its authors. You can apply it to
|
20 |
+
your programs, too.
|
21 |
+
|
22 |
+
When we speak of free software, we are referring to freedom, not
|
23 |
+
price. Our General Public Licenses are designed to make sure that you
|
24 |
+
have the freedom to distribute copies of free software (and charge for
|
25 |
+
them if you wish), that you receive source code or can get it if you
|
26 |
+
want it, that you can change the software or use pieces of it in new
|
27 |
+
free programs, and that you know you can do these things.
|
28 |
+
|
29 |
+
To protect your rights, we need to prevent others from denying you
|
30 |
+
these rights or asking you to surrender the rights. Therefore, you have
|
31 |
+
certain responsibilities if you distribute copies of the software, or if
|
32 |
+
you modify it: responsibilities to respect the freedom of others.
|
33 |
+
|
34 |
+
For example, if you distribute copies of such a program, whether
|
35 |
+
gratis or for a fee, you must pass on to the recipients the same
|
36 |
+
freedoms that you received. You must make sure that they, too, receive
|
37 |
+
or can get the source code. And you must show them these terms so they
|
38 |
+
know their rights.
|
39 |
+
|
40 |
+
Developers that use the GNU GPL protect your rights with two steps:
|
41 |
+
(1) assert copyright on the software, and (2) offer you this License
|
42 |
+
giving you legal permission to copy, distribute and/or modify it.
|
43 |
+
|
44 |
+
For the developers' and authors' protection, the GPL clearly explains
|
45 |
+
that there is no warranty for this free software. For both users' and
|
46 |
+
authors' sake, the GPL requires that modified versions be marked as
|
47 |
+
changed, so that their problems will not be attributed erroneously to
|
48 |
+
authors of previous versions.
|
49 |
+
|
50 |
+
Some devices are designed to deny users access to install or run
|
51 |
+
modified versions of the software inside them, although the manufacturer
|
52 |
+
can do so. This is fundamentally incompatible with the aim of
|
53 |
+
protecting users' freedom to change the software. The systematic
|
54 |
+
pattern of such abuse occurs in the area of products for individuals to
|
55 |
+
use, which is precisely where it is most unacceptable. Therefore, we
|
56 |
+
have designed this version of the GPL to prohibit the practice for those
|
57 |
+
products. If such problems arise substantially in other domains, we
|
58 |
+
stand ready to extend this provision to those domains in future versions
|
59 |
+
of the GPL, as needed to protect the freedom of users.
|
60 |
+
|
61 |
+
Finally, every program is threatened constantly by software patents.
|
62 |
+
States should not allow patents to restrict development and use of
|
63 |
+
software on general-purpose computers, but in those that do, we wish to
|
64 |
+
avoid the special danger that patents applied to a free program could
|
65 |
+
make it effectively proprietary. To prevent this, the GPL assures that
|
66 |
+
patents cannot be used to render the program non-free.
|
67 |
+
|
68 |
+
The precise terms and conditions for copying, distribution and
|
69 |
+
modification follow.
|
70 |
+
|
71 |
+
TERMS AND CONDITIONS
|
72 |
+
|
73 |
+
0. Definitions.
|
74 |
+
|
75 |
+
"This License" refers to version 3 of the GNU General Public License.
|
76 |
+
|
77 |
+
"Copyright" also means copyright-like laws that apply to other kinds of
|
78 |
+
works, such as semiconductor masks.
|
79 |
+
|
80 |
+
"The Program" refers to any copyrightable work licensed under this
|
81 |
+
License. Each licensee is addressed as "you". "Licensees" and
|
82 |
+
"recipients" may be individuals or organizations.
|
83 |
+
|
84 |
+
To "modify" a work means to copy from or adapt all or part of the work
|
85 |
+
in a fashion requiring copyright permission, other than the making of an
|
86 |
+
exact copy. The resulting work is called a "modified version" of the
|
87 |
+
earlier work or a work "based on" the earlier work.
|
88 |
+
|
89 |
+
A "covered work" means either the unmodified Program or a work based
|
90 |
+
on the Program.
|
91 |
+
|
92 |
+
To "propagate" a work means to do anything with it that, without
|
93 |
+
permission, would make you directly or secondarily liable for
|
94 |
+
infringement under applicable copyright law, except executing it on a
|
95 |
+
computer or modifying a private copy. Propagation includes copying,
|
96 |
+
distribution (with or without modification), making available to the
|
97 |
+
public, and in some countries other activities as well.
|
98 |
+
|
99 |
+
To "convey" a work means any kind of propagation that enables other
|
100 |
+
parties to make or receive copies. Mere interaction with a user through
|
101 |
+
a computer network, with no transfer of a copy, is not conveying.
|
102 |
+
|
103 |
+
An interactive user interface displays "Appropriate Legal Notices"
|
104 |
+
to the extent that it includes a convenient and prominently visible
|
105 |
+
feature that (1) displays an appropriate copyright notice, and (2)
|
106 |
+
tells the user that there is no warranty for the work (except to the
|
107 |
+
extent that warranties are provided), that licensees may convey the
|
108 |
+
work under this License, and how to view a copy of this License. If
|
109 |
+
the interface presents a list of user commands or options, such as a
|
110 |
+
menu, a prominent item in the list meets this criterion.
|
111 |
+
|
112 |
+
1. Source Code.
|
113 |
+
|
114 |
+
The "source code" for a work means the preferred form of the work
|
115 |
+
for making modifications to it. "Object code" means any non-source
|
116 |
+
form of a work.
|
117 |
+
|
118 |
+
A "Standard Interface" means an interface that either is an official
|
119 |
+
standard defined by a recognized standards body, or, in the case of
|
120 |
+
interfaces specified for a particular programming language, one that
|
121 |
+
is widely used among developers working in that language.
|
122 |
+
|
123 |
+
The "System Libraries" of an executable work include anything, other
|
124 |
+
than the work as a whole, that (a) is included in the normal form of
|
125 |
+
packaging a Major Component, but which is not part of that Major
|
126 |
+
Component, and (b) serves only to enable use of the work with that
|
127 |
+
Major Component, or to implement a Standard Interface for which an
|
128 |
+
implementation is available to the public in source code form. A
|
129 |
+
"Major Component", in this context, means a major essential component
|
130 |
+
(kernel, window system, and so on) of the specific operating system
|
131 |
+
(if any) on which the executable work runs, or a compiler used to
|
132 |
+
produce the work, or an object code interpreter used to run it.
|
133 |
+
|
134 |
+
The "Corresponding Source" for a work in object code form means all
|
135 |
+
the source code needed to generate, install, and (for an executable
|
136 |
+
work) run the object code and to modify the work, including scripts to
|
137 |
+
control those activities. However, it does not include the work's
|
138 |
+
System Libraries, or general-purpose tools or generally available free
|
139 |
+
programs which are used unmodified in performing those activities but
|
140 |
+
which are not part of the work. For example, Corresponding Source
|
141 |
+
includes interface definition files associated with source files for
|
142 |
+
the work, and the source code for shared libraries and dynamically
|
143 |
+
linked subprograms that the work is specifically designed to require,
|
144 |
+
such as by intimate data communication or control flow between those
|
145 |
+
subprograms and other parts of the work.
|
146 |
+
|
147 |
+
The Corresponding Source need not include anything that users
|
148 |
+
can regenerate automatically from other parts of the Corresponding
|
149 |
+
Source.
|
150 |
+
|
151 |
+
The Corresponding Source for a work in source code form is that
|
152 |
+
same work.
|
153 |
+
|
154 |
+
2. Basic Permissions.
|
155 |
+
|
156 |
+
All rights granted under this License are granted for the term of
|
157 |
+
copyright on the Program, and are irrevocable provided the stated
|
158 |
+
conditions are met. This License explicitly affirms your unlimited
|
159 |
+
permission to run the unmodified Program. The output from running a
|
160 |
+
covered work is covered by this License only if the output, given its
|
161 |
+
content, constitutes a covered work. This License acknowledges your
|
162 |
+
rights of fair use or other equivalent, as provided by copyright law.
|
163 |
+
|
164 |
+
You may make, run and propagate covered works that you do not
|
165 |
+
convey, without conditions so long as your license otherwise remains
|
166 |
+
in force. You may convey covered works to others for the sole purpose
|
167 |
+
of having them make modifications exclusively for you, or provide you
|
168 |
+
with facilities for running those works, provided that you comply with
|
169 |
+
the terms of this License in conveying all material for which you do
|
170 |
+
not control copyright. Those thus making or running the covered works
|
171 |
+
for you must do so exclusively on your behalf, under your direction
|
172 |
+
and control, on terms that prohibit them from making any copies of
|
173 |
+
your copyrighted material outside their relationship with you.
|
174 |
+
|
175 |
+
Conveying under any other circumstances is permitted solely under
|
176 |
+
the conditions stated below. Sublicensing is not allowed; section 10
|
177 |
+
makes it unnecessary.
|
178 |
+
|
179 |
+
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
|
180 |
+
|
181 |
+
No covered work shall be deemed part of an effective technological
|
182 |
+
measure under any applicable law fulfilling obligations under article
|
183 |
+
11 of the WIPO copyright treaty adopted on 20 December 1996, or
|
184 |
+
similar laws prohibiting or restricting circumvention of such
|
185 |
+
measures.
|
186 |
+
|
187 |
+
When you convey a covered work, you waive any legal power to forbid
|
188 |
+
circumvention of technological measures to the extent such circumvention
|
189 |
+
is effected by exercising rights under this License with respect to
|
190 |
+
the covered work, and you disclaim any intention to limit operation or
|
191 |
+
modification of the work as a means of enforcing, against the work's
|
192 |
+
users, your or third parties' legal rights to forbid circumvention of
|
193 |
+
technological measures.
|
194 |
+
|
195 |
+
4. Conveying Verbatim Copies.
|
196 |
+
|
197 |
+
You may convey verbatim copies of the Program's source code as you
|
198 |
+
receive it, in any medium, provided that you conspicuously and
|
199 |
+
appropriately publish on each copy an appropriate copyright notice;
|
200 |
+
keep intact all notices stating that this License and any
|
201 |
+
non-permissive terms added in accord with section 7 apply to the code;
|
202 |
+
keep intact all notices of the absence of any warranty; and give all
|
203 |
+
recipients a copy of this License along with the Program.
|
204 |
+
|
205 |
+
You may charge any price or no price for each copy that you convey,
|
206 |
+
and you may offer support or warranty protection for a fee.
|
207 |
+
|
208 |
+
5. Conveying Modified Source Versions.
|
209 |
+
|
210 |
+
You may convey a work based on the Program, or the modifications to
|
211 |
+
produce it from the Program, in the form of source code under the
|
212 |
+
terms of section 4, provided that you also meet all of these conditions:
|
213 |
+
|
214 |
+
a) The work must carry prominent notices stating that you modified
|
215 |
+
it, and giving a relevant date.
|
216 |
+
|
217 |
+
b) The work must carry prominent notices stating that it is
|
218 |
+
released under this License and any conditions added under section
|
219 |
+
7. This requirement modifies the requirement in section 4 to
|
220 |
+
"keep intact all notices".
|
221 |
+
|
222 |
+
c) You must license the entire work, as a whole, under this
|
223 |
+
License to anyone who comes into possession of a copy. This
|
224 |
+
License will therefore apply, along with any applicable section 7
|
225 |
+
additional terms, to the whole of the work, and all its parts,
|
226 |
+
regardless of how they are packaged. This License gives no
|
227 |
+
permission to license the work in any other way, but it does not
|
228 |
+
invalidate such permission if you have separately received it.
|
229 |
+
|
230 |
+
d) If the work has interactive user interfaces, each must display
|
231 |
+
Appropriate Legal Notices; however, if the Program has interactive
|
232 |
+
interfaces that do not display Appropriate Legal Notices, your
|
233 |
+
work need not make them do so.
|
234 |
+
|
235 |
+
A compilation of a covered work with other separate and independent
|
236 |
+
works, which are not by their nature extensions of the covered work,
|
237 |
+
and which are not combined with it such as to form a larger program,
|
238 |
+
in or on a volume of a storage or distribution medium, is called an
|
239 |
+
"aggregate" if the compilation and its resulting copyright are not
|
240 |
+
used to limit the access or legal rights of the compilation's users
|
241 |
+
beyond what the individual works permit. Inclusion of a covered work
|
242 |
+
in an aggregate does not cause this License to apply to the other
|
243 |
+
parts of the aggregate.
|
244 |
+
|
245 |
+
6. Conveying Non-Source Forms.
|
246 |
+
|
247 |
+
You may convey a covered work in object code form under the terms
|
248 |
+
of sections 4 and 5, provided that you also convey the
|
249 |
+
machine-readable Corresponding Source under the terms of this License,
|
250 |
+
in one of these ways:
|
251 |
+
|
252 |
+
a) Convey the object code in, or embodied in, a physical product
|
253 |
+
(including a physical distribution medium), accompanied by the
|
254 |
+
Corresponding Source fixed on a durable physical medium
|
255 |
+
customarily used for software interchange.
|
256 |
+
|
257 |
+
b) Convey the object code in, or embodied in, a physical product
|
258 |
+
(including a physical distribution medium), accompanied by a
|
259 |
+
written offer, valid for at least three years and valid for as
|
260 |
+
long as you offer spare parts or customer support for that product
|
261 |
+
model, to give anyone who possesses the object code either (1) a
|
262 |
+
copy of the Corresponding Source for all the software in the
|
263 |
+
product that is covered by this License, on a durable physical
|
264 |
+
medium customarily used for software interchange, for a price no
|
265 |
+
more than your reasonable cost of physically performing this
|
266 |
+
conveying of source, or (2) access to copy the
|
267 |
+
Corresponding Source from a network server at no charge.
|
268 |
+
|
269 |
+
c) Convey individual copies of the object code with a copy of the
|
270 |
+
written offer to provide the Corresponding Source. This
|
271 |
+
alternative is allowed only occasionally and noncommercially, and
|
272 |
+
only if you received the object code with such an offer, in accord
|
273 |
+
with subsection 6b.
|
274 |
+
|
275 |
+
d) Convey the object code by offering access from a designated
|
276 |
+
place (gratis or for a charge), and offer equivalent access to the
|
277 |
+
Corresponding Source in the same way through the same place at no
|
278 |
+
further charge. You need not require recipients to copy the
|
279 |
+
Corresponding Source along with the object code. If the place to
|
280 |
+
copy the object code is a network server, the Corresponding Source
|
281 |
+
may be on a different server (operated by you or a third party)
|
282 |
+
that supports equivalent copying facilities, provided you maintain
|
283 |
+
clear directions next to the object code saying where to find the
|
284 |
+
Corresponding Source. Regardless of what server hosts the
|
285 |
+
Corresponding Source, you remain obligated to ensure that it is
|
286 |
+
available for as long as needed to satisfy these requirements.
|
287 |
+
|
288 |
+
e) Convey the object code using peer-to-peer transmission, provided
|
289 |
+
you inform other peers where the object code and Corresponding
|
290 |
+
Source of the work are being offered to the general public at no
|
291 |
+
charge under subsection 6d.
|
292 |
+
|
293 |
+
A separable portion of the object code, whose source code is excluded
|
294 |
+
from the Corresponding Source as a System Library, need not be
|
295 |
+
included in conveying the object code work.
|
296 |
+
|
297 |
+
A "User Product" is either (1) a "consumer product", which means any
|
298 |
+
tangible personal property which is normally used for personal, family,
|
299 |
+
or household purposes, or (2) anything designed or sold for incorporation
|
300 |
+
into a dwelling. In determining whether a product is a consumer product,
|
301 |
+
doubtful cases shall be resolved in favor of coverage. For a particular
|
302 |
+
product received by a particular user, "normally used" refers to a
|
303 |
+
typical or common use of that class of product, regardless of the status
|
304 |
+
of the particular user or of the way in which the particular user
|
305 |
+
actually uses, or expects or is expected to use, the product. A product
|
306 |
+
is a consumer product regardless of whether the product has substantial
|
307 |
+
commercial, industrial or non-consumer uses, unless such uses represent
|
308 |
+
the only significant mode of use of the product.
|
309 |
+
|
310 |
+
"Installation Information" for a User Product means any methods,
|
311 |
+
procedures, authorization keys, or other information required to install
|
312 |
+
and execute modified versions of a covered work in that User Product from
|
313 |
+
a modified version of its Corresponding Source. The information must
|
314 |
+
suffice to ensure that the continued functioning of the modified object
|
315 |
+
code is in no case prevented or interfered with solely because
|
316 |
+
modification has been made.
|
317 |
+
|
318 |
+
If you convey an object code work under this section in, or with, or
|
319 |
+
specifically for use in, a User Product, and the conveying occurs as
|
320 |
+
part of a transaction in which the right of possession and use of the
|
321 |
+
User Product is transferred to the recipient in perpetuity or for a
|
322 |
+
fixed term (regardless of how the transaction is characterized), the
|
323 |
+
Corresponding Source conveyed under this section must be accompanied
|
324 |
+
by the Installation Information. But this requirement does not apply
|
325 |
+
if neither you nor any third party retains the ability to install
|
326 |
+
modified object code on the User Product (for example, the work has
|
327 |
+
been installed in ROM).
|
328 |
+
|
329 |
+
The requirement to provide Installation Information does not include a
|
330 |
+
requirement to continue to provide support service, warranty, or updates
|
331 |
+
for a work that has been modified or installed by the recipient, or for
|
332 |
+
the User Product in which it has been modified or installed. Access to a
|
333 |
+
network may be denied when the modification itself materially and
|
334 |
+
adversely affects the operation of the network or violates the rules and
|
335 |
+
protocols for communication across the network.
|
336 |
+
|
337 |
+
Corresponding Source conveyed, and Installation Information provided,
|
338 |
+
in accord with this section must be in a format that is publicly
|
339 |
+
documented (and with an implementation available to the public in
|
340 |
+
source code form), and must require no special password or key for
|
341 |
+
unpacking, reading or copying.
|
342 |
+
|
343 |
+
7. Additional Terms.
|
344 |
+
|
345 |
+
"Additional permissions" are terms that supplement the terms of this
|
346 |
+
License by making exceptions from one or more of its conditions.
|
347 |
+
Additional permissions that are applicable to the entire Program shall
|
348 |
+
be treated as though they were included in this License, to the extent
|
349 |
+
that they are valid under applicable law. If additional permissions
|
350 |
+
apply only to part of the Program, that part may be used separately
|
351 |
+
under those permissions, but the entire Program remains governed by
|
352 |
+
this License without regard to the additional permissions.
|
353 |
+
|
354 |
+
When you convey a copy of a covered work, you may at your option
|
355 |
+
remove any additional permissions from that copy, or from any part of
|
356 |
+
it. (Additional permissions may be written to require their own
|
357 |
+
removal in certain cases when you modify the work.) You may place
|
358 |
+
additional permissions on material, added by you to a covered work,
|
359 |
+
for which you have or can give appropriate copyright permission.
|
360 |
+
|
361 |
+
Notwithstanding any other provision of this License, for material you
|
362 |
+
add to a covered work, you may (if authorized by the copyright holders of
|
363 |
+
that material) supplement the terms of this License with terms:
|
364 |
+
|
365 |
+
a) Disclaiming warranty or limiting liability differently from the
|
366 |
+
terms of sections 15 and 16 of this License; or
|
367 |
+
|
368 |
+
b) Requiring preservation of specified reasonable legal notices or
|
369 |
+
author attributions in that material or in the Appropriate Legal
|
370 |
+
Notices displayed by works containing it; or
|
371 |
+
|
372 |
+
c) Prohibiting misrepresentation of the origin of that material, or
|
373 |
+
requiring that modified versions of such material be marked in
|
374 |
+
reasonable ways as different from the original version; or
|
375 |
+
|
376 |
+
d) Limiting the use for publicity purposes of names of licensors or
|
377 |
+
authors of the material; or
|
378 |
+
|
379 |
+
e) Declining to grant rights under trademark law for use of some
|
380 |
+
trade names, trademarks, or service marks; or
|
381 |
+
|
382 |
+
f) Requiring indemnification of licensors and authors of that
|
383 |
+
material by anyone who conveys the material (or modified versions of
|
384 |
+
it) with contractual assumptions of liability to the recipient, for
|
385 |
+
any liability that these contractual assumptions directly impose on
|
386 |
+
those licensors and authors.
|
387 |
+
|
388 |
+
All other non-permissive additional terms are considered "further
|
389 |
+
restrictions" within the meaning of section 10. If the Program as you
|
390 |
+
received it, or any part of it, contains a notice stating that it is
|
391 |
+
governed by this License along with a term that is a further
|
392 |
+
restriction, you may remove that term. If a license document contains
|
393 |
+
a further restriction but permits relicensing or conveying under this
|
394 |
+
License, you may add to a covered work material governed by the terms
|
395 |
+
of that license document, provided that the further restriction does
|
396 |
+
not survive such relicensing or conveying.
|
397 |
+
|
398 |
+
If you add terms to a covered work in accord with this section, you
|
399 |
+
must place, in the relevant source files, a statement of the
|
400 |
+
additional terms that apply to those files, or a notice indicating
|
401 |
+
where to find the applicable terms.
|
402 |
+
|
403 |
+
Additional terms, permissive or non-permissive, may be stated in the
|
404 |
+
form of a separately written license, or stated as exceptions;
|
405 |
+
the above requirements apply either way.
|
406 |
+
|
407 |
+
8. Termination.
|
408 |
+
|
409 |
+
You may not propagate or modify a covered work except as expressly
|
410 |
+
provided under this License. Any attempt otherwise to propagate or
|
411 |
+
modify it is void, and will automatically terminate your rights under
|
412 |
+
this License (including any patent licenses granted under the third
|
413 |
+
paragraph of section 11).
|
414 |
+
|
415 |
+
However, if you cease all violation of this License, then your
|
416 |
+
license from a particular copyright holder is reinstated (a)
|
417 |
+
provisionally, unless and until the copyright holder explicitly and
|
418 |
+
finally terminates your license, and (b) permanently, if the copyright
|
419 |
+
holder fails to notify you of the violation by some reasonable means
|
420 |
+
prior to 60 days after the cessation.
|
421 |
+
|
422 |
+
Moreover, your license from a particular copyright holder is
|
423 |
+
reinstated permanently if the copyright holder notifies you of the
|
424 |
+
violation by some reasonable means, this is the first time you have
|
425 |
+
received notice of violation of this License (for any work) from that
|
426 |
+
copyright holder, and you cure the violation prior to 30 days after
|
427 |
+
your receipt of the notice.
|
428 |
+
|
429 |
+
Termination of your rights under this section does not terminate the
|
430 |
+
licenses of parties who have received copies or rights from you under
|
431 |
+
this License. If your rights have been terminated and not permanently
|
432 |
+
reinstated, you do not qualify to receive new licenses for the same
|
433 |
+
material under section 10.
|
434 |
+
|
435 |
+
9. Acceptance Not Required for Having Copies.
|
436 |
+
|
437 |
+
You are not required to accept this License in order to receive or
|
438 |
+
run a copy of the Program. Ancillary propagation of a covered work
|
439 |
+
occurring solely as a consequence of using peer-to-peer transmission
|
440 |
+
to receive a copy likewise does not require acceptance. However,
|
441 |
+
nothing other than this License grants you permission to propagate or
|
442 |
+
modify any covered work. These actions infringe copyright if you do
|
443 |
+
not accept this License. Therefore, by modifying or propagating a
|
444 |
+
covered work, you indicate your acceptance of this License to do so.
|
445 |
+
|
446 |
+
10. Automatic Licensing of Downstream Recipients.
|
447 |
+
|
448 |
+
Each time you convey a covered work, the recipient automatically
|
449 |
+
receives a license from the original licensors, to run, modify and
|
450 |
+
propagate that work, subject to this License. You are not responsible
|
451 |
+
for enforcing compliance by third parties with this License.
|
452 |
+
|
453 |
+
An "entity transaction" is a transaction transferring control of an
|
454 |
+
organization, or substantially all assets of one, or subdividing an
|
455 |
+
organization, or merging organizations. If propagation of a covered
|
456 |
+
work results from an entity transaction, each party to that
|
457 |
+
transaction who receives a copy of the work also receives whatever
|
458 |
+
licenses to the work the party's predecessor in interest had or could
|
459 |
+
give under the previous paragraph, plus a right to possession of the
|
460 |
+
Corresponding Source of the work from the predecessor in interest, if
|
461 |
+
the predecessor has it or can get it with reasonable efforts.
|
462 |
+
|
463 |
+
You may not impose any further restrictions on the exercise of the
|
464 |
+
rights granted or affirmed under this License. For example, you may
|
465 |
+
not impose a license fee, royalty, or other charge for exercise of
|
466 |
+
rights granted under this License, and you may not initiate litigation
|
467 |
+
(including a cross-claim or counterclaim in a lawsuit) alleging that
|
468 |
+
any patent claim is infringed by making, using, selling, offering for
|
469 |
+
sale, or importing the Program or any portion of it.
|
470 |
+
|
471 |
+
11. Patents.
|
472 |
+
|
473 |
+
A "contributor" is a copyright holder who authorizes use under this
|
474 |
+
License of the Program or a work on which the Program is based. The
|
475 |
+
work thus licensed is called the contributor's "contributor version".
|
476 |
+
|
477 |
+
A contributor's "essential patent claims" are all patent claims
|
478 |
+
owned or controlled by the contributor, whether already acquired or
|
479 |
+
hereafter acquired, that would be infringed by some manner, permitted
|
480 |
+
by this License, of making, using, or selling its contributor version,
|
481 |
+
but do not include claims that would be infringed only as a
|
482 |
+
consequence of further modification of the contributor version. For
|
483 |
+
purposes of this definition, "control" includes the right to grant
|
484 |
+
patent sublicenses in a manner consistent with the requirements of
|
485 |
+
this License.
|
486 |
+
|
487 |
+
Each contributor grants you a non-exclusive, worldwide, royalty-free
|
488 |
+
patent license under the contributor's essential patent claims, to
|
489 |
+
make, use, sell, offer for sale, import and otherwise run, modify and
|
490 |
+
propagate the contents of its contributor version.
|
491 |
+
|
492 |
+
In the following three paragraphs, a "patent license" is any express
|
493 |
+
agreement or commitment, however denominated, not to enforce a patent
|
494 |
+
(such as an express permission to practice a patent or covenant not to
|
495 |
+
sue for patent infringement). To "grant" such a patent license to a
|
496 |
+
party means to make such an agreement or commitment not to enforce a
|
497 |
+
patent against the party.
|
498 |
+
|
499 |
+
If you convey a covered work, knowingly relying on a patent license,
|
500 |
+
and the Corresponding Source of the work is not available for anyone
|
501 |
+
to copy, free of charge and under the terms of this License, through a
|
502 |
+
publicly available network server or other readily accessible means,
|
503 |
+
then you must either (1) cause the Corresponding Source to be so
|
504 |
+
available, or (2) arrange to deprive yourself of the benefit of the
|
505 |
+
patent license for this particular work, or (3) arrange, in a manner
|
506 |
+
consistent with the requirements of this License, to extend the patent
|
507 |
+
license to downstream recipients. "Knowingly relying" means you have
|
508 |
+
actual knowledge that, but for the patent license, your conveying the
|
509 |
+
covered work in a country, or your recipient's use of the covered work
|
510 |
+
in a country, would infringe one or more identifiable patents in that
|
511 |
+
country that you have reason to believe are valid.
|
512 |
+
|
513 |
+
If, pursuant to or in connection with a single transaction or
|
514 |
+
arrangement, you convey, or propagate by procuring conveyance of, a
|
515 |
+
covered work, and grant a patent license to some of the parties
|
516 |
+
receiving the covered work authorizing them to use, propagate, modify
|
517 |
+
or convey a specific copy of the covered work, then the patent license
|
518 |
+
you grant is automatically extended to all recipients of the covered
|
519 |
+
work and works based on it.
|
520 |
+
|
521 |
+
A patent license is "discriminatory" if it does not include within
|
522 |
+
the scope of its coverage, prohibits the exercise of, or is
|
523 |
+
conditioned on the non-exercise of one or more of the rights that are
|
524 |
+
specifically granted under this License. You may not convey a covered
|
525 |
+
work if you are a party to an arrangement with a third party that is
|
526 |
+
in the business of distributing software, under which you make payment
|
527 |
+
to the third party based on the extent of your activity of conveying
|
528 |
+
the work, and under which the third party grants, to any of the
|
529 |
+
parties who would receive the covered work from you, a discriminatory
|
530 |
+
patent license (a) in connection with copies of the covered work
|
531 |
+
conveyed by you (or copies made from those copies), or (b) primarily
|
532 |
+
for and in connection with specific products or compilations that
|
533 |
+
contain the covered work, unless you entered into that arrangement,
|
534 |
+
or that patent license was granted, prior to 28 March 2007.
|
535 |
+
|
536 |
+
Nothing in this License shall be construed as excluding or limiting
|
537 |
+
any implied license or other defenses to infringement that may
|
538 |
+
otherwise be available to you under applicable patent law.
|
539 |
+
|
540 |
+
12. No Surrender of Others' Freedom.
|
541 |
+
|
542 |
+
If conditions are imposed on you (whether by court order, agreement or
|
543 |
+
otherwise) that contradict the conditions of this License, they do not
|
544 |
+
excuse you from the conditions of this License. If you cannot convey a
|
545 |
+
covered work so as to satisfy simultaneously your obligations under this
|
546 |
+
License and any other pertinent obligations, then as a consequence you may
|
547 |
+
not convey it at all. For example, if you agree to terms that obligate you
|
548 |
+
to collect a royalty for further conveying from those to whom you convey
|
549 |
+
the Program, the only way you could satisfy both those terms and this
|
550 |
+
License would be to refrain entirely from conveying the Program.
|
551 |
+
|
552 |
+
13. Use with the GNU Affero General Public License.
|
553 |
+
|
554 |
+
Notwithstanding any other provision of this License, you have
|
555 |
+
permission to link or combine any covered work with a work licensed
|
556 |
+
under version 3 of the GNU Affero General Public License into a single
|
557 |
+
combined work, and to convey the resulting work. The terms of this
|
558 |
+
License will continue to apply to the part which is the covered work,
|
559 |
+
but the special requirements of the GNU Affero General Public License,
|
560 |
+
section 13, concerning interaction through a network will apply to the
|
561 |
+
combination as such.
|
562 |
+
|
563 |
+
14. Revised Versions of this License.
|
564 |
+
|
565 |
+
The Free Software Foundation may publish revised and/or new versions of
|
566 |
+
the GNU General Public License from time to time. Such new versions will
|
567 |
+
be similar in spirit to the present version, but may differ in detail to
|
568 |
+
address new problems or concerns.
|
569 |
+
|
570 |
+
Each version is given a distinguishing version number. If the
|
571 |
+
Program specifies that a certain numbered version of the GNU General
|
572 |
+
Public License "or any later version" applies to it, you have the
|
573 |
+
option of following the terms and conditions either of that numbered
|
574 |
+
version or of any later version published by the Free Software
|
575 |
+
Foundation. If the Program does not specify a version number of the
|
576 |
+
GNU General Public License, you may choose any version ever published
|
577 |
+
by the Free Software Foundation.
|
578 |
+
|
579 |
+
If the Program specifies that a proxy can decide which future
|
580 |
+
versions of the GNU General Public License can be used, that proxy's
|
581 |
+
public statement of acceptance of a version permanently authorizes you
|
582 |
+
to choose that version for the Program.
|
583 |
+
|
584 |
+
Later license versions may give you additional or different
|
585 |
+
permissions. However, no additional obligations are imposed on any
|
586 |
+
author or copyright holder as a result of your choosing to follow a
|
587 |
+
later version.
|
588 |
+
|
589 |
+
15. Disclaimer of Warranty.
|
590 |
+
|
591 |
+
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
|
592 |
+
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
|
593 |
+
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
|
594 |
+
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
|
595 |
+
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
596 |
+
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
|
597 |
+
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
|
598 |
+
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
|
599 |
+
|
600 |
+
16. Limitation of Liability.
|
601 |
+
|
602 |
+
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
|
603 |
+
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
|
604 |
+
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
|
605 |
+
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
|
606 |
+
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
|
607 |
+
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
|
608 |
+
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
|
609 |
+
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
|
610 |
+
SUCH DAMAGES.
|
611 |
+
|
612 |
+
17. Interpretation of Sections 15 and 16.
|
613 |
+
|
614 |
+
If the disclaimer of warranty and limitation of liability provided
|
615 |
+
above cannot be given local legal effect according to their terms,
|
616 |
+
reviewing courts shall apply local law that most closely approximates
|
617 |
+
an absolute waiver of all civil liability in connection with the
|
618 |
+
Program, unless a warranty or assumption of liability accompanies a
|
619 |
+
copy of the Program in return for a fee.
|
620 |
+
|
621 |
+
END OF TERMS AND CONDITIONS
|
622 |
+
|
623 |
+
How to Apply These Terms to Your New Programs
|
624 |
+
|
625 |
+
If you develop a new program, and you want it to be of the greatest
|
626 |
+
possible use to the public, the best way to achieve this is to make it
|
627 |
+
free software which everyone can redistribute and change under these terms.
|
628 |
+
|
629 |
+
To do so, attach the following notices to the program. It is safest
|
630 |
+
to attach them to the start of each source file to most effectively
|
631 |
+
state the exclusion of warranty; and each file should have at least
|
632 |
+
the "copyright" line and a pointer to where the full notice is found.
|
633 |
+
|
634 |
+
<one line to give the program's name and a brief idea of what it does.>
|
635 |
+
Copyright (C) <year> <name of author>
|
636 |
+
|
637 |
+
This program is free software: you can redistribute it and/or modify
|
638 |
+
it under the terms of the GNU General Public License as published by
|
639 |
+
the Free Software Foundation, either version 3 of the License, or
|
640 |
+
(at your option) any later version.
|
641 |
+
|
642 |
+
This program is distributed in the hope that it will be useful,
|
643 |
+
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
644 |
+
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
645 |
+
GNU General Public License for more details.
|
646 |
+
|
647 |
+
You should have received a copy of the GNU General Public License
|
648 |
+
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
649 |
+
|
650 |
+
Also add information on how to contact you by electronic and paper mail.
|
651 |
+
|
652 |
+
If the program does terminal interaction, make it output a short
|
653 |
+
notice like this when it starts in an interactive mode:
|
654 |
+
|
655 |
+
<program> Copyright (C) <year> <name of author>
|
656 |
+
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
|
657 |
+
This is free software, and you are welcome to redistribute it
|
658 |
+
under certain conditions; type `show c' for details.
|
659 |
+
|
660 |
+
The hypothetical commands `show w' and `show c' should show the appropriate
|
661 |
+
parts of the General Public License. Of course, your program's commands
|
662 |
+
might be different; for a GUI interface, you would use an "about box".
|
663 |
+
|
664 |
+
You should also get your employer (if you work as a programmer) or school,
|
665 |
+
if any, to sign a "copyright disclaimer" for the program, if necessary.
|
666 |
+
For more information on this, and how to apply and follow the GNU GPL, see
|
667 |
+
<https://www.gnu.org/licenses/>.
|
668 |
+
|
669 |
+
The GNU General Public License does not permit incorporating your program
|
670 |
+
into proprietary programs. If your program is a subroutine library, you
|
671 |
+
may consider it more useful to permit linking proprietary applications with
|
672 |
+
the library. If this is what you want to do, use the GNU Lesser General
|
673 |
+
Public License instead of this License. But first, please read
|
674 |
+
<https://www.gnu.org/licenses/why-not-lgpl.html>.
|
README.md
CHANGED
@@ -1,13 +1,13 @@
|
|
1 |
---
|
2 |
title: Mangaka
|
3 |
-
emoji:
|
4 |
colorFrom: gray
|
5 |
colorTo: gray
|
6 |
sdk: gradio
|
7 |
sdk_version: 4.21.0
|
8 |
app_file: app.py
|
9 |
-
pinned:
|
10 |
-
license:
|
11 |
---
|
12 |
|
13 |
-
|
|
|
1 |
---
|
2 |
title: Mangaka
|
3 |
+
emoji: 🖌️
|
4 |
colorFrom: gray
|
5 |
colorTo: gray
|
6 |
sdk: gradio
|
7 |
sdk_version: 4.21.0
|
8 |
app_file: app.py
|
9 |
+
pinned: true
|
10 |
+
license: gpl-3.0
|
11 |
---
|
12 |
|
13 |
+
:3
|
app.py
ADDED
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from PIL import Image, ImageOps, ImageSequence
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
import comfy.sample
|
6 |
+
import comfy.sd
|
7 |
+
|
8 |
+
import comfy.model_management
|
9 |
+
|
10 |
+
def vencode(vae, pth):
|
11 |
+
pilimg = pth
|
12 |
+
pixels = np.array(pilimg).astype(np.float32) / 255.0
|
13 |
+
pixels = torch.from_numpy(pixels)[None,]
|
14 |
+
t = vae.encode(pixels[:,:,:,:3])
|
15 |
+
return {"samples":t}
|
16 |
+
from pathlib import Path
|
17 |
+
if not Path("model.safetensors").exists():
|
18 |
+
import requests
|
19 |
+
with open("model.safetensors", "wb") as f:
|
20 |
+
f.write(requests.get("https://huggingface.co/parsee-mizuhashi/mangaka/resolve/main/mangaka.safetensors?download=true").content)
|
21 |
+
MODEL_FILE = "model.safetensors"
|
22 |
+
unet, clip, vae = comfy.sd.load_checkpoint_guess_config(MODEL_FILE, output_vae=True, output_clip=True)[:3]# :3
|
23 |
+
BASE_NEG = "(low-quality worst-quality:1.4 (bad-anatomy (inaccurate-limb:1.2 bad-composition inaccurate-eyes extra-digit fewer-digits (extra-arms:1.2)"
|
24 |
+
DEVICE = comfy.model_management.get_torch_device()
|
25 |
+
|
26 |
+
def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent, denoise=1.0):
|
27 |
+
|
28 |
+
noise_mask = None
|
29 |
+
if "noise_mask" in latent:
|
30 |
+
noise_mask = latent["noise_mask"]
|
31 |
+
latnt = latent["samples"]
|
32 |
+
noise = comfy.sample.prepare_noise(latnt, seed, None)
|
33 |
+
disable_pbar = True
|
34 |
+
samples = comfy.sample.sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latnt,
|
35 |
+
denoise=denoise, noise_mask=noise_mask, disable_pbar=disable_pbar, seed=seed)
|
36 |
+
out = samples
|
37 |
+
return out
|
38 |
+
def set_mask(samples, mask):
|
39 |
+
s = samples.copy()
|
40 |
+
s["noise_mask"] = mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1]))
|
41 |
+
return s
|
42 |
+
def load_image_mask(image):
|
43 |
+
image_path = image
|
44 |
+
i = Image.open(image_path)
|
45 |
+
i = ImageOps.exif_transpose(i)
|
46 |
+
if i.getbands() != ("R", "G", "B", "A"):
|
47 |
+
if i.mode == 'I':
|
48 |
+
i = i.point(lambda i: i * (1 / 255))
|
49 |
+
i = i.convert("RGBA")
|
50 |
+
mask = None
|
51 |
+
c = "A"
|
52 |
+
if c in i.getbands():
|
53 |
+
mask = np.array(i.getchannel(c)).astype(np.float32) / 255.0
|
54 |
+
mask = torch.from_numpy(mask)
|
55 |
+
else:
|
56 |
+
mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
|
57 |
+
return mask.unsqueeze(0)
|
58 |
+
@torch.no_grad()
|
59 |
+
def main(img, variant, positive, negative, pilimg):
|
60 |
+
variant = min(int(variant), limits[img])
|
61 |
+
|
62 |
+
global unet, clip, vae
|
63 |
+
mask = load_image_mask(f"./mangaka-d/{img}/i{variant}.png")
|
64 |
+
|
65 |
+
tkns = clip.tokenize("(greyscale monochrome black-and-white:1.3)" + positive)
|
66 |
+
cond, c = clip.encode_from_tokens(tkns, return_pooled=True)
|
67 |
+
|
68 |
+
uncond_tkns = clip.tokenize(BASE_NEG + negative)
|
69 |
+
uncond, uc = clip.encode_from_tokens(uncond_tkns, return_pooled=True)
|
70 |
+
cn = [[cond, {"pooled_output": c}]]
|
71 |
+
un = [[uncond, {"pooled_output": uc}]]
|
72 |
+
|
73 |
+
latent = vencode(vae, pilimg)
|
74 |
+
latent = set_mask(latent, mask)
|
75 |
+
|
76 |
+
denoised = common_ksampler(unet, 0, 20, 7, 'ddpm', 'karras', cn, un, latent, denoise=1)
|
77 |
+
decoded = vae.decode(denoised)
|
78 |
+
i = 255. * decoded[0].cpu().numpy()
|
79 |
+
img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
|
80 |
+
return img
|
81 |
+
|
82 |
+
limits = {
|
83 |
+
"1": 4,
|
84 |
+
"2": 4,
|
85 |
+
"3": 5,
|
86 |
+
"4": 6,
|
87 |
+
"5": 4,
|
88 |
+
"6": 6,
|
89 |
+
"7": 8,
|
90 |
+
"8": 5,
|
91 |
+
"9": 5,
|
92 |
+
"s1": 4,
|
93 |
+
"s2": 6,
|
94 |
+
"s3": 5,
|
95 |
+
"s4": 5,
|
96 |
+
"s5": 4,
|
97 |
+
"s6": 4
|
98 |
+
}
|
99 |
+
import gradio as gr
|
100 |
+
def visualize_fn(page, panel):
|
101 |
+
base = f"./mangaka-d/{page}/base.png"
|
102 |
+
base = Image.open(base)
|
103 |
+
if panel == "none":
|
104 |
+
return base
|
105 |
+
panel = min(int(panel), limits[page])
|
106 |
+
mask = f"./mangaka-d/{page}/i{panel}.png"
|
107 |
+
base = base.convert("RGBA")
|
108 |
+
mask = Image.open(mask)
|
109 |
+
#remove all green and blue from the mask
|
110 |
+
mask = mask.convert("RGBA")
|
111 |
+
data = mask.getdata()
|
112 |
+
data = [
|
113 |
+
(255, 0, 0, 255) if pixel[:3] == (255, 255, 255) else pixel
|
114 |
+
for pixel in mask.getdata()
|
115 |
+
]
|
116 |
+
mask.putdata(data)
|
117 |
+
#overlay the mask on the base
|
118 |
+
base.paste(mask, (0,0), mask)
|
119 |
+
return base
|
120 |
+
def reset_fn(page):
|
121 |
+
base = f"./mangaka-d/{page}/base.png"
|
122 |
+
base = Image.open(base)
|
123 |
+
return base
|
124 |
+
with gr.Blocks() as demo:
|
125 |
+
with gr.Tab("Mangaka"):
|
126 |
+
with gr.Row():
|
127 |
+
with gr.Column():
|
128 |
+
positive = gr.Textbox(label="Positive prompt", lines=2)
|
129 |
+
negative = gr.Textbox(label="Negative prompt")
|
130 |
+
with gr.Accordion("Page Settings"):
|
131 |
+
with gr.Row():
|
132 |
+
with gr.Column():
|
133 |
+
page = gr.Dropdown(label="Page", choices=["1", "2", "3", "4", "5", "6", "7", "8", "9", "s1", "s2", "s3", "s4", "s5", "s6"], value="s1")
|
134 |
+
panel = gr.Dropdown(label="Panel", choices=["1", "2", "3", "4", "5", "6", "7", "8", "none"], value="1")
|
135 |
+
visualize = gr.Button("Visualize")
|
136 |
+
with gr.Column():
|
137 |
+
visualize_output = gr.Image(interactive=False)
|
138 |
+
visualize.click(visualize_fn, inputs=[page, panel], outputs=visualize_output)
|
139 |
+
with gr.Column():
|
140 |
+
with gr.Row():
|
141 |
+
with gr.Column():
|
142 |
+
generate = gr.Button("Generate", variant="primary")
|
143 |
+
with gr.Column():
|
144 |
+
reset = gr.Button("Reset", variant="stop")
|
145 |
+
current_panel = gr.Image(interactive=False)
|
146 |
+
reset.click(reset_fn, inputs=[page], outputs=current_panel)
|
147 |
+
generate.click(main, inputs=[page, panel, positive, negative, current_panel], outputs=current_panel)
|
148 |
+
|
149 |
+
demo.launch()
|
comfy/checkpoint_pickle.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pickle
|
2 |
+
|
3 |
+
load = pickle.load
|
4 |
+
|
5 |
+
class Empty:
|
6 |
+
pass
|
7 |
+
|
8 |
+
class Unpickler(pickle.Unpickler):
|
9 |
+
def find_class(self, module, name):
|
10 |
+
#TODO: safe unpickle
|
11 |
+
if module.startswith("pytorch_lightning"):
|
12 |
+
return Empty
|
13 |
+
return super().find_class(module, name)
|
comfy/cldm/cldm.py
ADDED
@@ -0,0 +1,312 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#taken from: https://github.com/lllyasviel/ControlNet
|
2 |
+
#and modified
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch as th
|
6 |
+
import torch.nn as nn
|
7 |
+
|
8 |
+
from ..ldm.modules.diffusionmodules.util import (
|
9 |
+
zero_module,
|
10 |
+
timestep_embedding,
|
11 |
+
)
|
12 |
+
|
13 |
+
from ..ldm.modules.attention import SpatialTransformer
|
14 |
+
from ..ldm.modules.diffusionmodules.openaimodel import UNetModel, TimestepEmbedSequential, ResBlock, Downsample
|
15 |
+
from ..ldm.util import exists
|
16 |
+
import comfy.ops
|
17 |
+
|
18 |
+
class ControlledUnetModel(UNetModel):
|
19 |
+
#implemented in the ldm unet
|
20 |
+
pass
|
21 |
+
|
22 |
+
class ControlNet(nn.Module):
|
23 |
+
def __init__(
|
24 |
+
self,
|
25 |
+
image_size,
|
26 |
+
in_channels,
|
27 |
+
model_channels,
|
28 |
+
hint_channels,
|
29 |
+
num_res_blocks,
|
30 |
+
dropout=0,
|
31 |
+
channel_mult=(1, 2, 4, 8),
|
32 |
+
conv_resample=True,
|
33 |
+
dims=2,
|
34 |
+
num_classes=None,
|
35 |
+
use_checkpoint=False,
|
36 |
+
dtype=torch.float32,
|
37 |
+
num_heads=-1,
|
38 |
+
num_head_channels=-1,
|
39 |
+
num_heads_upsample=-1,
|
40 |
+
use_scale_shift_norm=False,
|
41 |
+
resblock_updown=False,
|
42 |
+
use_new_attention_order=False,
|
43 |
+
use_spatial_transformer=False, # custom transformer support
|
44 |
+
transformer_depth=1, # custom transformer support
|
45 |
+
context_dim=None, # custom transformer support
|
46 |
+
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
|
47 |
+
legacy=True,
|
48 |
+
disable_self_attentions=None,
|
49 |
+
num_attention_blocks=None,
|
50 |
+
disable_middle_self_attn=False,
|
51 |
+
use_linear_in_transformer=False,
|
52 |
+
adm_in_channels=None,
|
53 |
+
transformer_depth_middle=None,
|
54 |
+
transformer_depth_output=None,
|
55 |
+
device=None,
|
56 |
+
operations=comfy.ops.disable_weight_init,
|
57 |
+
**kwargs,
|
58 |
+
):
|
59 |
+
super().__init__()
|
60 |
+
assert use_spatial_transformer == True, "use_spatial_transformer has to be true"
|
61 |
+
if use_spatial_transformer:
|
62 |
+
assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
|
63 |
+
|
64 |
+
if context_dim is not None:
|
65 |
+
assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
|
66 |
+
# from omegaconf.listconfig import ListConfig
|
67 |
+
# if type(context_dim) == ListConfig:
|
68 |
+
# context_dim = list(context_dim)
|
69 |
+
|
70 |
+
if num_heads_upsample == -1:
|
71 |
+
num_heads_upsample = num_heads
|
72 |
+
|
73 |
+
if num_heads == -1:
|
74 |
+
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
|
75 |
+
|
76 |
+
if num_head_channels == -1:
|
77 |
+
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
|
78 |
+
|
79 |
+
self.dims = dims
|
80 |
+
self.image_size = image_size
|
81 |
+
self.in_channels = in_channels
|
82 |
+
self.model_channels = model_channels
|
83 |
+
|
84 |
+
if isinstance(num_res_blocks, int):
|
85 |
+
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
|
86 |
+
else:
|
87 |
+
if len(num_res_blocks) != len(channel_mult):
|
88 |
+
raise ValueError("provide num_res_blocks either as an int (globally constant) or "
|
89 |
+
"as a list/tuple (per-level) with the same length as channel_mult")
|
90 |
+
self.num_res_blocks = num_res_blocks
|
91 |
+
|
92 |
+
if disable_self_attentions is not None:
|
93 |
+
# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
|
94 |
+
assert len(disable_self_attentions) == len(channel_mult)
|
95 |
+
if num_attention_blocks is not None:
|
96 |
+
assert len(num_attention_blocks) == len(self.num_res_blocks)
|
97 |
+
assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks))))
|
98 |
+
|
99 |
+
transformer_depth = transformer_depth[:]
|
100 |
+
|
101 |
+
self.dropout = dropout
|
102 |
+
self.channel_mult = channel_mult
|
103 |
+
self.conv_resample = conv_resample
|
104 |
+
self.num_classes = num_classes
|
105 |
+
self.use_checkpoint = use_checkpoint
|
106 |
+
self.dtype = dtype
|
107 |
+
self.num_heads = num_heads
|
108 |
+
self.num_head_channels = num_head_channels
|
109 |
+
self.num_heads_upsample = num_heads_upsample
|
110 |
+
self.predict_codebook_ids = n_embed is not None
|
111 |
+
|
112 |
+
time_embed_dim = model_channels * 4
|
113 |
+
self.time_embed = nn.Sequential(
|
114 |
+
operations.Linear(model_channels, time_embed_dim, dtype=self.dtype, device=device),
|
115 |
+
nn.SiLU(),
|
116 |
+
operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device),
|
117 |
+
)
|
118 |
+
|
119 |
+
if self.num_classes is not None:
|
120 |
+
if isinstance(self.num_classes, int):
|
121 |
+
self.label_emb = nn.Embedding(num_classes, time_embed_dim)
|
122 |
+
elif self.num_classes == "continuous":
|
123 |
+
print("setting up linear c_adm embedding layer")
|
124 |
+
self.label_emb = nn.Linear(1, time_embed_dim)
|
125 |
+
elif self.num_classes == "sequential":
|
126 |
+
assert adm_in_channels is not None
|
127 |
+
self.label_emb = nn.Sequential(
|
128 |
+
nn.Sequential(
|
129 |
+
operations.Linear(adm_in_channels, time_embed_dim, dtype=self.dtype, device=device),
|
130 |
+
nn.SiLU(),
|
131 |
+
operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device),
|
132 |
+
)
|
133 |
+
)
|
134 |
+
else:
|
135 |
+
raise ValueError()
|
136 |
+
|
137 |
+
self.input_blocks = nn.ModuleList(
|
138 |
+
[
|
139 |
+
TimestepEmbedSequential(
|
140 |
+
operations.conv_nd(dims, in_channels, model_channels, 3, padding=1, dtype=self.dtype, device=device)
|
141 |
+
)
|
142 |
+
]
|
143 |
+
)
|
144 |
+
self.zero_convs = nn.ModuleList([self.make_zero_conv(model_channels, operations=operations, dtype=self.dtype, device=device)])
|
145 |
+
|
146 |
+
self.input_hint_block = TimestepEmbedSequential(
|
147 |
+
operations.conv_nd(dims, hint_channels, 16, 3, padding=1, dtype=self.dtype, device=device),
|
148 |
+
nn.SiLU(),
|
149 |
+
operations.conv_nd(dims, 16, 16, 3, padding=1, dtype=self.dtype, device=device),
|
150 |
+
nn.SiLU(),
|
151 |
+
operations.conv_nd(dims, 16, 32, 3, padding=1, stride=2, dtype=self.dtype, device=device),
|
152 |
+
nn.SiLU(),
|
153 |
+
operations.conv_nd(dims, 32, 32, 3, padding=1, dtype=self.dtype, device=device),
|
154 |
+
nn.SiLU(),
|
155 |
+
operations.conv_nd(dims, 32, 96, 3, padding=1, stride=2, dtype=self.dtype, device=device),
|
156 |
+
nn.SiLU(),
|
157 |
+
operations.conv_nd(dims, 96, 96, 3, padding=1, dtype=self.dtype, device=device),
|
158 |
+
nn.SiLU(),
|
159 |
+
operations.conv_nd(dims, 96, 256, 3, padding=1, stride=2, dtype=self.dtype, device=device),
|
160 |
+
nn.SiLU(),
|
161 |
+
operations.conv_nd(dims, 256, model_channels, 3, padding=1, dtype=self.dtype, device=device)
|
162 |
+
)
|
163 |
+
|
164 |
+
self._feature_size = model_channels
|
165 |
+
input_block_chans = [model_channels]
|
166 |
+
ch = model_channels
|
167 |
+
ds = 1
|
168 |
+
for level, mult in enumerate(channel_mult):
|
169 |
+
for nr in range(self.num_res_blocks[level]):
|
170 |
+
layers = [
|
171 |
+
ResBlock(
|
172 |
+
ch,
|
173 |
+
time_embed_dim,
|
174 |
+
dropout,
|
175 |
+
out_channels=mult * model_channels,
|
176 |
+
dims=dims,
|
177 |
+
use_checkpoint=use_checkpoint,
|
178 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
179 |
+
dtype=self.dtype,
|
180 |
+
device=device,
|
181 |
+
operations=operations,
|
182 |
+
)
|
183 |
+
]
|
184 |
+
ch = mult * model_channels
|
185 |
+
num_transformers = transformer_depth.pop(0)
|
186 |
+
if num_transformers > 0:
|
187 |
+
if num_head_channels == -1:
|
188 |
+
dim_head = ch // num_heads
|
189 |
+
else:
|
190 |
+
num_heads = ch // num_head_channels
|
191 |
+
dim_head = num_head_channels
|
192 |
+
if legacy:
|
193 |
+
#num_heads = 1
|
194 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
195 |
+
if exists(disable_self_attentions):
|
196 |
+
disabled_sa = disable_self_attentions[level]
|
197 |
+
else:
|
198 |
+
disabled_sa = False
|
199 |
+
|
200 |
+
if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
|
201 |
+
layers.append(
|
202 |
+
SpatialTransformer(
|
203 |
+
ch, num_heads, dim_head, depth=num_transformers, context_dim=context_dim,
|
204 |
+
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
|
205 |
+
use_checkpoint=use_checkpoint, dtype=self.dtype, device=device, operations=operations
|
206 |
+
)
|
207 |
+
)
|
208 |
+
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
209 |
+
self.zero_convs.append(self.make_zero_conv(ch, operations=operations, dtype=self.dtype, device=device))
|
210 |
+
self._feature_size += ch
|
211 |
+
input_block_chans.append(ch)
|
212 |
+
if level != len(channel_mult) - 1:
|
213 |
+
out_ch = ch
|
214 |
+
self.input_blocks.append(
|
215 |
+
TimestepEmbedSequential(
|
216 |
+
ResBlock(
|
217 |
+
ch,
|
218 |
+
time_embed_dim,
|
219 |
+
dropout,
|
220 |
+
out_channels=out_ch,
|
221 |
+
dims=dims,
|
222 |
+
use_checkpoint=use_checkpoint,
|
223 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
224 |
+
down=True,
|
225 |
+
dtype=self.dtype,
|
226 |
+
device=device,
|
227 |
+
operations=operations
|
228 |
+
)
|
229 |
+
if resblock_updown
|
230 |
+
else Downsample(
|
231 |
+
ch, conv_resample, dims=dims, out_channels=out_ch, dtype=self.dtype, device=device, operations=operations
|
232 |
+
)
|
233 |
+
)
|
234 |
+
)
|
235 |
+
ch = out_ch
|
236 |
+
input_block_chans.append(ch)
|
237 |
+
self.zero_convs.append(self.make_zero_conv(ch, operations=operations, dtype=self.dtype, device=device))
|
238 |
+
ds *= 2
|
239 |
+
self._feature_size += ch
|
240 |
+
|
241 |
+
if num_head_channels == -1:
|
242 |
+
dim_head = ch // num_heads
|
243 |
+
else:
|
244 |
+
num_heads = ch // num_head_channels
|
245 |
+
dim_head = num_head_channels
|
246 |
+
if legacy:
|
247 |
+
#num_heads = 1
|
248 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
249 |
+
mid_block = [
|
250 |
+
ResBlock(
|
251 |
+
ch,
|
252 |
+
time_embed_dim,
|
253 |
+
dropout,
|
254 |
+
dims=dims,
|
255 |
+
use_checkpoint=use_checkpoint,
|
256 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
257 |
+
dtype=self.dtype,
|
258 |
+
device=device,
|
259 |
+
operations=operations
|
260 |
+
)]
|
261 |
+
if transformer_depth_middle >= 0:
|
262 |
+
mid_block += [SpatialTransformer( # always uses a self-attn
|
263 |
+
ch, num_heads, dim_head, depth=transformer_depth_middle, context_dim=context_dim,
|
264 |
+
disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer,
|
265 |
+
use_checkpoint=use_checkpoint, dtype=self.dtype, device=device, operations=operations
|
266 |
+
),
|
267 |
+
ResBlock(
|
268 |
+
ch,
|
269 |
+
time_embed_dim,
|
270 |
+
dropout,
|
271 |
+
dims=dims,
|
272 |
+
use_checkpoint=use_checkpoint,
|
273 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
274 |
+
dtype=self.dtype,
|
275 |
+
device=device,
|
276 |
+
operations=operations
|
277 |
+
)]
|
278 |
+
self.middle_block = TimestepEmbedSequential(*mid_block)
|
279 |
+
self.middle_block_out = self.make_zero_conv(ch, operations=operations, dtype=self.dtype, device=device)
|
280 |
+
self._feature_size += ch
|
281 |
+
|
282 |
+
def make_zero_conv(self, channels, operations=None, dtype=None, device=None):
|
283 |
+
return TimestepEmbedSequential(operations.conv_nd(self.dims, channels, channels, 1, padding=0, dtype=dtype, device=device))
|
284 |
+
|
285 |
+
def forward(self, x, hint, timesteps, context, y=None, **kwargs):
|
286 |
+
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(x.dtype)
|
287 |
+
emb = self.time_embed(t_emb)
|
288 |
+
|
289 |
+
guided_hint = self.input_hint_block(hint, emb, context)
|
290 |
+
|
291 |
+
outs = []
|
292 |
+
|
293 |
+
hs = []
|
294 |
+
if self.num_classes is not None:
|
295 |
+
assert y.shape[0] == x.shape[0]
|
296 |
+
emb = emb + self.label_emb(y)
|
297 |
+
|
298 |
+
h = x
|
299 |
+
for module, zero_conv in zip(self.input_blocks, self.zero_convs):
|
300 |
+
if guided_hint is not None:
|
301 |
+
h = module(h, emb, context)
|
302 |
+
h += guided_hint
|
303 |
+
guided_hint = None
|
304 |
+
else:
|
305 |
+
h = module(h, emb, context)
|
306 |
+
outs.append(zero_conv(h, emb, context))
|
307 |
+
|
308 |
+
h = self.middle_block(h, emb, context)
|
309 |
+
outs.append(self.middle_block_out(h, emb, context))
|
310 |
+
|
311 |
+
return outs
|
312 |
+
|
comfy/cli_args.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import enum
|
3 |
+
import comfy.options
|
4 |
+
|
5 |
+
class EnumAction(argparse.Action):
|
6 |
+
"""
|
7 |
+
Argparse action for handling Enums
|
8 |
+
"""
|
9 |
+
def __init__(self, **kwargs):
|
10 |
+
# Pop off the type value
|
11 |
+
enum_type = kwargs.pop("type", None)
|
12 |
+
|
13 |
+
# Ensure an Enum subclass is provided
|
14 |
+
if enum_type is None:
|
15 |
+
raise ValueError("type must be assigned an Enum when using EnumAction")
|
16 |
+
if not issubclass(enum_type, enum.Enum):
|
17 |
+
raise TypeError("type must be an Enum when using EnumAction")
|
18 |
+
|
19 |
+
# Generate choices from the Enum
|
20 |
+
choices = tuple(e.value for e in enum_type)
|
21 |
+
kwargs.setdefault("choices", choices)
|
22 |
+
kwargs.setdefault("metavar", f"[{','.join(list(choices))}]")
|
23 |
+
|
24 |
+
super(EnumAction, self).__init__(**kwargs)
|
25 |
+
|
26 |
+
self._enum = enum_type
|
27 |
+
|
28 |
+
def __call__(self, parser, namespace, values, option_string=None):
|
29 |
+
# Convert value back into an Enum
|
30 |
+
value = self._enum(values)
|
31 |
+
setattr(namespace, self.dest, value)
|
32 |
+
|
33 |
+
|
34 |
+
parser = argparse.ArgumentParser()
|
35 |
+
|
36 |
+
parser.add_argument("--listen", type=str, default="127.0.0.1", metavar="IP", nargs="?", const="0.0.0.0", help="Specify the IP address to listen on (default: 127.0.0.1). If --listen is provided without an argument, it defaults to 0.0.0.0. (listens on all)")
|
37 |
+
parser.add_argument("--port", type=int, default=8188, help="Set the listen port.")
|
38 |
+
parser.add_argument("--enable-cors-header", type=str, default=None, metavar="ORIGIN", nargs="?", const="*", help="Enable CORS (Cross-Origin Resource Sharing) with optional origin or allow all with default '*'.")
|
39 |
+
parser.add_argument("--max-upload-size", type=float, default=100, help="Set the maximum upload size in MB.")
|
40 |
+
|
41 |
+
parser.add_argument("--extra-model-paths-config", type=str, default=None, metavar="PATH", nargs='+', action='append', help="Load one or more extra_model_paths.yaml files.")
|
42 |
+
parser.add_argument("--output-directory", type=str, default=None, help="Set the ComfyUI output directory.")
|
43 |
+
parser.add_argument("--temp-directory", type=str, default=None, help="Set the ComfyUI temp directory (default is in the ComfyUI directory).")
|
44 |
+
parser.add_argument("--input-directory", type=str, default=None, help="Set the ComfyUI input directory.")
|
45 |
+
parser.add_argument("--auto-launch", action="store_true", help="Automatically launch ComfyUI in the default browser.")
|
46 |
+
parser.add_argument("--disable-auto-launch", action="store_true", help="Disable auto launching the browser.")
|
47 |
+
parser.add_argument("--cuda-device", type=int, default=None, metavar="DEVICE_ID", help="Set the id of the cuda device this instance will use.")
|
48 |
+
cm_group = parser.add_mutually_exclusive_group()
|
49 |
+
cm_group.add_argument("--cuda-malloc", action="store_true", help="Enable cudaMallocAsync (enabled by default for torch 2.0 and up).")
|
50 |
+
cm_group.add_argument("--disable-cuda-malloc", action="store_true", help="Disable cudaMallocAsync.")
|
51 |
+
|
52 |
+
parser.add_argument("--dont-upcast-attention", action="store_true", help="Disable upcasting of attention. Can boost speed but increase the chances of black images.")
|
53 |
+
|
54 |
+
fp_group = parser.add_mutually_exclusive_group()
|
55 |
+
fp_group.add_argument("--force-fp32", action="store_true", help="Force fp32 (If this makes your GPU work better please report it).")
|
56 |
+
fp_group.add_argument("--force-fp16", action="store_true", help="Force fp16.")
|
57 |
+
|
58 |
+
fpunet_group = parser.add_mutually_exclusive_group()
|
59 |
+
fpunet_group.add_argument("--bf16-unet", action="store_true", help="Run the UNET in bf16. This should only be used for testing stuff.")
|
60 |
+
fpunet_group.add_argument("--fp16-unet", action="store_true", help="Store unet weights in fp16.")
|
61 |
+
fpunet_group.add_argument("--fp8_e4m3fn-unet", action="store_true", help="Store unet weights in fp8_e4m3fn.")
|
62 |
+
fpunet_group.add_argument("--fp8_e5m2-unet", action="store_true", help="Store unet weights in fp8_e5m2.")
|
63 |
+
|
64 |
+
fpvae_group = parser.add_mutually_exclusive_group()
|
65 |
+
fpvae_group.add_argument("--fp16-vae", action="store_true", help="Run the VAE in fp16, might cause black images.")
|
66 |
+
fpvae_group.add_argument("--fp32-vae", action="store_true", help="Run the VAE in full precision fp32.")
|
67 |
+
fpvae_group.add_argument("--bf16-vae", action="store_true", help="Run the VAE in bf16.")
|
68 |
+
|
69 |
+
parser.add_argument("--cpu-vae", action="store_true", help="Run the VAE on the CPU.")
|
70 |
+
|
71 |
+
fpte_group = parser.add_mutually_exclusive_group()
|
72 |
+
fpte_group.add_argument("--fp8_e4m3fn-text-enc", action="store_true", help="Store text encoder weights in fp8 (e4m3fn variant).")
|
73 |
+
fpte_group.add_argument("--fp8_e5m2-text-enc", action="store_true", help="Store text encoder weights in fp8 (e5m2 variant).")
|
74 |
+
fpte_group.add_argument("--fp16-text-enc", action="store_true", help="Store text encoder weights in fp16.")
|
75 |
+
fpte_group.add_argument("--fp32-text-enc", action="store_true", help="Store text encoder weights in fp32.")
|
76 |
+
|
77 |
+
|
78 |
+
parser.add_argument("--directml", type=int, nargs="?", metavar="DIRECTML_DEVICE", const=-1, help="Use torch-directml.")
|
79 |
+
|
80 |
+
parser.add_argument("--disable-ipex-optimize", action="store_true", help="Disables ipex.optimize when loading models with Intel GPUs.")
|
81 |
+
|
82 |
+
class LatentPreviewMethod(enum.Enum):
|
83 |
+
NoPreviews = "none"
|
84 |
+
Auto = "auto"
|
85 |
+
Latent2RGB = "latent2rgb"
|
86 |
+
TAESD = "taesd"
|
87 |
+
|
88 |
+
parser.add_argument("--preview-method", type=LatentPreviewMethod, default=LatentPreviewMethod.NoPreviews, help="Default preview method for sampler nodes.", action=EnumAction)
|
89 |
+
|
90 |
+
attn_group = parser.add_mutually_exclusive_group()
|
91 |
+
attn_group.add_argument("--use-split-cross-attention", action="store_true", help="Use the split cross attention optimization. Ignored when xformers is used.")
|
92 |
+
attn_group.add_argument("--use-quad-cross-attention", action="store_true", help="Use the sub-quadratic cross attention optimization . Ignored when xformers is used.")
|
93 |
+
attn_group.add_argument("--use-pytorch-cross-attention", action="store_true", help="Use the new pytorch 2.0 cross attention function.")
|
94 |
+
|
95 |
+
parser.add_argument("--disable-xformers", action="store_true", help="Disable xformers.")
|
96 |
+
|
97 |
+
vram_group = parser.add_mutually_exclusive_group()
|
98 |
+
vram_group.add_argument("--gpu-only", action="store_true", help="Store and run everything (text encoders/CLIP models, etc... on the GPU).")
|
99 |
+
vram_group.add_argument("--highvram", action="store_true", help="By default models will be unloaded to CPU memory after being used. This option keeps them in GPU memory.")
|
100 |
+
vram_group.add_argument("--normalvram", action="store_true", help="Used to force normal vram use if lowvram gets automatically enabled.")
|
101 |
+
vram_group.add_argument("--lowvram", action="store_true", help="Split the unet in parts to use less vram.")
|
102 |
+
vram_group.add_argument("--novram", action="store_true", help="When lowvram isn't enough.")
|
103 |
+
vram_group.add_argument("--cpu", action="store_true", help="To use the CPU for everything (slow).")
|
104 |
+
|
105 |
+
|
106 |
+
parser.add_argument("--disable-smart-memory", action="store_true", help="Force ComfyUI to agressively offload to regular ram instead of keeping models in vram when it can.")
|
107 |
+
parser.add_argument("--deterministic", action="store_true", help="Make pytorch use slower deterministic algorithms when it can. Note that this might not make images deterministic in all cases.")
|
108 |
+
|
109 |
+
parser.add_argument("--dont-print-server", action="store_true", help="Don't print server output.")
|
110 |
+
parser.add_argument("--quick-test-for-ci", action="store_true", help="Quick test for CI.")
|
111 |
+
parser.add_argument("--windows-standalone-build", action="store_true", help="Windows standalone build: Enable convenient things that most people using the standalone windows build will probably enjoy (like auto opening the page on startup).")
|
112 |
+
|
113 |
+
parser.add_argument("--disable-metadata", action="store_true", help="Disable saving prompt metadata in files.")
|
114 |
+
|
115 |
+
parser.add_argument("--multi-user", action="store_true", help="Enables per-user storage.")
|
116 |
+
|
117 |
+
if comfy.options.args_parsing:
|
118 |
+
args = parser.parse_args()
|
119 |
+
else:
|
120 |
+
args = parser.parse_args([])
|
121 |
+
|
122 |
+
if args.windows_standalone_build:
|
123 |
+
args.auto_launch = True
|
124 |
+
|
125 |
+
if args.disable_auto_launch:
|
126 |
+
args.auto_launch = False
|
comfy/clip_config_bigg.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"CLIPTextModel"
|
4 |
+
],
|
5 |
+
"attention_dropout": 0.0,
|
6 |
+
"bos_token_id": 0,
|
7 |
+
"dropout": 0.0,
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_size": 1280,
|
11 |
+
"initializer_factor": 1.0,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 5120,
|
14 |
+
"layer_norm_eps": 1e-05,
|
15 |
+
"max_position_embeddings": 77,
|
16 |
+
"model_type": "clip_text_model",
|
17 |
+
"num_attention_heads": 20,
|
18 |
+
"num_hidden_layers": 32,
|
19 |
+
"pad_token_id": 1,
|
20 |
+
"projection_dim": 1280,
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"vocab_size": 49408
|
23 |
+
}
|
comfy/clip_model.py
ADDED
@@ -0,0 +1,194 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from comfy.ldm.modules.attention import optimized_attention_for_device
|
3 |
+
|
4 |
+
class CLIPAttention(torch.nn.Module):
|
5 |
+
def __init__(self, embed_dim, heads, dtype, device, operations):
|
6 |
+
super().__init__()
|
7 |
+
|
8 |
+
self.heads = heads
|
9 |
+
self.q_proj = operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
|
10 |
+
self.k_proj = operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
|
11 |
+
self.v_proj = operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
|
12 |
+
|
13 |
+
self.out_proj = operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
|
14 |
+
|
15 |
+
def forward(self, x, mask=None, optimized_attention=None):
|
16 |
+
q = self.q_proj(x)
|
17 |
+
k = self.k_proj(x)
|
18 |
+
v = self.v_proj(x)
|
19 |
+
|
20 |
+
out = optimized_attention(q, k, v, self.heads, mask)
|
21 |
+
return self.out_proj(out)
|
22 |
+
|
23 |
+
ACTIVATIONS = {"quick_gelu": lambda a: a * torch.sigmoid(1.702 * a),
|
24 |
+
"gelu": torch.nn.functional.gelu,
|
25 |
+
}
|
26 |
+
|
27 |
+
class CLIPMLP(torch.nn.Module):
|
28 |
+
def __init__(self, embed_dim, intermediate_size, activation, dtype, device, operations):
|
29 |
+
super().__init__()
|
30 |
+
self.fc1 = operations.Linear(embed_dim, intermediate_size, bias=True, dtype=dtype, device=device)
|
31 |
+
self.activation = ACTIVATIONS[activation]
|
32 |
+
self.fc2 = operations.Linear(intermediate_size, embed_dim, bias=True, dtype=dtype, device=device)
|
33 |
+
|
34 |
+
def forward(self, x):
|
35 |
+
x = self.fc1(x)
|
36 |
+
x = self.activation(x)
|
37 |
+
x = self.fc2(x)
|
38 |
+
return x
|
39 |
+
|
40 |
+
class CLIPLayer(torch.nn.Module):
|
41 |
+
def __init__(self, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations):
|
42 |
+
super().__init__()
|
43 |
+
self.layer_norm1 = operations.LayerNorm(embed_dim, dtype=dtype, device=device)
|
44 |
+
self.self_attn = CLIPAttention(embed_dim, heads, dtype, device, operations)
|
45 |
+
self.layer_norm2 = operations.LayerNorm(embed_dim, dtype=dtype, device=device)
|
46 |
+
self.mlp = CLIPMLP(embed_dim, intermediate_size, intermediate_activation, dtype, device, operations)
|
47 |
+
|
48 |
+
def forward(self, x, mask=None, optimized_attention=None):
|
49 |
+
x += self.self_attn(self.layer_norm1(x), mask, optimized_attention)
|
50 |
+
x += self.mlp(self.layer_norm2(x))
|
51 |
+
return x
|
52 |
+
|
53 |
+
|
54 |
+
class CLIPEncoder(torch.nn.Module):
|
55 |
+
def __init__(self, num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations):
|
56 |
+
super().__init__()
|
57 |
+
self.layers = torch.nn.ModuleList([CLIPLayer(embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations) for i in range(num_layers)])
|
58 |
+
|
59 |
+
def forward(self, x, mask=None, intermediate_output=None):
|
60 |
+
optimized_attention = optimized_attention_for_device(x.device, mask=mask is not None, small_input=True)
|
61 |
+
|
62 |
+
if intermediate_output is not None:
|
63 |
+
if intermediate_output < 0:
|
64 |
+
intermediate_output = len(self.layers) + intermediate_output
|
65 |
+
|
66 |
+
intermediate = None
|
67 |
+
for i, l in enumerate(self.layers):
|
68 |
+
x = l(x, mask, optimized_attention)
|
69 |
+
if i == intermediate_output:
|
70 |
+
intermediate = x.clone()
|
71 |
+
return x, intermediate
|
72 |
+
|
73 |
+
class CLIPEmbeddings(torch.nn.Module):
|
74 |
+
def __init__(self, embed_dim, vocab_size=49408, num_positions=77, dtype=None, device=None):
|
75 |
+
super().__init__()
|
76 |
+
self.token_embedding = torch.nn.Embedding(vocab_size, embed_dim, dtype=dtype, device=device)
|
77 |
+
self.position_embedding = torch.nn.Embedding(num_positions, embed_dim, dtype=dtype, device=device)
|
78 |
+
|
79 |
+
def forward(self, input_tokens):
|
80 |
+
return self.token_embedding(input_tokens) + self.position_embedding.weight
|
81 |
+
|
82 |
+
|
83 |
+
class CLIPTextModel_(torch.nn.Module):
|
84 |
+
def __init__(self, config_dict, dtype, device, operations):
|
85 |
+
num_layers = config_dict["num_hidden_layers"]
|
86 |
+
embed_dim = config_dict["hidden_size"]
|
87 |
+
heads = config_dict["num_attention_heads"]
|
88 |
+
intermediate_size = config_dict["intermediate_size"]
|
89 |
+
intermediate_activation = config_dict["hidden_act"]
|
90 |
+
|
91 |
+
super().__init__()
|
92 |
+
self.embeddings = CLIPEmbeddings(embed_dim, dtype=torch.float32, device=device)
|
93 |
+
self.encoder = CLIPEncoder(num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations)
|
94 |
+
self.final_layer_norm = operations.LayerNorm(embed_dim, dtype=dtype, device=device)
|
95 |
+
|
96 |
+
def forward(self, input_tokens, attention_mask=None, intermediate_output=None, final_layer_norm_intermediate=True):
|
97 |
+
x = self.embeddings(input_tokens)
|
98 |
+
mask = None
|
99 |
+
if attention_mask is not None:
|
100 |
+
mask = 1.0 - attention_mask.to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1])).expand(attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1])
|
101 |
+
mask = mask.masked_fill(mask.to(torch.bool), float("-inf"))
|
102 |
+
|
103 |
+
causal_mask = torch.empty(x.shape[1], x.shape[1], dtype=x.dtype, device=x.device).fill_(float("-inf")).triu_(1)
|
104 |
+
if mask is not None:
|
105 |
+
mask += causal_mask
|
106 |
+
else:
|
107 |
+
mask = causal_mask
|
108 |
+
|
109 |
+
x, i = self.encoder(x, mask=mask, intermediate_output=intermediate_output)
|
110 |
+
x = self.final_layer_norm(x)
|
111 |
+
if i is not None and final_layer_norm_intermediate:
|
112 |
+
i = self.final_layer_norm(i)
|
113 |
+
|
114 |
+
pooled_output = x[torch.arange(x.shape[0], device=x.device), input_tokens.to(dtype=torch.int, device=x.device).argmax(dim=-1),]
|
115 |
+
return x, i, pooled_output
|
116 |
+
|
117 |
+
class CLIPTextModel(torch.nn.Module):
|
118 |
+
def __init__(self, config_dict, dtype, device, operations):
|
119 |
+
super().__init__()
|
120 |
+
self.num_layers = config_dict["num_hidden_layers"]
|
121 |
+
self.text_model = CLIPTextModel_(config_dict, dtype, device, operations)
|
122 |
+
embed_dim = config_dict["hidden_size"]
|
123 |
+
self.text_projection = operations.Linear(embed_dim, embed_dim, bias=False, dtype=dtype, device=device)
|
124 |
+
self.text_projection.weight.copy_(torch.eye(embed_dim))
|
125 |
+
self.dtype = dtype
|
126 |
+
|
127 |
+
def get_input_embeddings(self):
|
128 |
+
return self.text_model.embeddings.token_embedding
|
129 |
+
|
130 |
+
def set_input_embeddings(self, embeddings):
|
131 |
+
self.text_model.embeddings.token_embedding = embeddings
|
132 |
+
|
133 |
+
def forward(self, *args, **kwargs):
|
134 |
+
x = self.text_model(*args, **kwargs)
|
135 |
+
out = self.text_projection(x[2])
|
136 |
+
return (x[0], x[1], out, x[2])
|
137 |
+
|
138 |
+
|
139 |
+
class CLIPVisionEmbeddings(torch.nn.Module):
|
140 |
+
def __init__(self, embed_dim, num_channels=3, patch_size=14, image_size=224, dtype=None, device=None, operations=None):
|
141 |
+
super().__init__()
|
142 |
+
self.class_embedding = torch.nn.Parameter(torch.empty(embed_dim, dtype=dtype, device=device))
|
143 |
+
|
144 |
+
self.patch_embedding = operations.Conv2d(
|
145 |
+
in_channels=num_channels,
|
146 |
+
out_channels=embed_dim,
|
147 |
+
kernel_size=patch_size,
|
148 |
+
stride=patch_size,
|
149 |
+
bias=False,
|
150 |
+
dtype=dtype,
|
151 |
+
device=device
|
152 |
+
)
|
153 |
+
|
154 |
+
num_patches = (image_size // patch_size) ** 2
|
155 |
+
num_positions = num_patches + 1
|
156 |
+
self.position_embedding = torch.nn.Embedding(num_positions, embed_dim, dtype=dtype, device=device)
|
157 |
+
|
158 |
+
def forward(self, pixel_values):
|
159 |
+
embeds = self.patch_embedding(pixel_values).flatten(2).transpose(1, 2)
|
160 |
+
return torch.cat([self.class_embedding.to(embeds.device).expand(pixel_values.shape[0], 1, -1), embeds], dim=1) + self.position_embedding.weight.to(embeds.device)
|
161 |
+
|
162 |
+
|
163 |
+
class CLIPVision(torch.nn.Module):
|
164 |
+
def __init__(self, config_dict, dtype, device, operations):
|
165 |
+
super().__init__()
|
166 |
+
num_layers = config_dict["num_hidden_layers"]
|
167 |
+
embed_dim = config_dict["hidden_size"]
|
168 |
+
heads = config_dict["num_attention_heads"]
|
169 |
+
intermediate_size = config_dict["intermediate_size"]
|
170 |
+
intermediate_activation = config_dict["hidden_act"]
|
171 |
+
|
172 |
+
self.embeddings = CLIPVisionEmbeddings(embed_dim, config_dict["num_channels"], config_dict["patch_size"], config_dict["image_size"], dtype=torch.float32, device=device, operations=operations)
|
173 |
+
self.pre_layrnorm = operations.LayerNorm(embed_dim)
|
174 |
+
self.encoder = CLIPEncoder(num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations)
|
175 |
+
self.post_layernorm = operations.LayerNorm(embed_dim)
|
176 |
+
|
177 |
+
def forward(self, pixel_values, attention_mask=None, intermediate_output=None):
|
178 |
+
x = self.embeddings(pixel_values)
|
179 |
+
x = self.pre_layrnorm(x)
|
180 |
+
#TODO: attention_mask?
|
181 |
+
x, i = self.encoder(x, mask=None, intermediate_output=intermediate_output)
|
182 |
+
pooled_output = self.post_layernorm(x[:, 0, :])
|
183 |
+
return x, i, pooled_output
|
184 |
+
|
185 |
+
class CLIPVisionModelProjection(torch.nn.Module):
|
186 |
+
def __init__(self, config_dict, dtype, device, operations):
|
187 |
+
super().__init__()
|
188 |
+
self.vision_model = CLIPVision(config_dict, dtype, device, operations)
|
189 |
+
self.visual_projection = operations.Linear(config_dict["hidden_size"], config_dict["projection_dim"], bias=False)
|
190 |
+
|
191 |
+
def forward(self, *args, **kwargs):
|
192 |
+
x = self.vision_model(*args, **kwargs)
|
193 |
+
out = self.visual_projection(x[2])
|
194 |
+
return (x[0], x[1], out)
|
comfy/clip_vision.py
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .utils import load_torch_file, transformers_convert, state_dict_prefix_replace
|
2 |
+
import os
|
3 |
+
import torch
|
4 |
+
import json
|
5 |
+
|
6 |
+
import comfy.ops
|
7 |
+
import comfy.model_patcher
|
8 |
+
import comfy.model_management
|
9 |
+
import comfy.utils
|
10 |
+
import comfy.clip_model
|
11 |
+
|
12 |
+
class Output:
|
13 |
+
def __getitem__(self, key):
|
14 |
+
return getattr(self, key)
|
15 |
+
def __setitem__(self, key, item):
|
16 |
+
setattr(self, key, item)
|
17 |
+
|
18 |
+
def clip_preprocess(image, size=224):
|
19 |
+
mean = torch.tensor([ 0.48145466,0.4578275,0.40821073], device=image.device, dtype=image.dtype)
|
20 |
+
std = torch.tensor([0.26862954,0.26130258,0.27577711], device=image.device, dtype=image.dtype)
|
21 |
+
image = image.movedim(-1, 1)
|
22 |
+
if not (image.shape[2] == size and image.shape[3] == size):
|
23 |
+
scale = (size / min(image.shape[2], image.shape[3]))
|
24 |
+
image = torch.nn.functional.interpolate(image, size=(round(scale * image.shape[2]), round(scale * image.shape[3])), mode="bicubic", antialias=True)
|
25 |
+
h = (image.shape[2] - size)//2
|
26 |
+
w = (image.shape[3] - size)//2
|
27 |
+
image = image[:,:,h:h+size,w:w+size]
|
28 |
+
image = torch.clip((255. * image), 0, 255).round() / 255.0
|
29 |
+
return (image - mean.view([3,1,1])) / std.view([3,1,1])
|
30 |
+
|
31 |
+
class ClipVisionModel():
|
32 |
+
def __init__(self, json_config):
|
33 |
+
with open(json_config) as f:
|
34 |
+
config = json.load(f)
|
35 |
+
|
36 |
+
self.load_device = comfy.model_management.text_encoder_device()
|
37 |
+
offload_device = comfy.model_management.text_encoder_offload_device()
|
38 |
+
self.dtype = comfy.model_management.text_encoder_dtype(self.load_device)
|
39 |
+
self.model = comfy.clip_model.CLIPVisionModelProjection(config, self.dtype, offload_device, comfy.ops.manual_cast)
|
40 |
+
self.model.eval()
|
41 |
+
|
42 |
+
self.patcher = comfy.model_patcher.ModelPatcher(self.model, load_device=self.load_device, offload_device=offload_device)
|
43 |
+
|
44 |
+
def load_sd(self, sd):
|
45 |
+
return self.model.load_state_dict(sd, strict=False)
|
46 |
+
|
47 |
+
def get_sd(self):
|
48 |
+
return self.model.state_dict()
|
49 |
+
|
50 |
+
def encode_image(self, image):
|
51 |
+
comfy.model_management.load_model_gpu(self.patcher)
|
52 |
+
pixel_values = clip_preprocess(image.to(self.load_device)).float()
|
53 |
+
out = self.model(pixel_values=pixel_values, intermediate_output=-2)
|
54 |
+
|
55 |
+
outputs = Output()
|
56 |
+
outputs["last_hidden_state"] = out[0].to(comfy.model_management.intermediate_device())
|
57 |
+
outputs["image_embeds"] = out[2].to(comfy.model_management.intermediate_device())
|
58 |
+
outputs["penultimate_hidden_states"] = out[1].to(comfy.model_management.intermediate_device())
|
59 |
+
return outputs
|
60 |
+
|
61 |
+
def convert_to_transformers(sd, prefix):
|
62 |
+
sd_k = sd.keys()
|
63 |
+
if "{}transformer.resblocks.0.attn.in_proj_weight".format(prefix) in sd_k:
|
64 |
+
keys_to_replace = {
|
65 |
+
"{}class_embedding".format(prefix): "vision_model.embeddings.class_embedding",
|
66 |
+
"{}conv1.weight".format(prefix): "vision_model.embeddings.patch_embedding.weight",
|
67 |
+
"{}positional_embedding".format(prefix): "vision_model.embeddings.position_embedding.weight",
|
68 |
+
"{}ln_post.bias".format(prefix): "vision_model.post_layernorm.bias",
|
69 |
+
"{}ln_post.weight".format(prefix): "vision_model.post_layernorm.weight",
|
70 |
+
"{}ln_pre.bias".format(prefix): "vision_model.pre_layrnorm.bias",
|
71 |
+
"{}ln_pre.weight".format(prefix): "vision_model.pre_layrnorm.weight",
|
72 |
+
}
|
73 |
+
|
74 |
+
for x in keys_to_replace:
|
75 |
+
if x in sd_k:
|
76 |
+
sd[keys_to_replace[x]] = sd.pop(x)
|
77 |
+
|
78 |
+
if "{}proj".format(prefix) in sd_k:
|
79 |
+
sd['visual_projection.weight'] = sd.pop("{}proj".format(prefix)).transpose(0, 1)
|
80 |
+
|
81 |
+
sd = transformers_convert(sd, prefix, "vision_model.", 48)
|
82 |
+
else:
|
83 |
+
replace_prefix = {prefix: ""}
|
84 |
+
sd = state_dict_prefix_replace(sd, replace_prefix)
|
85 |
+
return sd
|
86 |
+
|
87 |
+
def load_clipvision_from_sd(sd, prefix="", convert_keys=False):
|
88 |
+
if convert_keys:
|
89 |
+
sd = convert_to_transformers(sd, prefix)
|
90 |
+
if "vision_model.encoder.layers.47.layer_norm1.weight" in sd:
|
91 |
+
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_g.json")
|
92 |
+
elif "vision_model.encoder.layers.30.layer_norm1.weight" in sd:
|
93 |
+
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_h.json")
|
94 |
+
elif "vision_model.encoder.layers.22.layer_norm1.weight" in sd:
|
95 |
+
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl.json")
|
96 |
+
else:
|
97 |
+
return None
|
98 |
+
|
99 |
+
clip = ClipVisionModel(json_config)
|
100 |
+
m, u = clip.load_sd(sd)
|
101 |
+
if len(m) > 0:
|
102 |
+
print("missing clip vision:", m)
|
103 |
+
u = set(u)
|
104 |
+
keys = list(sd.keys())
|
105 |
+
for k in keys:
|
106 |
+
if k not in u:
|
107 |
+
t = sd.pop(k)
|
108 |
+
del t
|
109 |
+
return clip
|
110 |
+
|
111 |
+
def load(ckpt_path):
|
112 |
+
sd = load_torch_file(ckpt_path)
|
113 |
+
if "visual.transformer.resblocks.0.attn.in_proj_weight" in sd:
|
114 |
+
return load_clipvision_from_sd(sd, prefix="visual.", convert_keys=True)
|
115 |
+
else:
|
116 |
+
return load_clipvision_from_sd(sd)
|
comfy/clip_vision_config_g.json
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"attention_dropout": 0.0,
|
3 |
+
"dropout": 0.0,
|
4 |
+
"hidden_act": "gelu",
|
5 |
+
"hidden_size": 1664,
|
6 |
+
"image_size": 224,
|
7 |
+
"initializer_factor": 1.0,
|
8 |
+
"initializer_range": 0.02,
|
9 |
+
"intermediate_size": 8192,
|
10 |
+
"layer_norm_eps": 1e-05,
|
11 |
+
"model_type": "clip_vision_model",
|
12 |
+
"num_attention_heads": 16,
|
13 |
+
"num_channels": 3,
|
14 |
+
"num_hidden_layers": 48,
|
15 |
+
"patch_size": 14,
|
16 |
+
"projection_dim": 1280,
|
17 |
+
"torch_dtype": "float32"
|
18 |
+
}
|
comfy/clip_vision_config_h.json
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"attention_dropout": 0.0,
|
3 |
+
"dropout": 0.0,
|
4 |
+
"hidden_act": "gelu",
|
5 |
+
"hidden_size": 1280,
|
6 |
+
"image_size": 224,
|
7 |
+
"initializer_factor": 1.0,
|
8 |
+
"initializer_range": 0.02,
|
9 |
+
"intermediate_size": 5120,
|
10 |
+
"layer_norm_eps": 1e-05,
|
11 |
+
"model_type": "clip_vision_model",
|
12 |
+
"num_attention_heads": 16,
|
13 |
+
"num_channels": 3,
|
14 |
+
"num_hidden_layers": 32,
|
15 |
+
"patch_size": 14,
|
16 |
+
"projection_dim": 1024,
|
17 |
+
"torch_dtype": "float32"
|
18 |
+
}
|
comfy/clip_vision_config_vitl.json
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"attention_dropout": 0.0,
|
3 |
+
"dropout": 0.0,
|
4 |
+
"hidden_act": "quick_gelu",
|
5 |
+
"hidden_size": 1024,
|
6 |
+
"image_size": 224,
|
7 |
+
"initializer_factor": 1.0,
|
8 |
+
"initializer_range": 0.02,
|
9 |
+
"intermediate_size": 4096,
|
10 |
+
"layer_norm_eps": 1e-05,
|
11 |
+
"model_type": "clip_vision_model",
|
12 |
+
"num_attention_heads": 16,
|
13 |
+
"num_channels": 3,
|
14 |
+
"num_hidden_layers": 24,
|
15 |
+
"patch_size": 14,
|
16 |
+
"projection_dim": 768,
|
17 |
+
"torch_dtype": "float32"
|
18 |
+
}
|
comfy/conds.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import math
|
3 |
+
import comfy.utils
|
4 |
+
|
5 |
+
|
6 |
+
def lcm(a, b): #TODO: eventually replace by math.lcm (added in python3.9)
|
7 |
+
return abs(a*b) // math.gcd(a, b)
|
8 |
+
|
9 |
+
class CONDRegular:
|
10 |
+
def __init__(self, cond):
|
11 |
+
self.cond = cond
|
12 |
+
|
13 |
+
def _copy_with(self, cond):
|
14 |
+
return self.__class__(cond)
|
15 |
+
|
16 |
+
def process_cond(self, batch_size, device, **kwargs):
|
17 |
+
return self._copy_with(comfy.utils.repeat_to_batch_size(self.cond, batch_size).to(device))
|
18 |
+
|
19 |
+
def can_concat(self, other):
|
20 |
+
if self.cond.shape != other.cond.shape:
|
21 |
+
return False
|
22 |
+
return True
|
23 |
+
|
24 |
+
def concat(self, others):
|
25 |
+
conds = [self.cond]
|
26 |
+
for x in others:
|
27 |
+
conds.append(x.cond)
|
28 |
+
return torch.cat(conds)
|
29 |
+
|
30 |
+
class CONDNoiseShape(CONDRegular):
|
31 |
+
def process_cond(self, batch_size, device, area, **kwargs):
|
32 |
+
data = self.cond[:,:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]]
|
33 |
+
return self._copy_with(comfy.utils.repeat_to_batch_size(data, batch_size).to(device))
|
34 |
+
|
35 |
+
|
36 |
+
class CONDCrossAttn(CONDRegular):
|
37 |
+
def can_concat(self, other):
|
38 |
+
s1 = self.cond.shape
|
39 |
+
s2 = other.cond.shape
|
40 |
+
if s1 != s2:
|
41 |
+
if s1[0] != s2[0] or s1[2] != s2[2]: #these 2 cases should not happen
|
42 |
+
return False
|
43 |
+
|
44 |
+
mult_min = lcm(s1[1], s2[1])
|
45 |
+
diff = mult_min // min(s1[1], s2[1])
|
46 |
+
if diff > 4: #arbitrary limit on the padding because it's probably going to impact performance negatively if it's too much
|
47 |
+
return False
|
48 |
+
return True
|
49 |
+
|
50 |
+
def concat(self, others):
|
51 |
+
conds = [self.cond]
|
52 |
+
crossattn_max_len = self.cond.shape[1]
|
53 |
+
for x in others:
|
54 |
+
c = x.cond
|
55 |
+
crossattn_max_len = lcm(crossattn_max_len, c.shape[1])
|
56 |
+
conds.append(c)
|
57 |
+
|
58 |
+
out = []
|
59 |
+
for c in conds:
|
60 |
+
if c.shape[1] < crossattn_max_len:
|
61 |
+
c = c.repeat(1, crossattn_max_len // c.shape[1], 1) #padding with repeat doesn't change result
|
62 |
+
out.append(c)
|
63 |
+
return torch.cat(out)
|
64 |
+
|
65 |
+
class CONDConstant(CONDRegular):
|
66 |
+
def __init__(self, cond):
|
67 |
+
self.cond = cond
|
68 |
+
|
69 |
+
def process_cond(self, batch_size, device, **kwargs):
|
70 |
+
return self._copy_with(self.cond)
|
71 |
+
|
72 |
+
def can_concat(self, other):
|
73 |
+
if self.cond != other.cond:
|
74 |
+
return False
|
75 |
+
return True
|
76 |
+
|
77 |
+
def concat(self, others):
|
78 |
+
return self.cond
|
comfy/controlnet.py
ADDED
@@ -0,0 +1,544 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import math
|
3 |
+
import os
|
4 |
+
import comfy.utils
|
5 |
+
import comfy.model_management
|
6 |
+
import comfy.model_detection
|
7 |
+
import comfy.model_patcher
|
8 |
+
import comfy.ops
|
9 |
+
|
10 |
+
import comfy.cldm.cldm
|
11 |
+
import comfy.t2i_adapter.adapter
|
12 |
+
import comfy.ldm.cascade.controlnet
|
13 |
+
|
14 |
+
|
15 |
+
def broadcast_image_to(tensor, target_batch_size, batched_number):
|
16 |
+
current_batch_size = tensor.shape[0]
|
17 |
+
#print(current_batch_size, target_batch_size)
|
18 |
+
if current_batch_size == 1:
|
19 |
+
return tensor
|
20 |
+
|
21 |
+
per_batch = target_batch_size // batched_number
|
22 |
+
tensor = tensor[:per_batch]
|
23 |
+
|
24 |
+
if per_batch > tensor.shape[0]:
|
25 |
+
tensor = torch.cat([tensor] * (per_batch // tensor.shape[0]) + [tensor[:(per_batch % tensor.shape[0])]], dim=0)
|
26 |
+
|
27 |
+
current_batch_size = tensor.shape[0]
|
28 |
+
if current_batch_size == target_batch_size:
|
29 |
+
return tensor
|
30 |
+
else:
|
31 |
+
return torch.cat([tensor] * batched_number, dim=0)
|
32 |
+
|
33 |
+
class ControlBase:
|
34 |
+
def __init__(self, device=None):
|
35 |
+
self.cond_hint_original = None
|
36 |
+
self.cond_hint = None
|
37 |
+
self.strength = 1.0
|
38 |
+
self.timestep_percent_range = (0.0, 1.0)
|
39 |
+
self.global_average_pooling = False
|
40 |
+
self.timestep_range = None
|
41 |
+
self.compression_ratio = 8
|
42 |
+
self.upscale_algorithm = 'nearest-exact'
|
43 |
+
|
44 |
+
if device is None:
|
45 |
+
device = comfy.model_management.get_torch_device()
|
46 |
+
self.device = device
|
47 |
+
self.previous_controlnet = None
|
48 |
+
|
49 |
+
def set_cond_hint(self, cond_hint, strength=1.0, timestep_percent_range=(0.0, 1.0)):
|
50 |
+
self.cond_hint_original = cond_hint
|
51 |
+
self.strength = strength
|
52 |
+
self.timestep_percent_range = timestep_percent_range
|
53 |
+
return self
|
54 |
+
|
55 |
+
def pre_run(self, model, percent_to_timestep_function):
|
56 |
+
self.timestep_range = (percent_to_timestep_function(self.timestep_percent_range[0]), percent_to_timestep_function(self.timestep_percent_range[1]))
|
57 |
+
if self.previous_controlnet is not None:
|
58 |
+
self.previous_controlnet.pre_run(model, percent_to_timestep_function)
|
59 |
+
|
60 |
+
def set_previous_controlnet(self, controlnet):
|
61 |
+
self.previous_controlnet = controlnet
|
62 |
+
return self
|
63 |
+
|
64 |
+
def cleanup(self):
|
65 |
+
if self.previous_controlnet is not None:
|
66 |
+
self.previous_controlnet.cleanup()
|
67 |
+
if self.cond_hint is not None:
|
68 |
+
del self.cond_hint
|
69 |
+
self.cond_hint = None
|
70 |
+
self.timestep_range = None
|
71 |
+
|
72 |
+
def get_models(self):
|
73 |
+
out = []
|
74 |
+
if self.previous_controlnet is not None:
|
75 |
+
out += self.previous_controlnet.get_models()
|
76 |
+
return out
|
77 |
+
|
78 |
+
def copy_to(self, c):
|
79 |
+
c.cond_hint_original = self.cond_hint_original
|
80 |
+
c.strength = self.strength
|
81 |
+
c.timestep_percent_range = self.timestep_percent_range
|
82 |
+
c.global_average_pooling = self.global_average_pooling
|
83 |
+
c.compression_ratio = self.compression_ratio
|
84 |
+
c.upscale_algorithm = self.upscale_algorithm
|
85 |
+
|
86 |
+
def inference_memory_requirements(self, dtype):
|
87 |
+
if self.previous_controlnet is not None:
|
88 |
+
return self.previous_controlnet.inference_memory_requirements(dtype)
|
89 |
+
return 0
|
90 |
+
|
91 |
+
def control_merge(self, control_input, control_output, control_prev, output_dtype):
|
92 |
+
out = {'input':[], 'middle':[], 'output': []}
|
93 |
+
|
94 |
+
if control_input is not None:
|
95 |
+
for i in range(len(control_input)):
|
96 |
+
key = 'input'
|
97 |
+
x = control_input[i]
|
98 |
+
if x is not None:
|
99 |
+
x *= self.strength
|
100 |
+
if x.dtype != output_dtype:
|
101 |
+
x = x.to(output_dtype)
|
102 |
+
out[key].insert(0, x)
|
103 |
+
|
104 |
+
if control_output is not None:
|
105 |
+
for i in range(len(control_output)):
|
106 |
+
if i == (len(control_output) - 1):
|
107 |
+
key = 'middle'
|
108 |
+
index = 0
|
109 |
+
else:
|
110 |
+
key = 'output'
|
111 |
+
index = i
|
112 |
+
x = control_output[i]
|
113 |
+
if x is not None:
|
114 |
+
if self.global_average_pooling:
|
115 |
+
x = torch.mean(x, dim=(2, 3), keepdim=True).repeat(1, 1, x.shape[2], x.shape[3])
|
116 |
+
|
117 |
+
x *= self.strength
|
118 |
+
if x.dtype != output_dtype:
|
119 |
+
x = x.to(output_dtype)
|
120 |
+
|
121 |
+
out[key].append(x)
|
122 |
+
if control_prev is not None:
|
123 |
+
for x in ['input', 'middle', 'output']:
|
124 |
+
o = out[x]
|
125 |
+
for i in range(len(control_prev[x])):
|
126 |
+
prev_val = control_prev[x][i]
|
127 |
+
if i >= len(o):
|
128 |
+
o.append(prev_val)
|
129 |
+
elif prev_val is not None:
|
130 |
+
if o[i] is None:
|
131 |
+
o[i] = prev_val
|
132 |
+
else:
|
133 |
+
if o[i].shape[0] < prev_val.shape[0]:
|
134 |
+
o[i] = prev_val + o[i]
|
135 |
+
else:
|
136 |
+
o[i] += prev_val
|
137 |
+
return out
|
138 |
+
|
139 |
+
class ControlNet(ControlBase):
|
140 |
+
def __init__(self, control_model, global_average_pooling=False, device=None, load_device=None, manual_cast_dtype=None):
|
141 |
+
super().__init__(device)
|
142 |
+
self.control_model = control_model
|
143 |
+
self.load_device = load_device
|
144 |
+
self.control_model_wrapped = comfy.model_patcher.ModelPatcher(self.control_model, load_device=load_device, offload_device=comfy.model_management.unet_offload_device())
|
145 |
+
self.global_average_pooling = global_average_pooling
|
146 |
+
self.model_sampling_current = None
|
147 |
+
self.manual_cast_dtype = manual_cast_dtype
|
148 |
+
|
149 |
+
def get_control(self, x_noisy, t, cond, batched_number):
|
150 |
+
control_prev = None
|
151 |
+
if self.previous_controlnet is not None:
|
152 |
+
control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number)
|
153 |
+
|
154 |
+
if self.timestep_range is not None:
|
155 |
+
if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]:
|
156 |
+
if control_prev is not None:
|
157 |
+
return control_prev
|
158 |
+
else:
|
159 |
+
return None
|
160 |
+
|
161 |
+
dtype = self.control_model.dtype
|
162 |
+
if self.manual_cast_dtype is not None:
|
163 |
+
dtype = self.manual_cast_dtype
|
164 |
+
|
165 |
+
output_dtype = x_noisy.dtype
|
166 |
+
if self.cond_hint is None or x_noisy.shape[2] * self.compression_ratio != self.cond_hint.shape[2] or x_noisy.shape[3] * self.compression_ratio != self.cond_hint.shape[3]:
|
167 |
+
if self.cond_hint is not None:
|
168 |
+
del self.cond_hint
|
169 |
+
self.cond_hint = None
|
170 |
+
self.cond_hint = comfy.utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * self.compression_ratio, x_noisy.shape[2] * self.compression_ratio, self.upscale_algorithm, "center").to(dtype).to(self.device)
|
171 |
+
if x_noisy.shape[0] != self.cond_hint.shape[0]:
|
172 |
+
self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number)
|
173 |
+
|
174 |
+
context = cond.get('crossattn_controlnet', cond['c_crossattn'])
|
175 |
+
y = cond.get('y', None)
|
176 |
+
if y is not None:
|
177 |
+
y = y.to(dtype)
|
178 |
+
timestep = self.model_sampling_current.timestep(t)
|
179 |
+
x_noisy = self.model_sampling_current.calculate_input(t, x_noisy)
|
180 |
+
|
181 |
+
control = self.control_model(x=x_noisy.to(dtype), hint=self.cond_hint, timesteps=timestep.float(), context=context.to(dtype), y=y)
|
182 |
+
return self.control_merge(None, control, control_prev, output_dtype)
|
183 |
+
|
184 |
+
def copy(self):
|
185 |
+
c = ControlNet(self.control_model, global_average_pooling=self.global_average_pooling, load_device=self.load_device, manual_cast_dtype=self.manual_cast_dtype)
|
186 |
+
self.copy_to(c)
|
187 |
+
return c
|
188 |
+
|
189 |
+
def get_models(self):
|
190 |
+
out = super().get_models()
|
191 |
+
out.append(self.control_model_wrapped)
|
192 |
+
return out
|
193 |
+
|
194 |
+
def pre_run(self, model, percent_to_timestep_function):
|
195 |
+
super().pre_run(model, percent_to_timestep_function)
|
196 |
+
self.model_sampling_current = model.model_sampling
|
197 |
+
|
198 |
+
def cleanup(self):
|
199 |
+
self.model_sampling_current = None
|
200 |
+
super().cleanup()
|
201 |
+
|
202 |
+
class ControlLoraOps:
|
203 |
+
class Linear(torch.nn.Module):
|
204 |
+
def __init__(self, in_features: int, out_features: int, bias: bool = True,
|
205 |
+
device=None, dtype=None) -> None:
|
206 |
+
factory_kwargs = {'device': device, 'dtype': dtype}
|
207 |
+
super().__init__()
|
208 |
+
self.in_features = in_features
|
209 |
+
self.out_features = out_features
|
210 |
+
self.weight = None
|
211 |
+
self.up = None
|
212 |
+
self.down = None
|
213 |
+
self.bias = None
|
214 |
+
|
215 |
+
def forward(self, input):
|
216 |
+
weight, bias = comfy.ops.cast_bias_weight(self, input)
|
217 |
+
if self.up is not None:
|
218 |
+
return torch.nn.functional.linear(input, weight + (torch.mm(self.up.flatten(start_dim=1), self.down.flatten(start_dim=1))).reshape(self.weight.shape).type(input.dtype), bias)
|
219 |
+
else:
|
220 |
+
return torch.nn.functional.linear(input, weight, bias)
|
221 |
+
|
222 |
+
class Conv2d(torch.nn.Module):
|
223 |
+
def __init__(
|
224 |
+
self,
|
225 |
+
in_channels,
|
226 |
+
out_channels,
|
227 |
+
kernel_size,
|
228 |
+
stride=1,
|
229 |
+
padding=0,
|
230 |
+
dilation=1,
|
231 |
+
groups=1,
|
232 |
+
bias=True,
|
233 |
+
padding_mode='zeros',
|
234 |
+
device=None,
|
235 |
+
dtype=None
|
236 |
+
):
|
237 |
+
super().__init__()
|
238 |
+
self.in_channels = in_channels
|
239 |
+
self.out_channels = out_channels
|
240 |
+
self.kernel_size = kernel_size
|
241 |
+
self.stride = stride
|
242 |
+
self.padding = padding
|
243 |
+
self.dilation = dilation
|
244 |
+
self.transposed = False
|
245 |
+
self.output_padding = 0
|
246 |
+
self.groups = groups
|
247 |
+
self.padding_mode = padding_mode
|
248 |
+
|
249 |
+
self.weight = None
|
250 |
+
self.bias = None
|
251 |
+
self.up = None
|
252 |
+
self.down = None
|
253 |
+
|
254 |
+
|
255 |
+
def forward(self, input):
|
256 |
+
weight, bias = comfy.ops.cast_bias_weight(self, input)
|
257 |
+
if self.up is not None:
|
258 |
+
return torch.nn.functional.conv2d(input, weight + (torch.mm(self.up.flatten(start_dim=1), self.down.flatten(start_dim=1))).reshape(self.weight.shape).type(input.dtype), bias, self.stride, self.padding, self.dilation, self.groups)
|
259 |
+
else:
|
260 |
+
return torch.nn.functional.conv2d(input, weight, bias, self.stride, self.padding, self.dilation, self.groups)
|
261 |
+
|
262 |
+
|
263 |
+
class ControlLora(ControlNet):
|
264 |
+
def __init__(self, control_weights, global_average_pooling=False, device=None):
|
265 |
+
ControlBase.__init__(self, device)
|
266 |
+
self.control_weights = control_weights
|
267 |
+
self.global_average_pooling = global_average_pooling
|
268 |
+
|
269 |
+
def pre_run(self, model, percent_to_timestep_function):
|
270 |
+
super().pre_run(model, percent_to_timestep_function)
|
271 |
+
controlnet_config = model.model_config.unet_config.copy()
|
272 |
+
controlnet_config.pop("out_channels")
|
273 |
+
controlnet_config["hint_channels"] = self.control_weights["input_hint_block.0.weight"].shape[1]
|
274 |
+
self.manual_cast_dtype = model.manual_cast_dtype
|
275 |
+
dtype = model.get_dtype()
|
276 |
+
if self.manual_cast_dtype is None:
|
277 |
+
class control_lora_ops(ControlLoraOps, comfy.ops.disable_weight_init):
|
278 |
+
pass
|
279 |
+
else:
|
280 |
+
class control_lora_ops(ControlLoraOps, comfy.ops.manual_cast):
|
281 |
+
pass
|
282 |
+
dtype = self.manual_cast_dtype
|
283 |
+
|
284 |
+
controlnet_config["operations"] = control_lora_ops
|
285 |
+
controlnet_config["dtype"] = dtype
|
286 |
+
self.control_model = comfy.cldm.cldm.ControlNet(**controlnet_config)
|
287 |
+
self.control_model.to(comfy.model_management.get_torch_device())
|
288 |
+
diffusion_model = model.diffusion_model
|
289 |
+
sd = diffusion_model.state_dict()
|
290 |
+
cm = self.control_model.state_dict()
|
291 |
+
|
292 |
+
for k in sd:
|
293 |
+
weight = sd[k]
|
294 |
+
try:
|
295 |
+
comfy.utils.set_attr_param(self.control_model, k, weight)
|
296 |
+
except:
|
297 |
+
pass
|
298 |
+
|
299 |
+
for k in self.control_weights:
|
300 |
+
if k not in {"lora_controlnet"}:
|
301 |
+
comfy.utils.set_attr_param(self.control_model, k, self.control_weights[k].to(dtype).to(comfy.model_management.get_torch_device()))
|
302 |
+
|
303 |
+
def copy(self):
|
304 |
+
c = ControlLora(self.control_weights, global_average_pooling=self.global_average_pooling)
|
305 |
+
self.copy_to(c)
|
306 |
+
return c
|
307 |
+
|
308 |
+
def cleanup(self):
|
309 |
+
del self.control_model
|
310 |
+
self.control_model = None
|
311 |
+
super().cleanup()
|
312 |
+
|
313 |
+
def get_models(self):
|
314 |
+
out = ControlBase.get_models(self)
|
315 |
+
return out
|
316 |
+
|
317 |
+
def inference_memory_requirements(self, dtype):
|
318 |
+
return comfy.utils.calculate_parameters(self.control_weights) * comfy.model_management.dtype_size(dtype) + ControlBase.inference_memory_requirements(self, dtype)
|
319 |
+
|
320 |
+
def load_controlnet(ckpt_path, model=None):
|
321 |
+
controlnet_data = comfy.utils.load_torch_file(ckpt_path, safe_load=True)
|
322 |
+
if "lora_controlnet" in controlnet_data:
|
323 |
+
return ControlLora(controlnet_data)
|
324 |
+
|
325 |
+
controlnet_config = None
|
326 |
+
supported_inference_dtypes = None
|
327 |
+
|
328 |
+
if "controlnet_cond_embedding.conv_in.weight" in controlnet_data: #diffusers format
|
329 |
+
controlnet_config = comfy.model_detection.unet_config_from_diffusers_unet(controlnet_data)
|
330 |
+
diffusers_keys = comfy.utils.unet_to_diffusers(controlnet_config)
|
331 |
+
diffusers_keys["controlnet_mid_block.weight"] = "middle_block_out.0.weight"
|
332 |
+
diffusers_keys["controlnet_mid_block.bias"] = "middle_block_out.0.bias"
|
333 |
+
|
334 |
+
count = 0
|
335 |
+
loop = True
|
336 |
+
while loop:
|
337 |
+
suffix = [".weight", ".bias"]
|
338 |
+
for s in suffix:
|
339 |
+
k_in = "controlnet_down_blocks.{}{}".format(count, s)
|
340 |
+
k_out = "zero_convs.{}.0{}".format(count, s)
|
341 |
+
if k_in not in controlnet_data:
|
342 |
+
loop = False
|
343 |
+
break
|
344 |
+
diffusers_keys[k_in] = k_out
|
345 |
+
count += 1
|
346 |
+
|
347 |
+
count = 0
|
348 |
+
loop = True
|
349 |
+
while loop:
|
350 |
+
suffix = [".weight", ".bias"]
|
351 |
+
for s in suffix:
|
352 |
+
if count == 0:
|
353 |
+
k_in = "controlnet_cond_embedding.conv_in{}".format(s)
|
354 |
+
else:
|
355 |
+
k_in = "controlnet_cond_embedding.blocks.{}{}".format(count - 1, s)
|
356 |
+
k_out = "input_hint_block.{}{}".format(count * 2, s)
|
357 |
+
if k_in not in controlnet_data:
|
358 |
+
k_in = "controlnet_cond_embedding.conv_out{}".format(s)
|
359 |
+
loop = False
|
360 |
+
diffusers_keys[k_in] = k_out
|
361 |
+
count += 1
|
362 |
+
|
363 |
+
new_sd = {}
|
364 |
+
for k in diffusers_keys:
|
365 |
+
if k in controlnet_data:
|
366 |
+
new_sd[diffusers_keys[k]] = controlnet_data.pop(k)
|
367 |
+
|
368 |
+
leftover_keys = controlnet_data.keys()
|
369 |
+
if len(leftover_keys) > 0:
|
370 |
+
print("leftover keys:", leftover_keys)
|
371 |
+
controlnet_data = new_sd
|
372 |
+
|
373 |
+
pth_key = 'control_model.zero_convs.0.0.weight'
|
374 |
+
pth = False
|
375 |
+
key = 'zero_convs.0.0.weight'
|
376 |
+
if pth_key in controlnet_data:
|
377 |
+
pth = True
|
378 |
+
key = pth_key
|
379 |
+
prefix = "control_model."
|
380 |
+
elif key in controlnet_data:
|
381 |
+
prefix = ""
|
382 |
+
else:
|
383 |
+
net = load_t2i_adapter(controlnet_data)
|
384 |
+
if net is None:
|
385 |
+
print("error checkpoint does not contain controlnet or t2i adapter data", ckpt_path)
|
386 |
+
return net
|
387 |
+
|
388 |
+
if controlnet_config is None:
|
389 |
+
model_config = comfy.model_detection.model_config_from_unet(controlnet_data, prefix, True)
|
390 |
+
supported_inference_dtypes = model_config.supported_inference_dtypes
|
391 |
+
controlnet_config = model_config.unet_config
|
392 |
+
|
393 |
+
load_device = comfy.model_management.get_torch_device()
|
394 |
+
if supported_inference_dtypes is None:
|
395 |
+
unet_dtype = comfy.model_management.unet_dtype()
|
396 |
+
else:
|
397 |
+
unet_dtype = comfy.model_management.unet_dtype(supported_dtypes=supported_inference_dtypes)
|
398 |
+
|
399 |
+
manual_cast_dtype = comfy.model_management.unet_manual_cast(unet_dtype, load_device)
|
400 |
+
if manual_cast_dtype is not None:
|
401 |
+
controlnet_config["operations"] = comfy.ops.manual_cast
|
402 |
+
controlnet_config["dtype"] = unet_dtype
|
403 |
+
controlnet_config.pop("out_channels")
|
404 |
+
controlnet_config["hint_channels"] = controlnet_data["{}input_hint_block.0.weight".format(prefix)].shape[1]
|
405 |
+
control_model = comfy.cldm.cldm.ControlNet(**controlnet_config)
|
406 |
+
|
407 |
+
if pth:
|
408 |
+
if 'difference' in controlnet_data:
|
409 |
+
if model is not None:
|
410 |
+
comfy.model_management.load_models_gpu([model])
|
411 |
+
model_sd = model.model_state_dict()
|
412 |
+
for x in controlnet_data:
|
413 |
+
c_m = "control_model."
|
414 |
+
if x.startswith(c_m):
|
415 |
+
sd_key = "diffusion_model.{}".format(x[len(c_m):])
|
416 |
+
if sd_key in model_sd:
|
417 |
+
cd = controlnet_data[x]
|
418 |
+
cd += model_sd[sd_key].type(cd.dtype).to(cd.device)
|
419 |
+
else:
|
420 |
+
print("WARNING: Loaded a diff controlnet without a model. It will very likely not work.")
|
421 |
+
|
422 |
+
class WeightsLoader(torch.nn.Module):
|
423 |
+
pass
|
424 |
+
w = WeightsLoader()
|
425 |
+
w.control_model = control_model
|
426 |
+
missing, unexpected = w.load_state_dict(controlnet_data, strict=False)
|
427 |
+
else:
|
428 |
+
missing, unexpected = control_model.load_state_dict(controlnet_data, strict=False)
|
429 |
+
print(missing, unexpected)
|
430 |
+
|
431 |
+
global_average_pooling = False
|
432 |
+
filename = os.path.splitext(ckpt_path)[0]
|
433 |
+
if filename.endswith("_shuffle") or filename.endswith("_shuffle_fp16"): #TODO: smarter way of enabling global_average_pooling
|
434 |
+
global_average_pooling = True
|
435 |
+
|
436 |
+
control = ControlNet(control_model, global_average_pooling=global_average_pooling, load_device=load_device, manual_cast_dtype=manual_cast_dtype)
|
437 |
+
return control
|
438 |
+
|
439 |
+
class T2IAdapter(ControlBase):
|
440 |
+
def __init__(self, t2i_model, channels_in, compression_ratio, upscale_algorithm, device=None):
|
441 |
+
super().__init__(device)
|
442 |
+
self.t2i_model = t2i_model
|
443 |
+
self.channels_in = channels_in
|
444 |
+
self.control_input = None
|
445 |
+
self.compression_ratio = compression_ratio
|
446 |
+
self.upscale_algorithm = upscale_algorithm
|
447 |
+
|
448 |
+
def scale_image_to(self, width, height):
|
449 |
+
unshuffle_amount = self.t2i_model.unshuffle_amount
|
450 |
+
width = math.ceil(width / unshuffle_amount) * unshuffle_amount
|
451 |
+
height = math.ceil(height / unshuffle_amount) * unshuffle_amount
|
452 |
+
return width, height
|
453 |
+
|
454 |
+
def get_control(self, x_noisy, t, cond, batched_number):
|
455 |
+
control_prev = None
|
456 |
+
if self.previous_controlnet is not None:
|
457 |
+
control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number)
|
458 |
+
|
459 |
+
if self.timestep_range is not None:
|
460 |
+
if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]:
|
461 |
+
if control_prev is not None:
|
462 |
+
return control_prev
|
463 |
+
else:
|
464 |
+
return None
|
465 |
+
|
466 |
+
if self.cond_hint is None or x_noisy.shape[2] * self.compression_ratio != self.cond_hint.shape[2] or x_noisy.shape[3] * self.compression_ratio != self.cond_hint.shape[3]:
|
467 |
+
if self.cond_hint is not None:
|
468 |
+
del self.cond_hint
|
469 |
+
self.control_input = None
|
470 |
+
self.cond_hint = None
|
471 |
+
width, height = self.scale_image_to(x_noisy.shape[3] * self.compression_ratio, x_noisy.shape[2] * self.compression_ratio)
|
472 |
+
self.cond_hint = comfy.utils.common_upscale(self.cond_hint_original, width, height, self.upscale_algorithm, "center").float().to(self.device)
|
473 |
+
if self.channels_in == 1 and self.cond_hint.shape[1] > 1:
|
474 |
+
self.cond_hint = torch.mean(self.cond_hint, 1, keepdim=True)
|
475 |
+
if x_noisy.shape[0] != self.cond_hint.shape[0]:
|
476 |
+
self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number)
|
477 |
+
if self.control_input is None:
|
478 |
+
self.t2i_model.to(x_noisy.dtype)
|
479 |
+
self.t2i_model.to(self.device)
|
480 |
+
self.control_input = self.t2i_model(self.cond_hint.to(x_noisy.dtype))
|
481 |
+
self.t2i_model.cpu()
|
482 |
+
|
483 |
+
control_input = list(map(lambda a: None if a is None else a.clone(), self.control_input))
|
484 |
+
mid = None
|
485 |
+
if self.t2i_model.xl == True:
|
486 |
+
mid = control_input[-1:]
|
487 |
+
control_input = control_input[:-1]
|
488 |
+
return self.control_merge(control_input, mid, control_prev, x_noisy.dtype)
|
489 |
+
|
490 |
+
def copy(self):
|
491 |
+
c = T2IAdapter(self.t2i_model, self.channels_in, self.compression_ratio, self.upscale_algorithm)
|
492 |
+
self.copy_to(c)
|
493 |
+
return c
|
494 |
+
|
495 |
+
def load_t2i_adapter(t2i_data):
|
496 |
+
compression_ratio = 8
|
497 |
+
upscale_algorithm = 'nearest-exact'
|
498 |
+
|
499 |
+
if 'adapter' in t2i_data:
|
500 |
+
t2i_data = t2i_data['adapter']
|
501 |
+
if 'adapter.body.0.resnets.0.block1.weight' in t2i_data: #diffusers format
|
502 |
+
prefix_replace = {}
|
503 |
+
for i in range(4):
|
504 |
+
for j in range(2):
|
505 |
+
prefix_replace["adapter.body.{}.resnets.{}.".format(i, j)] = "body.{}.".format(i * 2 + j)
|
506 |
+
prefix_replace["adapter.body.{}.".format(i, j)] = "body.{}.".format(i * 2)
|
507 |
+
prefix_replace["adapter."] = ""
|
508 |
+
t2i_data = comfy.utils.state_dict_prefix_replace(t2i_data, prefix_replace)
|
509 |
+
keys = t2i_data.keys()
|
510 |
+
|
511 |
+
if "body.0.in_conv.weight" in keys:
|
512 |
+
cin = t2i_data['body.0.in_conv.weight'].shape[1]
|
513 |
+
model_ad = comfy.t2i_adapter.adapter.Adapter_light(cin=cin, channels=[320, 640, 1280, 1280], nums_rb=4)
|
514 |
+
elif 'conv_in.weight' in keys:
|
515 |
+
cin = t2i_data['conv_in.weight'].shape[1]
|
516 |
+
channel = t2i_data['conv_in.weight'].shape[0]
|
517 |
+
ksize = t2i_data['body.0.block2.weight'].shape[2]
|
518 |
+
use_conv = False
|
519 |
+
down_opts = list(filter(lambda a: a.endswith("down_opt.op.weight"), keys))
|
520 |
+
if len(down_opts) > 0:
|
521 |
+
use_conv = True
|
522 |
+
xl = False
|
523 |
+
if cin == 256 or cin == 768:
|
524 |
+
xl = True
|
525 |
+
model_ad = comfy.t2i_adapter.adapter.Adapter(cin=cin, channels=[channel, channel*2, channel*4, channel*4][:4], nums_rb=2, ksize=ksize, sk=True, use_conv=use_conv, xl=xl)
|
526 |
+
elif "backbone.0.0.weight" in keys:
|
527 |
+
model_ad = comfy.ldm.cascade.controlnet.ControlNet(c_in=t2i_data['backbone.0.0.weight'].shape[1], proj_blocks=[0, 4, 8, 12, 51, 55, 59, 63])
|
528 |
+
compression_ratio = 32
|
529 |
+
upscale_algorithm = 'bilinear'
|
530 |
+
elif "backbone.10.blocks.0.weight" in keys:
|
531 |
+
model_ad = comfy.ldm.cascade.controlnet.ControlNet(c_in=t2i_data['backbone.0.weight'].shape[1], bottleneck_mode="large", proj_blocks=[0, 4, 8, 12, 51, 55, 59, 63])
|
532 |
+
compression_ratio = 1
|
533 |
+
upscale_algorithm = 'nearest-exact'
|
534 |
+
else:
|
535 |
+
return None
|
536 |
+
|
537 |
+
missing, unexpected = model_ad.load_state_dict(t2i_data)
|
538 |
+
if len(missing) > 0:
|
539 |
+
print("t2i missing", missing)
|
540 |
+
|
541 |
+
if len(unexpected) > 0:
|
542 |
+
print("t2i unexpected", unexpected)
|
543 |
+
|
544 |
+
return T2IAdapter(model_ad, model_ad.input_channels, compression_ratio, upscale_algorithm)
|
comfy/diffusers_convert.py
ADDED
@@ -0,0 +1,265 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import torch
|
3 |
+
|
4 |
+
# conversion code from https://github.com/huggingface/diffusers/blob/main/scripts/convert_diffusers_to_original_stable_diffusion.py
|
5 |
+
|
6 |
+
# =================#
|
7 |
+
# UNet Conversion #
|
8 |
+
# =================#
|
9 |
+
|
10 |
+
unet_conversion_map = [
|
11 |
+
# (stable-diffusion, HF Diffusers)
|
12 |
+
("time_embed.0.weight", "time_embedding.linear_1.weight"),
|
13 |
+
("time_embed.0.bias", "time_embedding.linear_1.bias"),
|
14 |
+
("time_embed.2.weight", "time_embedding.linear_2.weight"),
|
15 |
+
("time_embed.2.bias", "time_embedding.linear_2.bias"),
|
16 |
+
("input_blocks.0.0.weight", "conv_in.weight"),
|
17 |
+
("input_blocks.0.0.bias", "conv_in.bias"),
|
18 |
+
("out.0.weight", "conv_norm_out.weight"),
|
19 |
+
("out.0.bias", "conv_norm_out.bias"),
|
20 |
+
("out.2.weight", "conv_out.weight"),
|
21 |
+
("out.2.bias", "conv_out.bias"),
|
22 |
+
]
|
23 |
+
|
24 |
+
unet_conversion_map_resnet = [
|
25 |
+
# (stable-diffusion, HF Diffusers)
|
26 |
+
("in_layers.0", "norm1"),
|
27 |
+
("in_layers.2", "conv1"),
|
28 |
+
("out_layers.0", "norm2"),
|
29 |
+
("out_layers.3", "conv2"),
|
30 |
+
("emb_layers.1", "time_emb_proj"),
|
31 |
+
("skip_connection", "conv_shortcut"),
|
32 |
+
]
|
33 |
+
|
34 |
+
unet_conversion_map_layer = []
|
35 |
+
# hardcoded number of downblocks and resnets/attentions...
|
36 |
+
# would need smarter logic for other networks.
|
37 |
+
for i in range(4):
|
38 |
+
# loop over downblocks/upblocks
|
39 |
+
|
40 |
+
for j in range(2):
|
41 |
+
# loop over resnets/attentions for downblocks
|
42 |
+
hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}."
|
43 |
+
sd_down_res_prefix = f"input_blocks.{3 * i + j + 1}.0."
|
44 |
+
unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix))
|
45 |
+
|
46 |
+
if i < 3:
|
47 |
+
# no attention layers in down_blocks.3
|
48 |
+
hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}."
|
49 |
+
sd_down_atn_prefix = f"input_blocks.{3 * i + j + 1}.1."
|
50 |
+
unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix))
|
51 |
+
|
52 |
+
for j in range(3):
|
53 |
+
# loop over resnets/attentions for upblocks
|
54 |
+
hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}."
|
55 |
+
sd_up_res_prefix = f"output_blocks.{3 * i + j}.0."
|
56 |
+
unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix))
|
57 |
+
|
58 |
+
if i > 0:
|
59 |
+
# no attention layers in up_blocks.0
|
60 |
+
hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}."
|
61 |
+
sd_up_atn_prefix = f"output_blocks.{3 * i + j}.1."
|
62 |
+
unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix))
|
63 |
+
|
64 |
+
if i < 3:
|
65 |
+
# no downsample in down_blocks.3
|
66 |
+
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv."
|
67 |
+
sd_downsample_prefix = f"input_blocks.{3 * (i + 1)}.0.op."
|
68 |
+
unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix))
|
69 |
+
|
70 |
+
# no upsample in up_blocks.3
|
71 |
+
hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
|
72 |
+
sd_upsample_prefix = f"output_blocks.{3 * i + 2}.{1 if i == 0 else 2}."
|
73 |
+
unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix))
|
74 |
+
|
75 |
+
hf_mid_atn_prefix = "mid_block.attentions.0."
|
76 |
+
sd_mid_atn_prefix = "middle_block.1."
|
77 |
+
unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix))
|
78 |
+
|
79 |
+
for j in range(2):
|
80 |
+
hf_mid_res_prefix = f"mid_block.resnets.{j}."
|
81 |
+
sd_mid_res_prefix = f"middle_block.{2 * j}."
|
82 |
+
unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix))
|
83 |
+
|
84 |
+
|
85 |
+
def convert_unet_state_dict(unet_state_dict):
|
86 |
+
# buyer beware: this is a *brittle* function,
|
87 |
+
# and correct output requires that all of these pieces interact in
|
88 |
+
# the exact order in which I have arranged them.
|
89 |
+
mapping = {k: k for k in unet_state_dict.keys()}
|
90 |
+
for sd_name, hf_name in unet_conversion_map:
|
91 |
+
mapping[hf_name] = sd_name
|
92 |
+
for k, v in mapping.items():
|
93 |
+
if "resnets" in k:
|
94 |
+
for sd_part, hf_part in unet_conversion_map_resnet:
|
95 |
+
v = v.replace(hf_part, sd_part)
|
96 |
+
mapping[k] = v
|
97 |
+
for k, v in mapping.items():
|
98 |
+
for sd_part, hf_part in unet_conversion_map_layer:
|
99 |
+
v = v.replace(hf_part, sd_part)
|
100 |
+
mapping[k] = v
|
101 |
+
new_state_dict = {v: unet_state_dict[k] for k, v in mapping.items()}
|
102 |
+
return new_state_dict
|
103 |
+
|
104 |
+
|
105 |
+
# ================#
|
106 |
+
# VAE Conversion #
|
107 |
+
# ================#
|
108 |
+
|
109 |
+
vae_conversion_map = [
|
110 |
+
# (stable-diffusion, HF Diffusers)
|
111 |
+
("nin_shortcut", "conv_shortcut"),
|
112 |
+
("norm_out", "conv_norm_out"),
|
113 |
+
("mid.attn_1.", "mid_block.attentions.0."),
|
114 |
+
]
|
115 |
+
|
116 |
+
for i in range(4):
|
117 |
+
# down_blocks have two resnets
|
118 |
+
for j in range(2):
|
119 |
+
hf_down_prefix = f"encoder.down_blocks.{i}.resnets.{j}."
|
120 |
+
sd_down_prefix = f"encoder.down.{i}.block.{j}."
|
121 |
+
vae_conversion_map.append((sd_down_prefix, hf_down_prefix))
|
122 |
+
|
123 |
+
if i < 3:
|
124 |
+
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0."
|
125 |
+
sd_downsample_prefix = f"down.{i}.downsample."
|
126 |
+
vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix))
|
127 |
+
|
128 |
+
hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
|
129 |
+
sd_upsample_prefix = f"up.{3 - i}.upsample."
|
130 |
+
vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix))
|
131 |
+
|
132 |
+
# up_blocks have three resnets
|
133 |
+
# also, up blocks in hf are numbered in reverse from sd
|
134 |
+
for j in range(3):
|
135 |
+
hf_up_prefix = f"decoder.up_blocks.{i}.resnets.{j}."
|
136 |
+
sd_up_prefix = f"decoder.up.{3 - i}.block.{j}."
|
137 |
+
vae_conversion_map.append((sd_up_prefix, hf_up_prefix))
|
138 |
+
|
139 |
+
# this part accounts for mid blocks in both the encoder and the decoder
|
140 |
+
for i in range(2):
|
141 |
+
hf_mid_res_prefix = f"mid_block.resnets.{i}."
|
142 |
+
sd_mid_res_prefix = f"mid.block_{i + 1}."
|
143 |
+
vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix))
|
144 |
+
|
145 |
+
vae_conversion_map_attn = [
|
146 |
+
# (stable-diffusion, HF Diffusers)
|
147 |
+
("norm.", "group_norm."),
|
148 |
+
("q.", "query."),
|
149 |
+
("k.", "key."),
|
150 |
+
("v.", "value."),
|
151 |
+
("q.", "to_q."),
|
152 |
+
("k.", "to_k."),
|
153 |
+
("v.", "to_v."),
|
154 |
+
("proj_out.", "to_out.0."),
|
155 |
+
("proj_out.", "proj_attn."),
|
156 |
+
]
|
157 |
+
|
158 |
+
|
159 |
+
def reshape_weight_for_sd(w):
|
160 |
+
# convert HF linear weights to SD conv2d weights
|
161 |
+
return w.reshape(*w.shape, 1, 1)
|
162 |
+
|
163 |
+
|
164 |
+
def convert_vae_state_dict(vae_state_dict):
|
165 |
+
mapping = {k: k for k in vae_state_dict.keys()}
|
166 |
+
for k, v in mapping.items():
|
167 |
+
for sd_part, hf_part in vae_conversion_map:
|
168 |
+
v = v.replace(hf_part, sd_part)
|
169 |
+
mapping[k] = v
|
170 |
+
for k, v in mapping.items():
|
171 |
+
if "attentions" in k:
|
172 |
+
for sd_part, hf_part in vae_conversion_map_attn:
|
173 |
+
v = v.replace(hf_part, sd_part)
|
174 |
+
mapping[k] = v
|
175 |
+
new_state_dict = {v: vae_state_dict[k] for k, v in mapping.items()}
|
176 |
+
weights_to_convert = ["q", "k", "v", "proj_out"]
|
177 |
+
for k, v in new_state_dict.items():
|
178 |
+
for weight_name in weights_to_convert:
|
179 |
+
if f"mid.attn_1.{weight_name}.weight" in k:
|
180 |
+
print(f"Reshaping {k} for SD format")
|
181 |
+
new_state_dict[k] = reshape_weight_for_sd(v)
|
182 |
+
return new_state_dict
|
183 |
+
|
184 |
+
|
185 |
+
# =========================#
|
186 |
+
# Text Encoder Conversion #
|
187 |
+
# =========================#
|
188 |
+
|
189 |
+
|
190 |
+
textenc_conversion_lst = [
|
191 |
+
# (stable-diffusion, HF Diffusers)
|
192 |
+
("resblocks.", "text_model.encoder.layers."),
|
193 |
+
("ln_1", "layer_norm1"),
|
194 |
+
("ln_2", "layer_norm2"),
|
195 |
+
(".c_fc.", ".fc1."),
|
196 |
+
(".c_proj.", ".fc2."),
|
197 |
+
(".attn", ".self_attn"),
|
198 |
+
("ln_final.", "transformer.text_model.final_layer_norm."),
|
199 |
+
("token_embedding.weight", "transformer.text_model.embeddings.token_embedding.weight"),
|
200 |
+
("positional_embedding", "transformer.text_model.embeddings.position_embedding.weight"),
|
201 |
+
]
|
202 |
+
protected = {re.escape(x[1]): x[0] for x in textenc_conversion_lst}
|
203 |
+
textenc_pattern = re.compile("|".join(protected.keys()))
|
204 |
+
|
205 |
+
# Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp
|
206 |
+
code2idx = {"q": 0, "k": 1, "v": 2}
|
207 |
+
|
208 |
+
|
209 |
+
def convert_text_enc_state_dict_v20(text_enc_dict, prefix=""):
|
210 |
+
new_state_dict = {}
|
211 |
+
capture_qkv_weight = {}
|
212 |
+
capture_qkv_bias = {}
|
213 |
+
for k, v in text_enc_dict.items():
|
214 |
+
if not k.startswith(prefix):
|
215 |
+
continue
|
216 |
+
if (
|
217 |
+
k.endswith(".self_attn.q_proj.weight")
|
218 |
+
or k.endswith(".self_attn.k_proj.weight")
|
219 |
+
or k.endswith(".self_attn.v_proj.weight")
|
220 |
+
):
|
221 |
+
k_pre = k[: -len(".q_proj.weight")]
|
222 |
+
k_code = k[-len("q_proj.weight")]
|
223 |
+
if k_pre not in capture_qkv_weight:
|
224 |
+
capture_qkv_weight[k_pre] = [None, None, None]
|
225 |
+
capture_qkv_weight[k_pre][code2idx[k_code]] = v
|
226 |
+
continue
|
227 |
+
|
228 |
+
if (
|
229 |
+
k.endswith(".self_attn.q_proj.bias")
|
230 |
+
or k.endswith(".self_attn.k_proj.bias")
|
231 |
+
or k.endswith(".self_attn.v_proj.bias")
|
232 |
+
):
|
233 |
+
k_pre = k[: -len(".q_proj.bias")]
|
234 |
+
k_code = k[-len("q_proj.bias")]
|
235 |
+
if k_pre not in capture_qkv_bias:
|
236 |
+
capture_qkv_bias[k_pre] = [None, None, None]
|
237 |
+
capture_qkv_bias[k_pre][code2idx[k_code]] = v
|
238 |
+
continue
|
239 |
+
|
240 |
+
text_proj = "transformer.text_projection.weight"
|
241 |
+
if k.endswith(text_proj):
|
242 |
+
new_state_dict[k.replace(text_proj, "text_projection")] = v.transpose(0, 1).contiguous()
|
243 |
+
else:
|
244 |
+
relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k)
|
245 |
+
new_state_dict[relabelled_key] = v
|
246 |
+
|
247 |
+
for k_pre, tensors in capture_qkv_weight.items():
|
248 |
+
if None in tensors:
|
249 |
+
raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing")
|
250 |
+
relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k_pre)
|
251 |
+
new_state_dict[relabelled_key + ".in_proj_weight"] = torch.cat(tensors)
|
252 |
+
|
253 |
+
for k_pre, tensors in capture_qkv_bias.items():
|
254 |
+
if None in tensors:
|
255 |
+
raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing")
|
256 |
+
relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k_pre)
|
257 |
+
new_state_dict[relabelled_key + ".in_proj_bias"] = torch.cat(tensors)
|
258 |
+
|
259 |
+
return new_state_dict
|
260 |
+
|
261 |
+
|
262 |
+
def convert_text_enc_state_dict(text_enc_dict):
|
263 |
+
return text_enc_dict
|
264 |
+
|
265 |
+
|
comfy/diffusers_load.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import comfy.sd
|
4 |
+
|
5 |
+
def first_file(path, filenames):
|
6 |
+
for f in filenames:
|
7 |
+
p = os.path.join(path, f)
|
8 |
+
if os.path.exists(p):
|
9 |
+
return p
|
10 |
+
return None
|
11 |
+
|
12 |
+
def load_diffusers(model_path, output_vae=True, output_clip=True, embedding_directory=None):
|
13 |
+
diffusion_model_names = ["diffusion_pytorch_model.fp16.safetensors", "diffusion_pytorch_model.safetensors", "diffusion_pytorch_model.fp16.bin", "diffusion_pytorch_model.bin"]
|
14 |
+
unet_path = first_file(os.path.join(model_path, "unet"), diffusion_model_names)
|
15 |
+
vae_path = first_file(os.path.join(model_path, "vae"), diffusion_model_names)
|
16 |
+
|
17 |
+
text_encoder_model_names = ["model.fp16.safetensors", "model.safetensors", "pytorch_model.fp16.bin", "pytorch_model.bin"]
|
18 |
+
text_encoder1_path = first_file(os.path.join(model_path, "text_encoder"), text_encoder_model_names)
|
19 |
+
text_encoder2_path = first_file(os.path.join(model_path, "text_encoder_2"), text_encoder_model_names)
|
20 |
+
|
21 |
+
text_encoder_paths = [text_encoder1_path]
|
22 |
+
if text_encoder2_path is not None:
|
23 |
+
text_encoder_paths.append(text_encoder2_path)
|
24 |
+
|
25 |
+
unet = comfy.sd.load_unet(unet_path)
|
26 |
+
|
27 |
+
clip = None
|
28 |
+
if output_clip:
|
29 |
+
clip = comfy.sd.load_clip(text_encoder_paths, embedding_directory=embedding_directory)
|
30 |
+
|
31 |
+
vae = None
|
32 |
+
if output_vae:
|
33 |
+
sd = comfy.utils.load_torch_file(vae_path)
|
34 |
+
vae = comfy.sd.VAE(sd=sd)
|
35 |
+
|
36 |
+
return (unet, clip, vae)
|
comfy/extra_samplers/uni_pc.py
ADDED
@@ -0,0 +1,875 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#code taken from: https://github.com/wl-zhao/UniPC and modified
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn.functional as F
|
5 |
+
import math
|
6 |
+
|
7 |
+
from tqdm.auto import trange, tqdm
|
8 |
+
|
9 |
+
|
10 |
+
class NoiseScheduleVP:
|
11 |
+
def __init__(
|
12 |
+
self,
|
13 |
+
schedule='discrete',
|
14 |
+
betas=None,
|
15 |
+
alphas_cumprod=None,
|
16 |
+
continuous_beta_0=0.1,
|
17 |
+
continuous_beta_1=20.,
|
18 |
+
):
|
19 |
+
"""Create a wrapper class for the forward SDE (VP type).
|
20 |
+
|
21 |
+
***
|
22 |
+
Update: We support discrete-time diffusion models by implementing a picewise linear interpolation for log_alpha_t.
|
23 |
+
We recommend to use schedule='discrete' for the discrete-time diffusion models, especially for high-resolution images.
|
24 |
+
***
|
25 |
+
|
26 |
+
The forward SDE ensures that the condition distribution q_{t|0}(x_t | x_0) = N ( alpha_t * x_0, sigma_t^2 * I ).
|
27 |
+
We further define lambda_t = log(alpha_t) - log(sigma_t), which is the half-logSNR (described in the DPM-Solver paper).
|
28 |
+
Therefore, we implement the functions for computing alpha_t, sigma_t and lambda_t. For t in [0, T], we have:
|
29 |
+
|
30 |
+
log_alpha_t = self.marginal_log_mean_coeff(t)
|
31 |
+
sigma_t = self.marginal_std(t)
|
32 |
+
lambda_t = self.marginal_lambda(t)
|
33 |
+
|
34 |
+
Moreover, as lambda(t) is an invertible function, we also support its inverse function:
|
35 |
+
|
36 |
+
t = self.inverse_lambda(lambda_t)
|
37 |
+
|
38 |
+
===============================================================
|
39 |
+
|
40 |
+
We support both discrete-time DPMs (trained on n = 0, 1, ..., N-1) and continuous-time DPMs (trained on t in [t_0, T]).
|
41 |
+
|
42 |
+
1. For discrete-time DPMs:
|
43 |
+
|
44 |
+
For discrete-time DPMs trained on n = 0, 1, ..., N-1, we convert the discrete steps to continuous time steps by:
|
45 |
+
t_i = (i + 1) / N
|
46 |
+
e.g. for N = 1000, we have t_0 = 1e-3 and T = t_{N-1} = 1.
|
47 |
+
We solve the corresponding diffusion ODE from time T = 1 to time t_0 = 1e-3.
|
48 |
+
|
49 |
+
Args:
|
50 |
+
betas: A `torch.Tensor`. The beta array for the discrete-time DPM. (See the original DDPM paper for details)
|
51 |
+
alphas_cumprod: A `torch.Tensor`. The cumprod alphas for the discrete-time DPM. (See the original DDPM paper for details)
|
52 |
+
|
53 |
+
Note that we always have alphas_cumprod = cumprod(betas). Therefore, we only need to set one of `betas` and `alphas_cumprod`.
|
54 |
+
|
55 |
+
**Important**: Please pay special attention for the args for `alphas_cumprod`:
|
56 |
+
The `alphas_cumprod` is the \hat{alpha_n} arrays in the notations of DDPM. Specifically, DDPMs assume that
|
57 |
+
q_{t_n | 0}(x_{t_n} | x_0) = N ( \sqrt{\hat{alpha_n}} * x_0, (1 - \hat{alpha_n}) * I ).
|
58 |
+
Therefore, the notation \hat{alpha_n} is different from the notation alpha_t in DPM-Solver. In fact, we have
|
59 |
+
alpha_{t_n} = \sqrt{\hat{alpha_n}},
|
60 |
+
and
|
61 |
+
log(alpha_{t_n}) = 0.5 * log(\hat{alpha_n}).
|
62 |
+
|
63 |
+
|
64 |
+
2. For continuous-time DPMs:
|
65 |
+
|
66 |
+
We support two types of VPSDEs: linear (DDPM) and cosine (improved-DDPM). The hyperparameters for the noise
|
67 |
+
schedule are the default settings in DDPM and improved-DDPM:
|
68 |
+
|
69 |
+
Args:
|
70 |
+
beta_min: A `float` number. The smallest beta for the linear schedule.
|
71 |
+
beta_max: A `float` number. The largest beta for the linear schedule.
|
72 |
+
cosine_s: A `float` number. The hyperparameter in the cosine schedule.
|
73 |
+
cosine_beta_max: A `float` number. The hyperparameter in the cosine schedule.
|
74 |
+
T: A `float` number. The ending time of the forward process.
|
75 |
+
|
76 |
+
===============================================================
|
77 |
+
|
78 |
+
Args:
|
79 |
+
schedule: A `str`. The noise schedule of the forward SDE. 'discrete' for discrete-time DPMs,
|
80 |
+
'linear' or 'cosine' for continuous-time DPMs.
|
81 |
+
Returns:
|
82 |
+
A wrapper object of the forward SDE (VP type).
|
83 |
+
|
84 |
+
===============================================================
|
85 |
+
|
86 |
+
Example:
|
87 |
+
|
88 |
+
# For discrete-time DPMs, given betas (the beta array for n = 0, 1, ..., N - 1):
|
89 |
+
>>> ns = NoiseScheduleVP('discrete', betas=betas)
|
90 |
+
|
91 |
+
# For discrete-time DPMs, given alphas_cumprod (the \hat{alpha_n} array for n = 0, 1, ..., N - 1):
|
92 |
+
>>> ns = NoiseScheduleVP('discrete', alphas_cumprod=alphas_cumprod)
|
93 |
+
|
94 |
+
# For continuous-time DPMs (VPSDE), linear schedule:
|
95 |
+
>>> ns = NoiseScheduleVP('linear', continuous_beta_0=0.1, continuous_beta_1=20.)
|
96 |
+
|
97 |
+
"""
|
98 |
+
|
99 |
+
if schedule not in ['discrete', 'linear', 'cosine']:
|
100 |
+
raise ValueError("Unsupported noise schedule {}. The schedule needs to be 'discrete' or 'linear' or 'cosine'".format(schedule))
|
101 |
+
|
102 |
+
self.schedule = schedule
|
103 |
+
if schedule == 'discrete':
|
104 |
+
if betas is not None:
|
105 |
+
log_alphas = 0.5 * torch.log(1 - betas).cumsum(dim=0)
|
106 |
+
else:
|
107 |
+
assert alphas_cumprod is not None
|
108 |
+
log_alphas = 0.5 * torch.log(alphas_cumprod)
|
109 |
+
self.total_N = len(log_alphas)
|
110 |
+
self.T = 1.
|
111 |
+
self.t_array = torch.linspace(0., 1., self.total_N + 1)[1:].reshape((1, -1))
|
112 |
+
self.log_alpha_array = log_alphas.reshape((1, -1,))
|
113 |
+
else:
|
114 |
+
self.total_N = 1000
|
115 |
+
self.beta_0 = continuous_beta_0
|
116 |
+
self.beta_1 = continuous_beta_1
|
117 |
+
self.cosine_s = 0.008
|
118 |
+
self.cosine_beta_max = 999.
|
119 |
+
self.cosine_t_max = math.atan(self.cosine_beta_max * (1. + self.cosine_s) / math.pi) * 2. * (1. + self.cosine_s) / math.pi - self.cosine_s
|
120 |
+
self.cosine_log_alpha_0 = math.log(math.cos(self.cosine_s / (1. + self.cosine_s) * math.pi / 2.))
|
121 |
+
self.schedule = schedule
|
122 |
+
if schedule == 'cosine':
|
123 |
+
# For the cosine schedule, T = 1 will have numerical issues. So we manually set the ending time T.
|
124 |
+
# Note that T = 0.9946 may be not the optimal setting. However, we find it works well.
|
125 |
+
self.T = 0.9946
|
126 |
+
else:
|
127 |
+
self.T = 1.
|
128 |
+
|
129 |
+
def marginal_log_mean_coeff(self, t):
|
130 |
+
"""
|
131 |
+
Compute log(alpha_t) of a given continuous-time label t in [0, T].
|
132 |
+
"""
|
133 |
+
if self.schedule == 'discrete':
|
134 |
+
return interpolate_fn(t.reshape((-1, 1)), self.t_array.to(t.device), self.log_alpha_array.to(t.device)).reshape((-1))
|
135 |
+
elif self.schedule == 'linear':
|
136 |
+
return -0.25 * t ** 2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0
|
137 |
+
elif self.schedule == 'cosine':
|
138 |
+
log_alpha_fn = lambda s: torch.log(torch.cos((s + self.cosine_s) / (1. + self.cosine_s) * math.pi / 2.))
|
139 |
+
log_alpha_t = log_alpha_fn(t) - self.cosine_log_alpha_0
|
140 |
+
return log_alpha_t
|
141 |
+
|
142 |
+
def marginal_alpha(self, t):
|
143 |
+
"""
|
144 |
+
Compute alpha_t of a given continuous-time label t in [0, T].
|
145 |
+
"""
|
146 |
+
return torch.exp(self.marginal_log_mean_coeff(t))
|
147 |
+
|
148 |
+
def marginal_std(self, t):
|
149 |
+
"""
|
150 |
+
Compute sigma_t of a given continuous-time label t in [0, T].
|
151 |
+
"""
|
152 |
+
return torch.sqrt(1. - torch.exp(2. * self.marginal_log_mean_coeff(t)))
|
153 |
+
|
154 |
+
def marginal_lambda(self, t):
|
155 |
+
"""
|
156 |
+
Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T].
|
157 |
+
"""
|
158 |
+
log_mean_coeff = self.marginal_log_mean_coeff(t)
|
159 |
+
log_std = 0.5 * torch.log(1. - torch.exp(2. * log_mean_coeff))
|
160 |
+
return log_mean_coeff - log_std
|
161 |
+
|
162 |
+
def inverse_lambda(self, lamb):
|
163 |
+
"""
|
164 |
+
Compute the continuous-time label t in [0, T] of a given half-logSNR lambda_t.
|
165 |
+
"""
|
166 |
+
if self.schedule == 'linear':
|
167 |
+
tmp = 2. * (self.beta_1 - self.beta_0) * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
|
168 |
+
Delta = self.beta_0**2 + tmp
|
169 |
+
return tmp / (torch.sqrt(Delta) + self.beta_0) / (self.beta_1 - self.beta_0)
|
170 |
+
elif self.schedule == 'discrete':
|
171 |
+
log_alpha = -0.5 * torch.logaddexp(torch.zeros((1,)).to(lamb.device), -2. * lamb)
|
172 |
+
t = interpolate_fn(log_alpha.reshape((-1, 1)), torch.flip(self.log_alpha_array.to(lamb.device), [1]), torch.flip(self.t_array.to(lamb.device), [1]))
|
173 |
+
return t.reshape((-1,))
|
174 |
+
else:
|
175 |
+
log_alpha = -0.5 * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
|
176 |
+
t_fn = lambda log_alpha_t: torch.arccos(torch.exp(log_alpha_t + self.cosine_log_alpha_0)) * 2. * (1. + self.cosine_s) / math.pi - self.cosine_s
|
177 |
+
t = t_fn(log_alpha)
|
178 |
+
return t
|
179 |
+
|
180 |
+
|
181 |
+
def model_wrapper(
|
182 |
+
model,
|
183 |
+
noise_schedule,
|
184 |
+
model_type="noise",
|
185 |
+
model_kwargs={},
|
186 |
+
guidance_type="uncond",
|
187 |
+
condition=None,
|
188 |
+
unconditional_condition=None,
|
189 |
+
guidance_scale=1.,
|
190 |
+
classifier_fn=None,
|
191 |
+
classifier_kwargs={},
|
192 |
+
):
|
193 |
+
"""Create a wrapper function for the noise prediction model.
|
194 |
+
|
195 |
+
DPM-Solver needs to solve the continuous-time diffusion ODEs. For DPMs trained on discrete-time labels, we need to
|
196 |
+
firstly wrap the model function to a noise prediction model that accepts the continuous time as the input.
|
197 |
+
|
198 |
+
We support four types of the diffusion model by setting `model_type`:
|
199 |
+
|
200 |
+
1. "noise": noise prediction model. (Trained by predicting noise).
|
201 |
+
|
202 |
+
2. "x_start": data prediction model. (Trained by predicting the data x_0 at time 0).
|
203 |
+
|
204 |
+
3. "v": velocity prediction model. (Trained by predicting the velocity).
|
205 |
+
The "v" prediction is derivation detailed in Appendix D of [1], and is used in Imagen-Video [2].
|
206 |
+
|
207 |
+
[1] Salimans, Tim, and Jonathan Ho. "Progressive distillation for fast sampling of diffusion models."
|
208 |
+
arXiv preprint arXiv:2202.00512 (2022).
|
209 |
+
[2] Ho, Jonathan, et al. "Imagen Video: High Definition Video Generation with Diffusion Models."
|
210 |
+
arXiv preprint arXiv:2210.02303 (2022).
|
211 |
+
|
212 |
+
4. "score": marginal score function. (Trained by denoising score matching).
|
213 |
+
Note that the score function and the noise prediction model follows a simple relationship:
|
214 |
+
```
|
215 |
+
noise(x_t, t) = -sigma_t * score(x_t, t)
|
216 |
+
```
|
217 |
+
|
218 |
+
We support three types of guided sampling by DPMs by setting `guidance_type`:
|
219 |
+
1. "uncond": unconditional sampling by DPMs.
|
220 |
+
The input `model` has the following format:
|
221 |
+
``
|
222 |
+
model(x, t_input, **model_kwargs) -> noise | x_start | v | score
|
223 |
+
``
|
224 |
+
|
225 |
+
2. "classifier": classifier guidance sampling [3] by DPMs and another classifier.
|
226 |
+
The input `model` has the following format:
|
227 |
+
``
|
228 |
+
model(x, t_input, **model_kwargs) -> noise | x_start | v | score
|
229 |
+
``
|
230 |
+
|
231 |
+
The input `classifier_fn` has the following format:
|
232 |
+
``
|
233 |
+
classifier_fn(x, t_input, cond, **classifier_kwargs) -> logits(x, t_input, cond)
|
234 |
+
``
|
235 |
+
|
236 |
+
[3] P. Dhariwal and A. Q. Nichol, "Diffusion models beat GANs on image synthesis,"
|
237 |
+
in Advances in Neural Information Processing Systems, vol. 34, 2021, pp. 8780-8794.
|
238 |
+
|
239 |
+
3. "classifier-free": classifier-free guidance sampling by conditional DPMs.
|
240 |
+
The input `model` has the following format:
|
241 |
+
``
|
242 |
+
model(x, t_input, cond, **model_kwargs) -> noise | x_start | v | score
|
243 |
+
``
|
244 |
+
And if cond == `unconditional_condition`, the model output is the unconditional DPM output.
|
245 |
+
|
246 |
+
[4] Ho, Jonathan, and Tim Salimans. "Classifier-free diffusion guidance."
|
247 |
+
arXiv preprint arXiv:2207.12598 (2022).
|
248 |
+
|
249 |
+
|
250 |
+
The `t_input` is the time label of the model, which may be discrete-time labels (i.e. 0 to 999)
|
251 |
+
or continuous-time labels (i.e. epsilon to T).
|
252 |
+
|
253 |
+
We wrap the model function to accept only `x` and `t_continuous` as inputs, and outputs the predicted noise:
|
254 |
+
``
|
255 |
+
def model_fn(x, t_continuous) -> noise:
|
256 |
+
t_input = get_model_input_time(t_continuous)
|
257 |
+
return noise_pred(model, x, t_input, **model_kwargs)
|
258 |
+
``
|
259 |
+
where `t_continuous` is the continuous time labels (i.e. epsilon to T). And we use `model_fn` for DPM-Solver.
|
260 |
+
|
261 |
+
===============================================================
|
262 |
+
|
263 |
+
Args:
|
264 |
+
model: A diffusion model with the corresponding format described above.
|
265 |
+
noise_schedule: A noise schedule object, such as NoiseScheduleVP.
|
266 |
+
model_type: A `str`. The parameterization type of the diffusion model.
|
267 |
+
"noise" or "x_start" or "v" or "score".
|
268 |
+
model_kwargs: A `dict`. A dict for the other inputs of the model function.
|
269 |
+
guidance_type: A `str`. The type of the guidance for sampling.
|
270 |
+
"uncond" or "classifier" or "classifier-free".
|
271 |
+
condition: A pytorch tensor. The condition for the guided sampling.
|
272 |
+
Only used for "classifier" or "classifier-free" guidance type.
|
273 |
+
unconditional_condition: A pytorch tensor. The condition for the unconditional sampling.
|
274 |
+
Only used for "classifier-free" guidance type.
|
275 |
+
guidance_scale: A `float`. The scale for the guided sampling.
|
276 |
+
classifier_fn: A classifier function. Only used for the classifier guidance.
|
277 |
+
classifier_kwargs: A `dict`. A dict for the other inputs of the classifier function.
|
278 |
+
Returns:
|
279 |
+
A noise prediction model that accepts the noised data and the continuous time as the inputs.
|
280 |
+
"""
|
281 |
+
|
282 |
+
def get_model_input_time(t_continuous):
|
283 |
+
"""
|
284 |
+
Convert the continuous-time `t_continuous` (in [epsilon, T]) to the model input time.
|
285 |
+
For discrete-time DPMs, we convert `t_continuous` in [1 / N, 1] to `t_input` in [0, 1000 * (N - 1) / N].
|
286 |
+
For continuous-time DPMs, we just use `t_continuous`.
|
287 |
+
"""
|
288 |
+
if noise_schedule.schedule == 'discrete':
|
289 |
+
return (t_continuous - 1. / noise_schedule.total_N) * 1000.
|
290 |
+
else:
|
291 |
+
return t_continuous
|
292 |
+
|
293 |
+
def noise_pred_fn(x, t_continuous, cond=None):
|
294 |
+
if t_continuous.reshape((-1,)).shape[0] == 1:
|
295 |
+
t_continuous = t_continuous.expand((x.shape[0]))
|
296 |
+
t_input = get_model_input_time(t_continuous)
|
297 |
+
output = model(x, t_input, **model_kwargs)
|
298 |
+
if model_type == "noise":
|
299 |
+
return output
|
300 |
+
elif model_type == "x_start":
|
301 |
+
alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
|
302 |
+
dims = x.dim()
|
303 |
+
return (x - expand_dims(alpha_t, dims) * output) / expand_dims(sigma_t, dims)
|
304 |
+
elif model_type == "v":
|
305 |
+
alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
|
306 |
+
dims = x.dim()
|
307 |
+
return expand_dims(alpha_t, dims) * output + expand_dims(sigma_t, dims) * x
|
308 |
+
elif model_type == "score":
|
309 |
+
sigma_t = noise_schedule.marginal_std(t_continuous)
|
310 |
+
dims = x.dim()
|
311 |
+
return -expand_dims(sigma_t, dims) * output
|
312 |
+
|
313 |
+
def cond_grad_fn(x, t_input):
|
314 |
+
"""
|
315 |
+
Compute the gradient of the classifier, i.e. nabla_{x} log p_t(cond | x_t).
|
316 |
+
"""
|
317 |
+
with torch.enable_grad():
|
318 |
+
x_in = x.detach().requires_grad_(True)
|
319 |
+
log_prob = classifier_fn(x_in, t_input, condition, **classifier_kwargs)
|
320 |
+
return torch.autograd.grad(log_prob.sum(), x_in)[0]
|
321 |
+
|
322 |
+
def model_fn(x, t_continuous):
|
323 |
+
"""
|
324 |
+
The noise predicition model function that is used for DPM-Solver.
|
325 |
+
"""
|
326 |
+
if t_continuous.reshape((-1,)).shape[0] == 1:
|
327 |
+
t_continuous = t_continuous.expand((x.shape[0]))
|
328 |
+
if guidance_type == "uncond":
|
329 |
+
return noise_pred_fn(x, t_continuous)
|
330 |
+
elif guidance_type == "classifier":
|
331 |
+
assert classifier_fn is not None
|
332 |
+
t_input = get_model_input_time(t_continuous)
|
333 |
+
cond_grad = cond_grad_fn(x, t_input)
|
334 |
+
sigma_t = noise_schedule.marginal_std(t_continuous)
|
335 |
+
noise = noise_pred_fn(x, t_continuous)
|
336 |
+
return noise - guidance_scale * expand_dims(sigma_t, dims=cond_grad.dim()) * cond_grad
|
337 |
+
elif guidance_type == "classifier-free":
|
338 |
+
if guidance_scale == 1. or unconditional_condition is None:
|
339 |
+
return noise_pred_fn(x, t_continuous, cond=condition)
|
340 |
+
else:
|
341 |
+
x_in = torch.cat([x] * 2)
|
342 |
+
t_in = torch.cat([t_continuous] * 2)
|
343 |
+
c_in = torch.cat([unconditional_condition, condition])
|
344 |
+
noise_uncond, noise = noise_pred_fn(x_in, t_in, cond=c_in).chunk(2)
|
345 |
+
return noise_uncond + guidance_scale * (noise - noise_uncond)
|
346 |
+
|
347 |
+
assert model_type in ["noise", "x_start", "v"]
|
348 |
+
assert guidance_type in ["uncond", "classifier", "classifier-free"]
|
349 |
+
return model_fn
|
350 |
+
|
351 |
+
|
352 |
+
class UniPC:
|
353 |
+
def __init__(
|
354 |
+
self,
|
355 |
+
model_fn,
|
356 |
+
noise_schedule,
|
357 |
+
predict_x0=True,
|
358 |
+
thresholding=False,
|
359 |
+
max_val=1.,
|
360 |
+
variant='bh1',
|
361 |
+
):
|
362 |
+
"""Construct a UniPC.
|
363 |
+
|
364 |
+
We support both data_prediction and noise_prediction.
|
365 |
+
"""
|
366 |
+
self.model = model_fn
|
367 |
+
self.noise_schedule = noise_schedule
|
368 |
+
self.variant = variant
|
369 |
+
self.predict_x0 = predict_x0
|
370 |
+
self.thresholding = thresholding
|
371 |
+
self.max_val = max_val
|
372 |
+
|
373 |
+
def dynamic_thresholding_fn(self, x0, t=None):
|
374 |
+
"""
|
375 |
+
The dynamic thresholding method.
|
376 |
+
"""
|
377 |
+
dims = x0.dim()
|
378 |
+
p = self.dynamic_thresholding_ratio
|
379 |
+
s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1)
|
380 |
+
s = expand_dims(torch.maximum(s, self.thresholding_max_val * torch.ones_like(s).to(s.device)), dims)
|
381 |
+
x0 = torch.clamp(x0, -s, s) / s
|
382 |
+
return x0
|
383 |
+
|
384 |
+
def noise_prediction_fn(self, x, t):
|
385 |
+
"""
|
386 |
+
Return the noise prediction model.
|
387 |
+
"""
|
388 |
+
return self.model(x, t)
|
389 |
+
|
390 |
+
def data_prediction_fn(self, x, t):
|
391 |
+
"""
|
392 |
+
Return the data prediction model (with thresholding).
|
393 |
+
"""
|
394 |
+
noise = self.noise_prediction_fn(x, t)
|
395 |
+
dims = x.dim()
|
396 |
+
alpha_t, sigma_t = self.noise_schedule.marginal_alpha(t), self.noise_schedule.marginal_std(t)
|
397 |
+
x0 = (x - expand_dims(sigma_t, dims) * noise) / expand_dims(alpha_t, dims)
|
398 |
+
if self.thresholding:
|
399 |
+
p = 0.995 # A hyperparameter in the paper of "Imagen" [1].
|
400 |
+
s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1)
|
401 |
+
s = expand_dims(torch.maximum(s, self.max_val * torch.ones_like(s).to(s.device)), dims)
|
402 |
+
x0 = torch.clamp(x0, -s, s) / s
|
403 |
+
return x0
|
404 |
+
|
405 |
+
def model_fn(self, x, t):
|
406 |
+
"""
|
407 |
+
Convert the model to the noise prediction model or the data prediction model.
|
408 |
+
"""
|
409 |
+
if self.predict_x0:
|
410 |
+
return self.data_prediction_fn(x, t)
|
411 |
+
else:
|
412 |
+
return self.noise_prediction_fn(x, t)
|
413 |
+
|
414 |
+
def get_time_steps(self, skip_type, t_T, t_0, N, device):
|
415 |
+
"""Compute the intermediate time steps for sampling.
|
416 |
+
"""
|
417 |
+
if skip_type == 'logSNR':
|
418 |
+
lambda_T = self.noise_schedule.marginal_lambda(torch.tensor(t_T).to(device))
|
419 |
+
lambda_0 = self.noise_schedule.marginal_lambda(torch.tensor(t_0).to(device))
|
420 |
+
logSNR_steps = torch.linspace(lambda_T.cpu().item(), lambda_0.cpu().item(), N + 1).to(device)
|
421 |
+
return self.noise_schedule.inverse_lambda(logSNR_steps)
|
422 |
+
elif skip_type == 'time_uniform':
|
423 |
+
return torch.linspace(t_T, t_0, N + 1).to(device)
|
424 |
+
elif skip_type == 'time_quadratic':
|
425 |
+
t_order = 2
|
426 |
+
t = torch.linspace(t_T**(1. / t_order), t_0**(1. / t_order), N + 1).pow(t_order).to(device)
|
427 |
+
return t
|
428 |
+
else:
|
429 |
+
raise ValueError("Unsupported skip_type {}, need to be 'logSNR' or 'time_uniform' or 'time_quadratic'".format(skip_type))
|
430 |
+
|
431 |
+
def get_orders_and_timesteps_for_singlestep_solver(self, steps, order, skip_type, t_T, t_0, device):
|
432 |
+
"""
|
433 |
+
Get the order of each step for sampling by the singlestep DPM-Solver.
|
434 |
+
"""
|
435 |
+
if order == 3:
|
436 |
+
K = steps // 3 + 1
|
437 |
+
if steps % 3 == 0:
|
438 |
+
orders = [3,] * (K - 2) + [2, 1]
|
439 |
+
elif steps % 3 == 1:
|
440 |
+
orders = [3,] * (K - 1) + [1]
|
441 |
+
else:
|
442 |
+
orders = [3,] * (K - 1) + [2]
|
443 |
+
elif order == 2:
|
444 |
+
if steps % 2 == 0:
|
445 |
+
K = steps // 2
|
446 |
+
orders = [2,] * K
|
447 |
+
else:
|
448 |
+
K = steps // 2 + 1
|
449 |
+
orders = [2,] * (K - 1) + [1]
|
450 |
+
elif order == 1:
|
451 |
+
K = steps
|
452 |
+
orders = [1,] * steps
|
453 |
+
else:
|
454 |
+
raise ValueError("'order' must be '1' or '2' or '3'.")
|
455 |
+
if skip_type == 'logSNR':
|
456 |
+
# To reproduce the results in DPM-Solver paper
|
457 |
+
timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, K, device)
|
458 |
+
else:
|
459 |
+
timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, steps, device)[torch.cumsum(torch.tensor([0,] + orders), 0).to(device)]
|
460 |
+
return timesteps_outer, orders
|
461 |
+
|
462 |
+
def denoise_to_zero_fn(self, x, s):
|
463 |
+
"""
|
464 |
+
Denoise at the final step, which is equivalent to solve the ODE from lambda_s to infty by first-order discretization.
|
465 |
+
"""
|
466 |
+
return self.data_prediction_fn(x, s)
|
467 |
+
|
468 |
+
def multistep_uni_pc_update(self, x, model_prev_list, t_prev_list, t, order, **kwargs):
|
469 |
+
if len(t.shape) == 0:
|
470 |
+
t = t.view(-1)
|
471 |
+
if 'bh' in self.variant:
|
472 |
+
return self.multistep_uni_pc_bh_update(x, model_prev_list, t_prev_list, t, order, **kwargs)
|
473 |
+
else:
|
474 |
+
assert self.variant == 'vary_coeff'
|
475 |
+
return self.multistep_uni_pc_vary_update(x, model_prev_list, t_prev_list, t, order, **kwargs)
|
476 |
+
|
477 |
+
def multistep_uni_pc_vary_update(self, x, model_prev_list, t_prev_list, t, order, use_corrector=True):
|
478 |
+
print(f'using unified predictor-corrector with order {order} (solver type: vary coeff)')
|
479 |
+
ns = self.noise_schedule
|
480 |
+
assert order <= len(model_prev_list)
|
481 |
+
|
482 |
+
# first compute rks
|
483 |
+
t_prev_0 = t_prev_list[-1]
|
484 |
+
lambda_prev_0 = ns.marginal_lambda(t_prev_0)
|
485 |
+
lambda_t = ns.marginal_lambda(t)
|
486 |
+
model_prev_0 = model_prev_list[-1]
|
487 |
+
sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
|
488 |
+
log_alpha_t = ns.marginal_log_mean_coeff(t)
|
489 |
+
alpha_t = torch.exp(log_alpha_t)
|
490 |
+
|
491 |
+
h = lambda_t - lambda_prev_0
|
492 |
+
|
493 |
+
rks = []
|
494 |
+
D1s = []
|
495 |
+
for i in range(1, order):
|
496 |
+
t_prev_i = t_prev_list[-(i + 1)]
|
497 |
+
model_prev_i = model_prev_list[-(i + 1)]
|
498 |
+
lambda_prev_i = ns.marginal_lambda(t_prev_i)
|
499 |
+
rk = (lambda_prev_i - lambda_prev_0) / h
|
500 |
+
rks.append(rk)
|
501 |
+
D1s.append((model_prev_i - model_prev_0) / rk)
|
502 |
+
|
503 |
+
rks.append(1.)
|
504 |
+
rks = torch.tensor(rks, device=x.device)
|
505 |
+
|
506 |
+
K = len(rks)
|
507 |
+
# build C matrix
|
508 |
+
C = []
|
509 |
+
|
510 |
+
col = torch.ones_like(rks)
|
511 |
+
for k in range(1, K + 1):
|
512 |
+
C.append(col)
|
513 |
+
col = col * rks / (k + 1)
|
514 |
+
C = torch.stack(C, dim=1)
|
515 |
+
|
516 |
+
if len(D1s) > 0:
|
517 |
+
D1s = torch.stack(D1s, dim=1) # (B, K)
|
518 |
+
C_inv_p = torch.linalg.inv(C[:-1, :-1])
|
519 |
+
A_p = C_inv_p
|
520 |
+
|
521 |
+
if use_corrector:
|
522 |
+
print('using corrector')
|
523 |
+
C_inv = torch.linalg.inv(C)
|
524 |
+
A_c = C_inv
|
525 |
+
|
526 |
+
hh = -h if self.predict_x0 else h
|
527 |
+
h_phi_1 = torch.expm1(hh)
|
528 |
+
h_phi_ks = []
|
529 |
+
factorial_k = 1
|
530 |
+
h_phi_k = h_phi_1
|
531 |
+
for k in range(1, K + 2):
|
532 |
+
h_phi_ks.append(h_phi_k)
|
533 |
+
h_phi_k = h_phi_k / hh - 1 / factorial_k
|
534 |
+
factorial_k *= (k + 1)
|
535 |
+
|
536 |
+
model_t = None
|
537 |
+
if self.predict_x0:
|
538 |
+
x_t_ = (
|
539 |
+
sigma_t / sigma_prev_0 * x
|
540 |
+
- alpha_t * h_phi_1 * model_prev_0
|
541 |
+
)
|
542 |
+
# now predictor
|
543 |
+
x_t = x_t_
|
544 |
+
if len(D1s) > 0:
|
545 |
+
# compute the residuals for predictor
|
546 |
+
for k in range(K - 1):
|
547 |
+
x_t = x_t - alpha_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_p[k])
|
548 |
+
# now corrector
|
549 |
+
if use_corrector:
|
550 |
+
model_t = self.model_fn(x_t, t)
|
551 |
+
D1_t = (model_t - model_prev_0)
|
552 |
+
x_t = x_t_
|
553 |
+
k = 0
|
554 |
+
for k in range(K - 1):
|
555 |
+
x_t = x_t - alpha_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_c[k][:-1])
|
556 |
+
x_t = x_t - alpha_t * h_phi_ks[K] * (D1_t * A_c[k][-1])
|
557 |
+
else:
|
558 |
+
log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
|
559 |
+
x_t_ = (
|
560 |
+
(torch.exp(log_alpha_t - log_alpha_prev_0)) * x
|
561 |
+
- (sigma_t * h_phi_1) * model_prev_0
|
562 |
+
)
|
563 |
+
# now predictor
|
564 |
+
x_t = x_t_
|
565 |
+
if len(D1s) > 0:
|
566 |
+
# compute the residuals for predictor
|
567 |
+
for k in range(K - 1):
|
568 |
+
x_t = x_t - sigma_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_p[k])
|
569 |
+
# now corrector
|
570 |
+
if use_corrector:
|
571 |
+
model_t = self.model_fn(x_t, t)
|
572 |
+
D1_t = (model_t - model_prev_0)
|
573 |
+
x_t = x_t_
|
574 |
+
k = 0
|
575 |
+
for k in range(K - 1):
|
576 |
+
x_t = x_t - sigma_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_c[k][:-1])
|
577 |
+
x_t = x_t - sigma_t * h_phi_ks[K] * (D1_t * A_c[k][-1])
|
578 |
+
return x_t, model_t
|
579 |
+
|
580 |
+
def multistep_uni_pc_bh_update(self, x, model_prev_list, t_prev_list, t, order, x_t=None, use_corrector=True):
|
581 |
+
# print(f'using unified predictor-corrector with order {order} (solver type: B(h))')
|
582 |
+
ns = self.noise_schedule
|
583 |
+
assert order <= len(model_prev_list)
|
584 |
+
dims = x.dim()
|
585 |
+
|
586 |
+
# first compute rks
|
587 |
+
t_prev_0 = t_prev_list[-1]
|
588 |
+
lambda_prev_0 = ns.marginal_lambda(t_prev_0)
|
589 |
+
lambda_t = ns.marginal_lambda(t)
|
590 |
+
model_prev_0 = model_prev_list[-1]
|
591 |
+
sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
|
592 |
+
log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
|
593 |
+
alpha_t = torch.exp(log_alpha_t)
|
594 |
+
|
595 |
+
h = lambda_t - lambda_prev_0
|
596 |
+
|
597 |
+
rks = []
|
598 |
+
D1s = []
|
599 |
+
for i in range(1, order):
|
600 |
+
t_prev_i = t_prev_list[-(i + 1)]
|
601 |
+
model_prev_i = model_prev_list[-(i + 1)]
|
602 |
+
lambda_prev_i = ns.marginal_lambda(t_prev_i)
|
603 |
+
rk = ((lambda_prev_i - lambda_prev_0) / h)[0]
|
604 |
+
rks.append(rk)
|
605 |
+
D1s.append((model_prev_i - model_prev_0) / rk)
|
606 |
+
|
607 |
+
rks.append(1.)
|
608 |
+
rks = torch.tensor(rks, device=x.device)
|
609 |
+
|
610 |
+
R = []
|
611 |
+
b = []
|
612 |
+
|
613 |
+
hh = -h[0] if self.predict_x0 else h[0]
|
614 |
+
h_phi_1 = torch.expm1(hh) # h\phi_1(h) = e^h - 1
|
615 |
+
h_phi_k = h_phi_1 / hh - 1
|
616 |
+
|
617 |
+
factorial_i = 1
|
618 |
+
|
619 |
+
if self.variant == 'bh1':
|
620 |
+
B_h = hh
|
621 |
+
elif self.variant == 'bh2':
|
622 |
+
B_h = torch.expm1(hh)
|
623 |
+
else:
|
624 |
+
raise NotImplementedError()
|
625 |
+
|
626 |
+
for i in range(1, order + 1):
|
627 |
+
R.append(torch.pow(rks, i - 1))
|
628 |
+
b.append(h_phi_k * factorial_i / B_h)
|
629 |
+
factorial_i *= (i + 1)
|
630 |
+
h_phi_k = h_phi_k / hh - 1 / factorial_i
|
631 |
+
|
632 |
+
R = torch.stack(R)
|
633 |
+
b = torch.tensor(b, device=x.device)
|
634 |
+
|
635 |
+
# now predictor
|
636 |
+
use_predictor = len(D1s) > 0 and x_t is None
|
637 |
+
if len(D1s) > 0:
|
638 |
+
D1s = torch.stack(D1s, dim=1) # (B, K)
|
639 |
+
if x_t is None:
|
640 |
+
# for order 2, we use a simplified version
|
641 |
+
if order == 2:
|
642 |
+
rhos_p = torch.tensor([0.5], device=b.device)
|
643 |
+
else:
|
644 |
+
rhos_p = torch.linalg.solve(R[:-1, :-1], b[:-1])
|
645 |
+
else:
|
646 |
+
D1s = None
|
647 |
+
|
648 |
+
if use_corrector:
|
649 |
+
# print('using corrector')
|
650 |
+
# for order 1, we use a simplified version
|
651 |
+
if order == 1:
|
652 |
+
rhos_c = torch.tensor([0.5], device=b.device)
|
653 |
+
else:
|
654 |
+
rhos_c = torch.linalg.solve(R, b)
|
655 |
+
|
656 |
+
model_t = None
|
657 |
+
if self.predict_x0:
|
658 |
+
x_t_ = (
|
659 |
+
expand_dims(sigma_t / sigma_prev_0, dims) * x
|
660 |
+
- expand_dims(alpha_t * h_phi_1, dims)* model_prev_0
|
661 |
+
)
|
662 |
+
|
663 |
+
if x_t is None:
|
664 |
+
if use_predictor:
|
665 |
+
pred_res = torch.einsum('k,bkchw->bchw', rhos_p, D1s)
|
666 |
+
else:
|
667 |
+
pred_res = 0
|
668 |
+
x_t = x_t_ - expand_dims(alpha_t * B_h, dims) * pred_res
|
669 |
+
|
670 |
+
if use_corrector:
|
671 |
+
model_t = self.model_fn(x_t, t)
|
672 |
+
if D1s is not None:
|
673 |
+
corr_res = torch.einsum('k,bkchw->bchw', rhos_c[:-1], D1s)
|
674 |
+
else:
|
675 |
+
corr_res = 0
|
676 |
+
D1_t = (model_t - model_prev_0)
|
677 |
+
x_t = x_t_ - expand_dims(alpha_t * B_h, dims) * (corr_res + rhos_c[-1] * D1_t)
|
678 |
+
else:
|
679 |
+
x_t_ = (
|
680 |
+
expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
|
681 |
+
- expand_dims(sigma_t * h_phi_1, dims) * model_prev_0
|
682 |
+
)
|
683 |
+
if x_t is None:
|
684 |
+
if use_predictor:
|
685 |
+
pred_res = torch.einsum('k,bkchw->bchw', rhos_p, D1s)
|
686 |
+
else:
|
687 |
+
pred_res = 0
|
688 |
+
x_t = x_t_ - expand_dims(sigma_t * B_h, dims) * pred_res
|
689 |
+
|
690 |
+
if use_corrector:
|
691 |
+
model_t = self.model_fn(x_t, t)
|
692 |
+
if D1s is not None:
|
693 |
+
corr_res = torch.einsum('k,bkchw->bchw', rhos_c[:-1], D1s)
|
694 |
+
else:
|
695 |
+
corr_res = 0
|
696 |
+
D1_t = (model_t - model_prev_0)
|
697 |
+
x_t = x_t_ - expand_dims(sigma_t * B_h, dims) * (corr_res + rhos_c[-1] * D1_t)
|
698 |
+
return x_t, model_t
|
699 |
+
|
700 |
+
|
701 |
+
def sample(self, x, timesteps, t_start=None, t_end=None, order=3, skip_type='time_uniform',
|
702 |
+
method='singlestep', lower_order_final=True, denoise_to_zero=False, solver_type='dpm_solver',
|
703 |
+
atol=0.0078, rtol=0.05, corrector=False, callback=None, disable_pbar=False
|
704 |
+
):
|
705 |
+
# t_0 = 1. / self.noise_schedule.total_N if t_end is None else t_end
|
706 |
+
# t_T = self.noise_schedule.T if t_start is None else t_start
|
707 |
+
device = x.device
|
708 |
+
steps = len(timesteps) - 1
|
709 |
+
if method == 'multistep':
|
710 |
+
assert steps >= order
|
711 |
+
# timesteps = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=steps, device=device)
|
712 |
+
assert timesteps.shape[0] - 1 == steps
|
713 |
+
# with torch.no_grad():
|
714 |
+
for step_index in trange(steps, disable=disable_pbar):
|
715 |
+
if step_index == 0:
|
716 |
+
vec_t = timesteps[0].expand((x.shape[0]))
|
717 |
+
model_prev_list = [self.model_fn(x, vec_t)]
|
718 |
+
t_prev_list = [vec_t]
|
719 |
+
elif step_index < order:
|
720 |
+
init_order = step_index
|
721 |
+
# Init the first `order` values by lower order multistep DPM-Solver.
|
722 |
+
# for init_order in range(1, order):
|
723 |
+
vec_t = timesteps[init_order].expand(x.shape[0])
|
724 |
+
x, model_x = self.multistep_uni_pc_update(x, model_prev_list, t_prev_list, vec_t, init_order, use_corrector=True)
|
725 |
+
if model_x is None:
|
726 |
+
model_x = self.model_fn(x, vec_t)
|
727 |
+
model_prev_list.append(model_x)
|
728 |
+
t_prev_list.append(vec_t)
|
729 |
+
else:
|
730 |
+
extra_final_step = 0
|
731 |
+
if step_index == (steps - 1):
|
732 |
+
extra_final_step = 1
|
733 |
+
for step in range(step_index, step_index + 1 + extra_final_step):
|
734 |
+
vec_t = timesteps[step].expand(x.shape[0])
|
735 |
+
if lower_order_final:
|
736 |
+
step_order = min(order, steps + 1 - step)
|
737 |
+
else:
|
738 |
+
step_order = order
|
739 |
+
# print('this step order:', step_order)
|
740 |
+
if step == steps:
|
741 |
+
# print('do not run corrector at the last step')
|
742 |
+
use_corrector = False
|
743 |
+
else:
|
744 |
+
use_corrector = True
|
745 |
+
x, model_x = self.multistep_uni_pc_update(x, model_prev_list, t_prev_list, vec_t, step_order, use_corrector=use_corrector)
|
746 |
+
for i in range(order - 1):
|
747 |
+
t_prev_list[i] = t_prev_list[i + 1]
|
748 |
+
model_prev_list[i] = model_prev_list[i + 1]
|
749 |
+
t_prev_list[-1] = vec_t
|
750 |
+
# We do not need to evaluate the final model value.
|
751 |
+
if step < steps:
|
752 |
+
if model_x is None:
|
753 |
+
model_x = self.model_fn(x, vec_t)
|
754 |
+
model_prev_list[-1] = model_x
|
755 |
+
if callback is not None:
|
756 |
+
callback({'x': x, 'i': step_index, 'denoised': model_prev_list[-1]})
|
757 |
+
else:
|
758 |
+
raise NotImplementedError()
|
759 |
+
# if denoise_to_zero:
|
760 |
+
# x = self.denoise_to_zero_fn(x, torch.ones((x.shape[0],)).to(device) * t_0)
|
761 |
+
return x
|
762 |
+
|
763 |
+
|
764 |
+
#############################################################
|
765 |
+
# other utility functions
|
766 |
+
#############################################################
|
767 |
+
|
768 |
+
def interpolate_fn(x, xp, yp):
|
769 |
+
"""
|
770 |
+
A piecewise linear function y = f(x), using xp and yp as keypoints.
|
771 |
+
We implement f(x) in a differentiable way (i.e. applicable for autograd).
|
772 |
+
The function f(x) is well-defined for all x-axis. (For x beyond the bounds of xp, we use the outmost points of xp to define the linear function.)
|
773 |
+
|
774 |
+
Args:
|
775 |
+
x: PyTorch tensor with shape [N, C], where N is the batch size, C is the number of channels (we use C = 1 for DPM-Solver).
|
776 |
+
xp: PyTorch tensor with shape [C, K], where K is the number of keypoints.
|
777 |
+
yp: PyTorch tensor with shape [C, K].
|
778 |
+
Returns:
|
779 |
+
The function values f(x), with shape [N, C].
|
780 |
+
"""
|
781 |
+
N, K = x.shape[0], xp.shape[1]
|
782 |
+
all_x = torch.cat([x.unsqueeze(2), xp.unsqueeze(0).repeat((N, 1, 1))], dim=2)
|
783 |
+
sorted_all_x, x_indices = torch.sort(all_x, dim=2)
|
784 |
+
x_idx = torch.argmin(x_indices, dim=2)
|
785 |
+
cand_start_idx = x_idx - 1
|
786 |
+
start_idx = torch.where(
|
787 |
+
torch.eq(x_idx, 0),
|
788 |
+
torch.tensor(1, device=x.device),
|
789 |
+
torch.where(
|
790 |
+
torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
|
791 |
+
),
|
792 |
+
)
|
793 |
+
end_idx = torch.where(torch.eq(start_idx, cand_start_idx), start_idx + 2, start_idx + 1)
|
794 |
+
start_x = torch.gather(sorted_all_x, dim=2, index=start_idx.unsqueeze(2)).squeeze(2)
|
795 |
+
end_x = torch.gather(sorted_all_x, dim=2, index=end_idx.unsqueeze(2)).squeeze(2)
|
796 |
+
start_idx2 = torch.where(
|
797 |
+
torch.eq(x_idx, 0),
|
798 |
+
torch.tensor(0, device=x.device),
|
799 |
+
torch.where(
|
800 |
+
torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
|
801 |
+
),
|
802 |
+
)
|
803 |
+
y_positions_expanded = yp.unsqueeze(0).expand(N, -1, -1)
|
804 |
+
start_y = torch.gather(y_positions_expanded, dim=2, index=start_idx2.unsqueeze(2)).squeeze(2)
|
805 |
+
end_y = torch.gather(y_positions_expanded, dim=2, index=(start_idx2 + 1).unsqueeze(2)).squeeze(2)
|
806 |
+
cand = start_y + (x - start_x) * (end_y - start_y) / (end_x - start_x)
|
807 |
+
return cand
|
808 |
+
|
809 |
+
|
810 |
+
def expand_dims(v, dims):
|
811 |
+
"""
|
812 |
+
Expand the tensor `v` to the dim `dims`.
|
813 |
+
|
814 |
+
Args:
|
815 |
+
`v`: a PyTorch tensor with shape [N].
|
816 |
+
`dim`: a `int`.
|
817 |
+
Returns:
|
818 |
+
a PyTorch tensor with shape [N, 1, 1, ..., 1] and the total dimension is `dims`.
|
819 |
+
"""
|
820 |
+
return v[(...,) + (None,)*(dims - 1)]
|
821 |
+
|
822 |
+
|
823 |
+
class SigmaConvert:
|
824 |
+
schedule = ""
|
825 |
+
def marginal_log_mean_coeff(self, sigma):
|
826 |
+
return 0.5 * torch.log(1 / ((sigma * sigma) + 1))
|
827 |
+
|
828 |
+
def marginal_alpha(self, t):
|
829 |
+
return torch.exp(self.marginal_log_mean_coeff(t))
|
830 |
+
|
831 |
+
def marginal_std(self, t):
|
832 |
+
return torch.sqrt(1. - torch.exp(2. * self.marginal_log_mean_coeff(t)))
|
833 |
+
|
834 |
+
def marginal_lambda(self, t):
|
835 |
+
"""
|
836 |
+
Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T].
|
837 |
+
"""
|
838 |
+
log_mean_coeff = self.marginal_log_mean_coeff(t)
|
839 |
+
log_std = 0.5 * torch.log(1. - torch.exp(2. * log_mean_coeff))
|
840 |
+
return log_mean_coeff - log_std
|
841 |
+
|
842 |
+
def predict_eps_sigma(model, input, sigma_in, **kwargs):
|
843 |
+
sigma = sigma_in.view(sigma_in.shape[:1] + (1,) * (input.ndim - 1))
|
844 |
+
input = input * ((sigma ** 2 + 1.0) ** 0.5)
|
845 |
+
return (input - model(input, sigma_in, **kwargs)) / sigma
|
846 |
+
|
847 |
+
|
848 |
+
def sample_unipc(model, noise, sigmas, extra_args=None, callback=None, disable=False, variant='bh1'):
|
849 |
+
timesteps = sigmas.clone()
|
850 |
+
if sigmas[-1] == 0:
|
851 |
+
timesteps = sigmas[:]
|
852 |
+
timesteps[-1] = 0.001
|
853 |
+
else:
|
854 |
+
timesteps = sigmas.clone()
|
855 |
+
ns = SigmaConvert()
|
856 |
+
|
857 |
+
noise = noise / torch.sqrt(1.0 + timesteps[0] ** 2.0)
|
858 |
+
model_type = "noise"
|
859 |
+
|
860 |
+
model_fn = model_wrapper(
|
861 |
+
lambda input, sigma, **kwargs: predict_eps_sigma(model, input, sigma, **kwargs),
|
862 |
+
ns,
|
863 |
+
model_type=model_type,
|
864 |
+
guidance_type="uncond",
|
865 |
+
model_kwargs=extra_args,
|
866 |
+
)
|
867 |
+
|
868 |
+
order = min(3, len(timesteps) - 2)
|
869 |
+
uni_pc = UniPC(model_fn, ns, predict_x0=True, thresholding=False, variant=variant)
|
870 |
+
x = uni_pc.sample(noise, timesteps=timesteps, skip_type="time_uniform", method="multistep", order=order, lower_order_final=True, callback=callback, disable_pbar=disable)
|
871 |
+
x /= ns.marginal_alpha(timesteps[-1])
|
872 |
+
return x
|
873 |
+
|
874 |
+
def sample_unipc_bh2(model, noise, sigmas, extra_args=None, callback=None, disable=False):
|
875 |
+
return sample_unipc(model, noise, sigmas, extra_args, callback, disable, variant='bh2')
|
comfy/gligen.py
ADDED
@@ -0,0 +1,343 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
from .ldm.modules.attention import CrossAttention
|
4 |
+
from inspect import isfunction
|
5 |
+
import comfy.ops
|
6 |
+
ops = comfy.ops.manual_cast
|
7 |
+
|
8 |
+
def exists(val):
|
9 |
+
return val is not None
|
10 |
+
|
11 |
+
|
12 |
+
def uniq(arr):
|
13 |
+
return{el: True for el in arr}.keys()
|
14 |
+
|
15 |
+
|
16 |
+
def default(val, d):
|
17 |
+
if exists(val):
|
18 |
+
return val
|
19 |
+
return d() if isfunction(d) else d
|
20 |
+
|
21 |
+
|
22 |
+
# feedforward
|
23 |
+
class GEGLU(nn.Module):
|
24 |
+
def __init__(self, dim_in, dim_out):
|
25 |
+
super().__init__()
|
26 |
+
self.proj = ops.Linear(dim_in, dim_out * 2)
|
27 |
+
|
28 |
+
def forward(self, x):
|
29 |
+
x, gate = self.proj(x).chunk(2, dim=-1)
|
30 |
+
return x * torch.nn.functional.gelu(gate)
|
31 |
+
|
32 |
+
|
33 |
+
class FeedForward(nn.Module):
|
34 |
+
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
|
35 |
+
super().__init__()
|
36 |
+
inner_dim = int(dim * mult)
|
37 |
+
dim_out = default(dim_out, dim)
|
38 |
+
project_in = nn.Sequential(
|
39 |
+
ops.Linear(dim, inner_dim),
|
40 |
+
nn.GELU()
|
41 |
+
) if not glu else GEGLU(dim, inner_dim)
|
42 |
+
|
43 |
+
self.net = nn.Sequential(
|
44 |
+
project_in,
|
45 |
+
nn.Dropout(dropout),
|
46 |
+
ops.Linear(inner_dim, dim_out)
|
47 |
+
)
|
48 |
+
|
49 |
+
def forward(self, x):
|
50 |
+
return self.net(x)
|
51 |
+
|
52 |
+
|
53 |
+
class GatedCrossAttentionDense(nn.Module):
|
54 |
+
def __init__(self, query_dim, context_dim, n_heads, d_head):
|
55 |
+
super().__init__()
|
56 |
+
|
57 |
+
self.attn = CrossAttention(
|
58 |
+
query_dim=query_dim,
|
59 |
+
context_dim=context_dim,
|
60 |
+
heads=n_heads,
|
61 |
+
dim_head=d_head,
|
62 |
+
operations=ops)
|
63 |
+
self.ff = FeedForward(query_dim, glu=True)
|
64 |
+
|
65 |
+
self.norm1 = ops.LayerNorm(query_dim)
|
66 |
+
self.norm2 = ops.LayerNorm(query_dim)
|
67 |
+
|
68 |
+
self.register_parameter('alpha_attn', nn.Parameter(torch.tensor(0.)))
|
69 |
+
self.register_parameter('alpha_dense', nn.Parameter(torch.tensor(0.)))
|
70 |
+
|
71 |
+
# this can be useful: we can externally change magnitude of tanh(alpha)
|
72 |
+
# for example, when it is set to 0, then the entire model is same as
|
73 |
+
# original one
|
74 |
+
self.scale = 1
|
75 |
+
|
76 |
+
def forward(self, x, objs):
|
77 |
+
|
78 |
+
x = x + self.scale * \
|
79 |
+
torch.tanh(self.alpha_attn) * self.attn(self.norm1(x), objs, objs)
|
80 |
+
x = x + self.scale * \
|
81 |
+
torch.tanh(self.alpha_dense) * self.ff(self.norm2(x))
|
82 |
+
|
83 |
+
return x
|
84 |
+
|
85 |
+
|
86 |
+
class GatedSelfAttentionDense(nn.Module):
|
87 |
+
def __init__(self, query_dim, context_dim, n_heads, d_head):
|
88 |
+
super().__init__()
|
89 |
+
|
90 |
+
# we need a linear projection since we need cat visual feature and obj
|
91 |
+
# feature
|
92 |
+
self.linear = ops.Linear(context_dim, query_dim)
|
93 |
+
|
94 |
+
self.attn = CrossAttention(
|
95 |
+
query_dim=query_dim,
|
96 |
+
context_dim=query_dim,
|
97 |
+
heads=n_heads,
|
98 |
+
dim_head=d_head,
|
99 |
+
operations=ops)
|
100 |
+
self.ff = FeedForward(query_dim, glu=True)
|
101 |
+
|
102 |
+
self.norm1 = ops.LayerNorm(query_dim)
|
103 |
+
self.norm2 = ops.LayerNorm(query_dim)
|
104 |
+
|
105 |
+
self.register_parameter('alpha_attn', nn.Parameter(torch.tensor(0.)))
|
106 |
+
self.register_parameter('alpha_dense', nn.Parameter(torch.tensor(0.)))
|
107 |
+
|
108 |
+
# this can be useful: we can externally change magnitude of tanh(alpha)
|
109 |
+
# for example, when it is set to 0, then the entire model is same as
|
110 |
+
# original one
|
111 |
+
self.scale = 1
|
112 |
+
|
113 |
+
def forward(self, x, objs):
|
114 |
+
|
115 |
+
N_visual = x.shape[1]
|
116 |
+
objs = self.linear(objs)
|
117 |
+
|
118 |
+
x = x + self.scale * torch.tanh(self.alpha_attn) * self.attn(
|
119 |
+
self.norm1(torch.cat([x, objs], dim=1)))[:, 0:N_visual, :]
|
120 |
+
x = x + self.scale * \
|
121 |
+
torch.tanh(self.alpha_dense) * self.ff(self.norm2(x))
|
122 |
+
|
123 |
+
return x
|
124 |
+
|
125 |
+
|
126 |
+
class GatedSelfAttentionDense2(nn.Module):
|
127 |
+
def __init__(self, query_dim, context_dim, n_heads, d_head):
|
128 |
+
super().__init__()
|
129 |
+
|
130 |
+
# we need a linear projection since we need cat visual feature and obj
|
131 |
+
# feature
|
132 |
+
self.linear = ops.Linear(context_dim, query_dim)
|
133 |
+
|
134 |
+
self.attn = CrossAttention(
|
135 |
+
query_dim=query_dim, context_dim=query_dim, dim_head=d_head, operations=ops)
|
136 |
+
self.ff = FeedForward(query_dim, glu=True)
|
137 |
+
|
138 |
+
self.norm1 = ops.LayerNorm(query_dim)
|
139 |
+
self.norm2 = ops.LayerNorm(query_dim)
|
140 |
+
|
141 |
+
self.register_parameter('alpha_attn', nn.Parameter(torch.tensor(0.)))
|
142 |
+
self.register_parameter('alpha_dense', nn.Parameter(torch.tensor(0.)))
|
143 |
+
|
144 |
+
# this can be useful: we can externally change magnitude of tanh(alpha)
|
145 |
+
# for example, when it is set to 0, then the entire model is same as
|
146 |
+
# original one
|
147 |
+
self.scale = 1
|
148 |
+
|
149 |
+
def forward(self, x, objs):
|
150 |
+
|
151 |
+
B, N_visual, _ = x.shape
|
152 |
+
B, N_ground, _ = objs.shape
|
153 |
+
|
154 |
+
objs = self.linear(objs)
|
155 |
+
|
156 |
+
# sanity check
|
157 |
+
size_v = math.sqrt(N_visual)
|
158 |
+
size_g = math.sqrt(N_ground)
|
159 |
+
assert int(size_v) == size_v, "Visual tokens must be square rootable"
|
160 |
+
assert int(size_g) == size_g, "Grounding tokens must be square rootable"
|
161 |
+
size_v = int(size_v)
|
162 |
+
size_g = int(size_g)
|
163 |
+
|
164 |
+
# select grounding token and resize it to visual token size as residual
|
165 |
+
out = self.attn(self.norm1(torch.cat([x, objs], dim=1)))[
|
166 |
+
:, N_visual:, :]
|
167 |
+
out = out.permute(0, 2, 1).reshape(B, -1, size_g, size_g)
|
168 |
+
out = torch.nn.functional.interpolate(
|
169 |
+
out, (size_v, size_v), mode='bicubic')
|
170 |
+
residual = out.reshape(B, -1, N_visual).permute(0, 2, 1)
|
171 |
+
|
172 |
+
# add residual to visual feature
|
173 |
+
x = x + self.scale * torch.tanh(self.alpha_attn) * residual
|
174 |
+
x = x + self.scale * \
|
175 |
+
torch.tanh(self.alpha_dense) * self.ff(self.norm2(x))
|
176 |
+
|
177 |
+
return x
|
178 |
+
|
179 |
+
|
180 |
+
class FourierEmbedder():
|
181 |
+
def __init__(self, num_freqs=64, temperature=100):
|
182 |
+
|
183 |
+
self.num_freqs = num_freqs
|
184 |
+
self.temperature = temperature
|
185 |
+
self.freq_bands = temperature ** (torch.arange(num_freqs) / num_freqs)
|
186 |
+
|
187 |
+
@torch.no_grad()
|
188 |
+
def __call__(self, x, cat_dim=-1):
|
189 |
+
"x: arbitrary shape of tensor. dim: cat dim"
|
190 |
+
out = []
|
191 |
+
for freq in self.freq_bands:
|
192 |
+
out.append(torch.sin(freq * x))
|
193 |
+
out.append(torch.cos(freq * x))
|
194 |
+
return torch.cat(out, cat_dim)
|
195 |
+
|
196 |
+
|
197 |
+
class PositionNet(nn.Module):
|
198 |
+
def __init__(self, in_dim, out_dim, fourier_freqs=8):
|
199 |
+
super().__init__()
|
200 |
+
self.in_dim = in_dim
|
201 |
+
self.out_dim = out_dim
|
202 |
+
|
203 |
+
self.fourier_embedder = FourierEmbedder(num_freqs=fourier_freqs)
|
204 |
+
self.position_dim = fourier_freqs * 2 * 4 # 2 is sin&cos, 4 is xyxy
|
205 |
+
|
206 |
+
self.linears = nn.Sequential(
|
207 |
+
ops.Linear(self.in_dim + self.position_dim, 512),
|
208 |
+
nn.SiLU(),
|
209 |
+
ops.Linear(512, 512),
|
210 |
+
nn.SiLU(),
|
211 |
+
ops.Linear(512, out_dim),
|
212 |
+
)
|
213 |
+
|
214 |
+
self.null_positive_feature = torch.nn.Parameter(
|
215 |
+
torch.zeros([self.in_dim]))
|
216 |
+
self.null_position_feature = torch.nn.Parameter(
|
217 |
+
torch.zeros([self.position_dim]))
|
218 |
+
|
219 |
+
def forward(self, boxes, masks, positive_embeddings):
|
220 |
+
B, N, _ = boxes.shape
|
221 |
+
masks = masks.unsqueeze(-1)
|
222 |
+
positive_embeddings = positive_embeddings
|
223 |
+
|
224 |
+
# embedding position (it may includes padding as placeholder)
|
225 |
+
xyxy_embedding = self.fourier_embedder(boxes) # B*N*4 --> B*N*C
|
226 |
+
|
227 |
+
# learnable null embedding
|
228 |
+
positive_null = self.null_positive_feature.to(device=boxes.device, dtype=boxes.dtype).view(1, 1, -1)
|
229 |
+
xyxy_null = self.null_position_feature.to(device=boxes.device, dtype=boxes.dtype).view(1, 1, -1)
|
230 |
+
|
231 |
+
# replace padding with learnable null embedding
|
232 |
+
positive_embeddings = positive_embeddings * \
|
233 |
+
masks + (1 - masks) * positive_null
|
234 |
+
xyxy_embedding = xyxy_embedding * masks + (1 - masks) * xyxy_null
|
235 |
+
|
236 |
+
objs = self.linears(
|
237 |
+
torch.cat([positive_embeddings, xyxy_embedding], dim=-1))
|
238 |
+
assert objs.shape == torch.Size([B, N, self.out_dim])
|
239 |
+
return objs
|
240 |
+
|
241 |
+
|
242 |
+
class Gligen(nn.Module):
|
243 |
+
def __init__(self, modules, position_net, key_dim):
|
244 |
+
super().__init__()
|
245 |
+
self.module_list = nn.ModuleList(modules)
|
246 |
+
self.position_net = position_net
|
247 |
+
self.key_dim = key_dim
|
248 |
+
self.max_objs = 30
|
249 |
+
self.current_device = torch.device("cpu")
|
250 |
+
|
251 |
+
def _set_position(self, boxes, masks, positive_embeddings):
|
252 |
+
objs = self.position_net(boxes, masks, positive_embeddings)
|
253 |
+
def func(x, extra_options):
|
254 |
+
key = extra_options["transformer_index"]
|
255 |
+
module = self.module_list[key]
|
256 |
+
return module(x, objs.to(device=x.device, dtype=x.dtype))
|
257 |
+
return func
|
258 |
+
|
259 |
+
def set_position(self, latent_image_shape, position_params, device):
|
260 |
+
batch, c, h, w = latent_image_shape
|
261 |
+
masks = torch.zeros([self.max_objs], device="cpu")
|
262 |
+
boxes = []
|
263 |
+
positive_embeddings = []
|
264 |
+
for p in position_params:
|
265 |
+
x1 = (p[4]) / w
|
266 |
+
y1 = (p[3]) / h
|
267 |
+
x2 = (p[4] + p[2]) / w
|
268 |
+
y2 = (p[3] + p[1]) / h
|
269 |
+
masks[len(boxes)] = 1.0
|
270 |
+
boxes += [torch.tensor((x1, y1, x2, y2)).unsqueeze(0)]
|
271 |
+
positive_embeddings += [p[0]]
|
272 |
+
append_boxes = []
|
273 |
+
append_conds = []
|
274 |
+
if len(boxes) < self.max_objs:
|
275 |
+
append_boxes = [torch.zeros(
|
276 |
+
[self.max_objs - len(boxes), 4], device="cpu")]
|
277 |
+
append_conds = [torch.zeros(
|
278 |
+
[self.max_objs - len(boxes), self.key_dim], device="cpu")]
|
279 |
+
|
280 |
+
box_out = torch.cat(
|
281 |
+
boxes + append_boxes).unsqueeze(0).repeat(batch, 1, 1)
|
282 |
+
masks = masks.unsqueeze(0).repeat(batch, 1)
|
283 |
+
conds = torch.cat(positive_embeddings +
|
284 |
+
append_conds).unsqueeze(0).repeat(batch, 1, 1)
|
285 |
+
return self._set_position(
|
286 |
+
box_out.to(device),
|
287 |
+
masks.to(device),
|
288 |
+
conds.to(device))
|
289 |
+
|
290 |
+
def set_empty(self, latent_image_shape, device):
|
291 |
+
batch, c, h, w = latent_image_shape
|
292 |
+
masks = torch.zeros([self.max_objs], device="cpu").repeat(batch, 1)
|
293 |
+
box_out = torch.zeros([self.max_objs, 4],
|
294 |
+
device="cpu").repeat(batch, 1, 1)
|
295 |
+
conds = torch.zeros([self.max_objs, self.key_dim],
|
296 |
+
device="cpu").repeat(batch, 1, 1)
|
297 |
+
return self._set_position(
|
298 |
+
box_out.to(device),
|
299 |
+
masks.to(device),
|
300 |
+
conds.to(device))
|
301 |
+
|
302 |
+
|
303 |
+
def load_gligen(sd):
|
304 |
+
sd_k = sd.keys()
|
305 |
+
output_list = []
|
306 |
+
key_dim = 768
|
307 |
+
for a in ["input_blocks", "middle_block", "output_blocks"]:
|
308 |
+
for b in range(20):
|
309 |
+
k_temp = filter(lambda k: "{}.{}.".format(a, b)
|
310 |
+
in k and ".fuser." in k, sd_k)
|
311 |
+
k_temp = map(lambda k: (k, k.split(".fuser.")[-1]), k_temp)
|
312 |
+
|
313 |
+
n_sd = {}
|
314 |
+
for k in k_temp:
|
315 |
+
n_sd[k[1]] = sd[k[0]]
|
316 |
+
if len(n_sd) > 0:
|
317 |
+
query_dim = n_sd["linear.weight"].shape[0]
|
318 |
+
key_dim = n_sd["linear.weight"].shape[1]
|
319 |
+
|
320 |
+
if key_dim == 768: # SD1.x
|
321 |
+
n_heads = 8
|
322 |
+
d_head = query_dim // n_heads
|
323 |
+
else:
|
324 |
+
d_head = 64
|
325 |
+
n_heads = query_dim // d_head
|
326 |
+
|
327 |
+
gated = GatedSelfAttentionDense(
|
328 |
+
query_dim, key_dim, n_heads, d_head)
|
329 |
+
gated.load_state_dict(n_sd, strict=False)
|
330 |
+
output_list.append(gated)
|
331 |
+
|
332 |
+
if "position_net.null_positive_feature" in sd_k:
|
333 |
+
in_dim = sd["position_net.null_positive_feature"].shape[0]
|
334 |
+
out_dim = sd["position_net.linears.4.weight"].shape[0]
|
335 |
+
|
336 |
+
class WeightsLoader(torch.nn.Module):
|
337 |
+
pass
|
338 |
+
w = WeightsLoader()
|
339 |
+
w.position_net = PositionNet(in_dim, out_dim)
|
340 |
+
w.load_state_dict(sd, strict=False)
|
341 |
+
|
342 |
+
gligen = Gligen(output_list, w.position_net, key_dim)
|
343 |
+
return gligen
|
comfy/k_diffusion/sampling.py
ADDED
@@ -0,0 +1,810 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
|
3 |
+
from scipy import integrate
|
4 |
+
import torch
|
5 |
+
from torch import nn
|
6 |
+
import torchsde
|
7 |
+
from tqdm.auto import trange, tqdm
|
8 |
+
|
9 |
+
from . import utils
|
10 |
+
|
11 |
+
|
12 |
+
def append_zero(x):
|
13 |
+
return torch.cat([x, x.new_zeros([1])])
|
14 |
+
|
15 |
+
|
16 |
+
def get_sigmas_karras(n, sigma_min, sigma_max, rho=7., device='cpu'):
|
17 |
+
"""Constructs the noise schedule of Karras et al. (2022)."""
|
18 |
+
ramp = torch.linspace(0, 1, n, device=device)
|
19 |
+
min_inv_rho = sigma_min ** (1 / rho)
|
20 |
+
max_inv_rho = sigma_max ** (1 / rho)
|
21 |
+
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
|
22 |
+
return append_zero(sigmas).to(device)
|
23 |
+
|
24 |
+
|
25 |
+
def get_sigmas_exponential(n, sigma_min, sigma_max, device='cpu'):
|
26 |
+
"""Constructs an exponential noise schedule."""
|
27 |
+
sigmas = torch.linspace(math.log(sigma_max), math.log(sigma_min), n, device=device).exp()
|
28 |
+
return append_zero(sigmas)
|
29 |
+
|
30 |
+
|
31 |
+
def get_sigmas_polyexponential(n, sigma_min, sigma_max, rho=1., device='cpu'):
|
32 |
+
"""Constructs an polynomial in log sigma noise schedule."""
|
33 |
+
ramp = torch.linspace(1, 0, n, device=device) ** rho
|
34 |
+
sigmas = torch.exp(ramp * (math.log(sigma_max) - math.log(sigma_min)) + math.log(sigma_min))
|
35 |
+
return append_zero(sigmas)
|
36 |
+
|
37 |
+
|
38 |
+
def get_sigmas_vp(n, beta_d=19.9, beta_min=0.1, eps_s=1e-3, device='cpu'):
|
39 |
+
"""Constructs a continuous VP noise schedule."""
|
40 |
+
t = torch.linspace(1, eps_s, n, device=device)
|
41 |
+
sigmas = torch.sqrt(torch.exp(beta_d * t ** 2 / 2 + beta_min * t) - 1)
|
42 |
+
return append_zero(sigmas)
|
43 |
+
|
44 |
+
|
45 |
+
def to_d(x, sigma, denoised):
|
46 |
+
"""Converts a denoiser output to a Karras ODE derivative."""
|
47 |
+
return (x - denoised) / utils.append_dims(sigma, x.ndim)
|
48 |
+
|
49 |
+
|
50 |
+
def get_ancestral_step(sigma_from, sigma_to, eta=1.):
|
51 |
+
"""Calculates the noise level (sigma_down) to step down to and the amount
|
52 |
+
of noise to add (sigma_up) when doing an ancestral sampling step."""
|
53 |
+
if not eta:
|
54 |
+
return sigma_to, 0.
|
55 |
+
sigma_up = min(sigma_to, eta * (sigma_to ** 2 * (sigma_from ** 2 - sigma_to ** 2) / sigma_from ** 2) ** 0.5)
|
56 |
+
sigma_down = (sigma_to ** 2 - sigma_up ** 2) ** 0.5
|
57 |
+
return sigma_down, sigma_up
|
58 |
+
|
59 |
+
|
60 |
+
def default_noise_sampler(x):
|
61 |
+
return lambda sigma, sigma_next: torch.randn_like(x)
|
62 |
+
|
63 |
+
|
64 |
+
class BatchedBrownianTree:
|
65 |
+
"""A wrapper around torchsde.BrownianTree that enables batches of entropy."""
|
66 |
+
|
67 |
+
def __init__(self, x, t0, t1, seed=None, **kwargs):
|
68 |
+
self.cpu_tree = True
|
69 |
+
if "cpu" in kwargs:
|
70 |
+
self.cpu_tree = kwargs.pop("cpu")
|
71 |
+
t0, t1, self.sign = self.sort(t0, t1)
|
72 |
+
w0 = kwargs.get('w0', torch.zeros_like(x))
|
73 |
+
if seed is None:
|
74 |
+
seed = torch.randint(0, 2 ** 63 - 1, []).item()
|
75 |
+
self.batched = True
|
76 |
+
try:
|
77 |
+
assert len(seed) == x.shape[0]
|
78 |
+
w0 = w0[0]
|
79 |
+
except TypeError:
|
80 |
+
seed = [seed]
|
81 |
+
self.batched = False
|
82 |
+
if self.cpu_tree:
|
83 |
+
self.trees = [torchsde.BrownianTree(t0.cpu(), w0.cpu(), t1.cpu(), entropy=s, **kwargs) for s in seed]
|
84 |
+
else:
|
85 |
+
self.trees = [torchsde.BrownianTree(t0, w0, t1, entropy=s, **kwargs) for s in seed]
|
86 |
+
|
87 |
+
@staticmethod
|
88 |
+
def sort(a, b):
|
89 |
+
return (a, b, 1) if a < b else (b, a, -1)
|
90 |
+
|
91 |
+
def __call__(self, t0, t1):
|
92 |
+
t0, t1, sign = self.sort(t0, t1)
|
93 |
+
if self.cpu_tree:
|
94 |
+
w = torch.stack([tree(t0.cpu().float(), t1.cpu().float()).to(t0.dtype).to(t0.device) for tree in self.trees]) * (self.sign * sign)
|
95 |
+
else:
|
96 |
+
w = torch.stack([tree(t0, t1) for tree in self.trees]) * (self.sign * sign)
|
97 |
+
|
98 |
+
return w if self.batched else w[0]
|
99 |
+
|
100 |
+
|
101 |
+
class BrownianTreeNoiseSampler:
|
102 |
+
"""A noise sampler backed by a torchsde.BrownianTree.
|
103 |
+
|
104 |
+
Args:
|
105 |
+
x (Tensor): The tensor whose shape, device and dtype to use to generate
|
106 |
+
random samples.
|
107 |
+
sigma_min (float): The low end of the valid interval.
|
108 |
+
sigma_max (float): The high end of the valid interval.
|
109 |
+
seed (int or List[int]): The random seed. If a list of seeds is
|
110 |
+
supplied instead of a single integer, then the noise sampler will
|
111 |
+
use one BrownianTree per batch item, each with its own seed.
|
112 |
+
transform (callable): A function that maps sigma to the sampler's
|
113 |
+
internal timestep.
|
114 |
+
"""
|
115 |
+
|
116 |
+
def __init__(self, x, sigma_min, sigma_max, seed=None, transform=lambda x: x, cpu=False):
|
117 |
+
self.transform = transform
|
118 |
+
t0, t1 = self.transform(torch.as_tensor(sigma_min)), self.transform(torch.as_tensor(sigma_max))
|
119 |
+
self.tree = BatchedBrownianTree(x, t0, t1, seed, cpu=cpu)
|
120 |
+
|
121 |
+
def __call__(self, sigma, sigma_next):
|
122 |
+
t0, t1 = self.transform(torch.as_tensor(sigma)), self.transform(torch.as_tensor(sigma_next))
|
123 |
+
return self.tree(t0, t1) / (t1 - t0).abs().sqrt()
|
124 |
+
|
125 |
+
|
126 |
+
@torch.no_grad()
|
127 |
+
def sample_euler(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
128 |
+
"""Implements Algorithm 2 (Euler steps) from Karras et al. (2022)."""
|
129 |
+
extra_args = {} if extra_args is None else extra_args
|
130 |
+
s_in = x.new_ones([x.shape[0]])
|
131 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
132 |
+
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
133 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
134 |
+
if gamma > 0:
|
135 |
+
eps = torch.randn_like(x) * s_noise
|
136 |
+
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
137 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
138 |
+
d = to_d(x, sigma_hat, denoised)
|
139 |
+
if callback is not None:
|
140 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
141 |
+
dt = sigmas[i + 1] - sigma_hat
|
142 |
+
# Euler method
|
143 |
+
x = x + d * dt
|
144 |
+
return x
|
145 |
+
|
146 |
+
|
147 |
+
@torch.no_grad()
|
148 |
+
def sample_euler_ancestral(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
|
149 |
+
"""Ancestral sampling with Euler method steps."""
|
150 |
+
extra_args = {} if extra_args is None else extra_args
|
151 |
+
noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
|
152 |
+
s_in = x.new_ones([x.shape[0]])
|
153 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
154 |
+
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
155 |
+
sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
|
156 |
+
if callback is not None:
|
157 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
158 |
+
d = to_d(x, sigmas[i], denoised)
|
159 |
+
# Euler method
|
160 |
+
dt = sigma_down - sigmas[i]
|
161 |
+
x = x + d * dt
|
162 |
+
if sigmas[i + 1] > 0:
|
163 |
+
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up
|
164 |
+
return x
|
165 |
+
|
166 |
+
|
167 |
+
@torch.no_grad()
|
168 |
+
def sample_heun(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
169 |
+
"""Implements Algorithm 2 (Heun steps) from Karras et al. (2022)."""
|
170 |
+
extra_args = {} if extra_args is None else extra_args
|
171 |
+
s_in = x.new_ones([x.shape[0]])
|
172 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
173 |
+
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
174 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
175 |
+
if gamma > 0:
|
176 |
+
eps = torch.randn_like(x) * s_noise
|
177 |
+
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
178 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
179 |
+
d = to_d(x, sigma_hat, denoised)
|
180 |
+
if callback is not None:
|
181 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
182 |
+
dt = sigmas[i + 1] - sigma_hat
|
183 |
+
if sigmas[i + 1] == 0:
|
184 |
+
# Euler method
|
185 |
+
x = x + d * dt
|
186 |
+
else:
|
187 |
+
# Heun's method
|
188 |
+
x_2 = x + d * dt
|
189 |
+
denoised_2 = model(x_2, sigmas[i + 1] * s_in, **extra_args)
|
190 |
+
d_2 = to_d(x_2, sigmas[i + 1], denoised_2)
|
191 |
+
d_prime = (d + d_2) / 2
|
192 |
+
x = x + d_prime * dt
|
193 |
+
return x
|
194 |
+
|
195 |
+
|
196 |
+
@torch.no_grad()
|
197 |
+
def sample_dpm_2(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
198 |
+
"""A sampler inspired by DPM-Solver-2 and Algorithm 2 from Karras et al. (2022)."""
|
199 |
+
extra_args = {} if extra_args is None else extra_args
|
200 |
+
s_in = x.new_ones([x.shape[0]])
|
201 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
202 |
+
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
203 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
204 |
+
if gamma > 0:
|
205 |
+
eps = torch.randn_like(x) * s_noise
|
206 |
+
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
207 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
208 |
+
d = to_d(x, sigma_hat, denoised)
|
209 |
+
if callback is not None:
|
210 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
211 |
+
if sigmas[i + 1] == 0:
|
212 |
+
# Euler method
|
213 |
+
dt = sigmas[i + 1] - sigma_hat
|
214 |
+
x = x + d * dt
|
215 |
+
else:
|
216 |
+
# DPM-Solver-2
|
217 |
+
sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp()
|
218 |
+
dt_1 = sigma_mid - sigma_hat
|
219 |
+
dt_2 = sigmas[i + 1] - sigma_hat
|
220 |
+
x_2 = x + d * dt_1
|
221 |
+
denoised_2 = model(x_2, sigma_mid * s_in, **extra_args)
|
222 |
+
d_2 = to_d(x_2, sigma_mid, denoised_2)
|
223 |
+
x = x + d_2 * dt_2
|
224 |
+
return x
|
225 |
+
|
226 |
+
|
227 |
+
@torch.no_grad()
|
228 |
+
def sample_dpm_2_ancestral(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
|
229 |
+
"""Ancestral sampling with DPM-Solver second-order steps."""
|
230 |
+
extra_args = {} if extra_args is None else extra_args
|
231 |
+
noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
|
232 |
+
s_in = x.new_ones([x.shape[0]])
|
233 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
234 |
+
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
235 |
+
sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
|
236 |
+
if callback is not None:
|
237 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
238 |
+
d = to_d(x, sigmas[i], denoised)
|
239 |
+
if sigma_down == 0:
|
240 |
+
# Euler method
|
241 |
+
dt = sigma_down - sigmas[i]
|
242 |
+
x = x + d * dt
|
243 |
+
else:
|
244 |
+
# DPM-Solver-2
|
245 |
+
sigma_mid = sigmas[i].log().lerp(sigma_down.log(), 0.5).exp()
|
246 |
+
dt_1 = sigma_mid - sigmas[i]
|
247 |
+
dt_2 = sigma_down - sigmas[i]
|
248 |
+
x_2 = x + d * dt_1
|
249 |
+
denoised_2 = model(x_2, sigma_mid * s_in, **extra_args)
|
250 |
+
d_2 = to_d(x_2, sigma_mid, denoised_2)
|
251 |
+
x = x + d_2 * dt_2
|
252 |
+
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up
|
253 |
+
return x
|
254 |
+
|
255 |
+
|
256 |
+
def linear_multistep_coeff(order, t, i, j):
|
257 |
+
if order - 1 > i:
|
258 |
+
raise ValueError(f'Order {order} too high for step {i}')
|
259 |
+
def fn(tau):
|
260 |
+
prod = 1.
|
261 |
+
for k in range(order):
|
262 |
+
if j == k:
|
263 |
+
continue
|
264 |
+
prod *= (tau - t[i - k]) / (t[i - j] - t[i - k])
|
265 |
+
return prod
|
266 |
+
return integrate.quad(fn, t[i], t[i + 1], epsrel=1e-4)[0]
|
267 |
+
|
268 |
+
|
269 |
+
@torch.no_grad()
|
270 |
+
def sample_lms(model, x, sigmas, extra_args=None, callback=None, disable=None, order=4):
|
271 |
+
extra_args = {} if extra_args is None else extra_args
|
272 |
+
s_in = x.new_ones([x.shape[0]])
|
273 |
+
sigmas_cpu = sigmas.detach().cpu().numpy()
|
274 |
+
ds = []
|
275 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
276 |
+
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
277 |
+
d = to_d(x, sigmas[i], denoised)
|
278 |
+
ds.append(d)
|
279 |
+
if len(ds) > order:
|
280 |
+
ds.pop(0)
|
281 |
+
if callback is not None:
|
282 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
283 |
+
cur_order = min(i + 1, order)
|
284 |
+
coeffs = [linear_multistep_coeff(cur_order, sigmas_cpu, i, j) for j in range(cur_order)]
|
285 |
+
x = x + sum(coeff * d for coeff, d in zip(coeffs, reversed(ds)))
|
286 |
+
return x
|
287 |
+
|
288 |
+
|
289 |
+
class PIDStepSizeController:
|
290 |
+
"""A PID controller for ODE adaptive step size control."""
|
291 |
+
def __init__(self, h, pcoeff, icoeff, dcoeff, order=1, accept_safety=0.81, eps=1e-8):
|
292 |
+
self.h = h
|
293 |
+
self.b1 = (pcoeff + icoeff + dcoeff) / order
|
294 |
+
self.b2 = -(pcoeff + 2 * dcoeff) / order
|
295 |
+
self.b3 = dcoeff / order
|
296 |
+
self.accept_safety = accept_safety
|
297 |
+
self.eps = eps
|
298 |
+
self.errs = []
|
299 |
+
|
300 |
+
def limiter(self, x):
|
301 |
+
return 1 + math.atan(x - 1)
|
302 |
+
|
303 |
+
def propose_step(self, error):
|
304 |
+
inv_error = 1 / (float(error) + self.eps)
|
305 |
+
if not self.errs:
|
306 |
+
self.errs = [inv_error, inv_error, inv_error]
|
307 |
+
self.errs[0] = inv_error
|
308 |
+
factor = self.errs[0] ** self.b1 * self.errs[1] ** self.b2 * self.errs[2] ** self.b3
|
309 |
+
factor = self.limiter(factor)
|
310 |
+
accept = factor >= self.accept_safety
|
311 |
+
if accept:
|
312 |
+
self.errs[2] = self.errs[1]
|
313 |
+
self.errs[1] = self.errs[0]
|
314 |
+
self.h *= factor
|
315 |
+
return accept
|
316 |
+
|
317 |
+
|
318 |
+
class DPMSolver(nn.Module):
|
319 |
+
"""DPM-Solver. See https://arxiv.org/abs/2206.00927."""
|
320 |
+
|
321 |
+
def __init__(self, model, extra_args=None, eps_callback=None, info_callback=None):
|
322 |
+
super().__init__()
|
323 |
+
self.model = model
|
324 |
+
self.extra_args = {} if extra_args is None else extra_args
|
325 |
+
self.eps_callback = eps_callback
|
326 |
+
self.info_callback = info_callback
|
327 |
+
|
328 |
+
def t(self, sigma):
|
329 |
+
return -sigma.log()
|
330 |
+
|
331 |
+
def sigma(self, t):
|
332 |
+
return t.neg().exp()
|
333 |
+
|
334 |
+
def eps(self, eps_cache, key, x, t, *args, **kwargs):
|
335 |
+
if key in eps_cache:
|
336 |
+
return eps_cache[key], eps_cache
|
337 |
+
sigma = self.sigma(t) * x.new_ones([x.shape[0]])
|
338 |
+
eps = (x - self.model(x, sigma, *args, **self.extra_args, **kwargs)) / self.sigma(t)
|
339 |
+
if self.eps_callback is not None:
|
340 |
+
self.eps_callback()
|
341 |
+
return eps, {key: eps, **eps_cache}
|
342 |
+
|
343 |
+
def dpm_solver_1_step(self, x, t, t_next, eps_cache=None):
|
344 |
+
eps_cache = {} if eps_cache is None else eps_cache
|
345 |
+
h = t_next - t
|
346 |
+
eps, eps_cache = self.eps(eps_cache, 'eps', x, t)
|
347 |
+
x_1 = x - self.sigma(t_next) * h.expm1() * eps
|
348 |
+
return x_1, eps_cache
|
349 |
+
|
350 |
+
def dpm_solver_2_step(self, x, t, t_next, r1=1 / 2, eps_cache=None):
|
351 |
+
eps_cache = {} if eps_cache is None else eps_cache
|
352 |
+
h = t_next - t
|
353 |
+
eps, eps_cache = self.eps(eps_cache, 'eps', x, t)
|
354 |
+
s1 = t + r1 * h
|
355 |
+
u1 = x - self.sigma(s1) * (r1 * h).expm1() * eps
|
356 |
+
eps_r1, eps_cache = self.eps(eps_cache, 'eps_r1', u1, s1)
|
357 |
+
x_2 = x - self.sigma(t_next) * h.expm1() * eps - self.sigma(t_next) / (2 * r1) * h.expm1() * (eps_r1 - eps)
|
358 |
+
return x_2, eps_cache
|
359 |
+
|
360 |
+
def dpm_solver_3_step(self, x, t, t_next, r1=1 / 3, r2=2 / 3, eps_cache=None):
|
361 |
+
eps_cache = {} if eps_cache is None else eps_cache
|
362 |
+
h = t_next - t
|
363 |
+
eps, eps_cache = self.eps(eps_cache, 'eps', x, t)
|
364 |
+
s1 = t + r1 * h
|
365 |
+
s2 = t + r2 * h
|
366 |
+
u1 = x - self.sigma(s1) * (r1 * h).expm1() * eps
|
367 |
+
eps_r1, eps_cache = self.eps(eps_cache, 'eps_r1', u1, s1)
|
368 |
+
u2 = x - self.sigma(s2) * (r2 * h).expm1() * eps - self.sigma(s2) * (r2 / r1) * ((r2 * h).expm1() / (r2 * h) - 1) * (eps_r1 - eps)
|
369 |
+
eps_r2, eps_cache = self.eps(eps_cache, 'eps_r2', u2, s2)
|
370 |
+
x_3 = x - self.sigma(t_next) * h.expm1() * eps - self.sigma(t_next) / r2 * (h.expm1() / h - 1) * (eps_r2 - eps)
|
371 |
+
return x_3, eps_cache
|
372 |
+
|
373 |
+
def dpm_solver_fast(self, x, t_start, t_end, nfe, eta=0., s_noise=1., noise_sampler=None):
|
374 |
+
noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
|
375 |
+
if not t_end > t_start and eta:
|
376 |
+
raise ValueError('eta must be 0 for reverse sampling')
|
377 |
+
|
378 |
+
m = math.floor(nfe / 3) + 1
|
379 |
+
ts = torch.linspace(t_start, t_end, m + 1, device=x.device)
|
380 |
+
|
381 |
+
if nfe % 3 == 0:
|
382 |
+
orders = [3] * (m - 2) + [2, 1]
|
383 |
+
else:
|
384 |
+
orders = [3] * (m - 1) + [nfe % 3]
|
385 |
+
|
386 |
+
for i in range(len(orders)):
|
387 |
+
eps_cache = {}
|
388 |
+
t, t_next = ts[i], ts[i + 1]
|
389 |
+
if eta:
|
390 |
+
sd, su = get_ancestral_step(self.sigma(t), self.sigma(t_next), eta)
|
391 |
+
t_next_ = torch.minimum(t_end, self.t(sd))
|
392 |
+
su = (self.sigma(t_next) ** 2 - self.sigma(t_next_) ** 2) ** 0.5
|
393 |
+
else:
|
394 |
+
t_next_, su = t_next, 0.
|
395 |
+
|
396 |
+
eps, eps_cache = self.eps(eps_cache, 'eps', x, t)
|
397 |
+
denoised = x - self.sigma(t) * eps
|
398 |
+
if self.info_callback is not None:
|
399 |
+
self.info_callback({'x': x, 'i': i, 't': ts[i], 't_up': t, 'denoised': denoised})
|
400 |
+
|
401 |
+
if orders[i] == 1:
|
402 |
+
x, eps_cache = self.dpm_solver_1_step(x, t, t_next_, eps_cache=eps_cache)
|
403 |
+
elif orders[i] == 2:
|
404 |
+
x, eps_cache = self.dpm_solver_2_step(x, t, t_next_, eps_cache=eps_cache)
|
405 |
+
else:
|
406 |
+
x, eps_cache = self.dpm_solver_3_step(x, t, t_next_, eps_cache=eps_cache)
|
407 |
+
|
408 |
+
x = x + su * s_noise * noise_sampler(self.sigma(t), self.sigma(t_next))
|
409 |
+
|
410 |
+
return x
|
411 |
+
|
412 |
+
def dpm_solver_adaptive(self, x, t_start, t_end, order=3, rtol=0.05, atol=0.0078, h_init=0.05, pcoeff=0., icoeff=1., dcoeff=0., accept_safety=0.81, eta=0., s_noise=1., noise_sampler=None):
|
413 |
+
noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
|
414 |
+
if order not in {2, 3}:
|
415 |
+
raise ValueError('order should be 2 or 3')
|
416 |
+
forward = t_end > t_start
|
417 |
+
if not forward and eta:
|
418 |
+
raise ValueError('eta must be 0 for reverse sampling')
|
419 |
+
h_init = abs(h_init) * (1 if forward else -1)
|
420 |
+
atol = torch.tensor(atol)
|
421 |
+
rtol = torch.tensor(rtol)
|
422 |
+
s = t_start
|
423 |
+
x_prev = x
|
424 |
+
accept = True
|
425 |
+
pid = PIDStepSizeController(h_init, pcoeff, icoeff, dcoeff, 1.5 if eta else order, accept_safety)
|
426 |
+
info = {'steps': 0, 'nfe': 0, 'n_accept': 0, 'n_reject': 0}
|
427 |
+
|
428 |
+
while s < t_end - 1e-5 if forward else s > t_end + 1e-5:
|
429 |
+
eps_cache = {}
|
430 |
+
t = torch.minimum(t_end, s + pid.h) if forward else torch.maximum(t_end, s + pid.h)
|
431 |
+
if eta:
|
432 |
+
sd, su = get_ancestral_step(self.sigma(s), self.sigma(t), eta)
|
433 |
+
t_ = torch.minimum(t_end, self.t(sd))
|
434 |
+
su = (self.sigma(t) ** 2 - self.sigma(t_) ** 2) ** 0.5
|
435 |
+
else:
|
436 |
+
t_, su = t, 0.
|
437 |
+
|
438 |
+
eps, eps_cache = self.eps(eps_cache, 'eps', x, s)
|
439 |
+
denoised = x - self.sigma(s) * eps
|
440 |
+
|
441 |
+
if order == 2:
|
442 |
+
x_low, eps_cache = self.dpm_solver_1_step(x, s, t_, eps_cache=eps_cache)
|
443 |
+
x_high, eps_cache = self.dpm_solver_2_step(x, s, t_, eps_cache=eps_cache)
|
444 |
+
else:
|
445 |
+
x_low, eps_cache = self.dpm_solver_2_step(x, s, t_, r1=1 / 3, eps_cache=eps_cache)
|
446 |
+
x_high, eps_cache = self.dpm_solver_3_step(x, s, t_, eps_cache=eps_cache)
|
447 |
+
delta = torch.maximum(atol, rtol * torch.maximum(x_low.abs(), x_prev.abs()))
|
448 |
+
error = torch.linalg.norm((x_low - x_high) / delta) / x.numel() ** 0.5
|
449 |
+
accept = pid.propose_step(error)
|
450 |
+
if accept:
|
451 |
+
x_prev = x_low
|
452 |
+
x = x_high + su * s_noise * noise_sampler(self.sigma(s), self.sigma(t))
|
453 |
+
s = t
|
454 |
+
info['n_accept'] += 1
|
455 |
+
else:
|
456 |
+
info['n_reject'] += 1
|
457 |
+
info['nfe'] += order
|
458 |
+
info['steps'] += 1
|
459 |
+
|
460 |
+
if self.info_callback is not None:
|
461 |
+
self.info_callback({'x': x, 'i': info['steps'] - 1, 't': s, 't_up': s, 'denoised': denoised, 'error': error, 'h': pid.h, **info})
|
462 |
+
|
463 |
+
return x, info
|
464 |
+
|
465 |
+
|
466 |
+
@torch.no_grad()
|
467 |
+
def sample_dpm_fast(model, x, sigma_min, sigma_max, n, extra_args=None, callback=None, disable=None, eta=0., s_noise=1., noise_sampler=None):
|
468 |
+
"""DPM-Solver-Fast (fixed step size). See https://arxiv.org/abs/2206.00927."""
|
469 |
+
if sigma_min <= 0 or sigma_max <= 0:
|
470 |
+
raise ValueError('sigma_min and sigma_max must not be 0')
|
471 |
+
with tqdm(total=n, disable=disable) as pbar:
|
472 |
+
dpm_solver = DPMSolver(model, extra_args, eps_callback=pbar.update)
|
473 |
+
if callback is not None:
|
474 |
+
dpm_solver.info_callback = lambda info: callback({'sigma': dpm_solver.sigma(info['t']), 'sigma_hat': dpm_solver.sigma(info['t_up']), **info})
|
475 |
+
return dpm_solver.dpm_solver_fast(x, dpm_solver.t(torch.tensor(sigma_max)), dpm_solver.t(torch.tensor(sigma_min)), n, eta, s_noise, noise_sampler)
|
476 |
+
|
477 |
+
|
478 |
+
@torch.no_grad()
|
479 |
+
def sample_dpm_adaptive(model, x, sigma_min, sigma_max, extra_args=None, callback=None, disable=None, order=3, rtol=0.05, atol=0.0078, h_init=0.05, pcoeff=0., icoeff=1., dcoeff=0., accept_safety=0.81, eta=0., s_noise=1., noise_sampler=None, return_info=False):
|
480 |
+
"""DPM-Solver-12 and 23 (adaptive step size). See https://arxiv.org/abs/2206.00927."""
|
481 |
+
if sigma_min <= 0 or sigma_max <= 0:
|
482 |
+
raise ValueError('sigma_min and sigma_max must not be 0')
|
483 |
+
with tqdm(disable=disable) as pbar:
|
484 |
+
dpm_solver = DPMSolver(model, extra_args, eps_callback=pbar.update)
|
485 |
+
if callback is not None:
|
486 |
+
dpm_solver.info_callback = lambda info: callback({'sigma': dpm_solver.sigma(info['t']), 'sigma_hat': dpm_solver.sigma(info['t_up']), **info})
|
487 |
+
x, info = dpm_solver.dpm_solver_adaptive(x, dpm_solver.t(torch.tensor(sigma_max)), dpm_solver.t(torch.tensor(sigma_min)), order, rtol, atol, h_init, pcoeff, icoeff, dcoeff, accept_safety, eta, s_noise, noise_sampler)
|
488 |
+
if return_info:
|
489 |
+
return x, info
|
490 |
+
return x
|
491 |
+
|
492 |
+
|
493 |
+
@torch.no_grad()
|
494 |
+
def sample_dpmpp_2s_ancestral(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
|
495 |
+
"""Ancestral sampling with DPM-Solver++(2S) second-order steps."""
|
496 |
+
extra_args = {} if extra_args is None else extra_args
|
497 |
+
noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
|
498 |
+
s_in = x.new_ones([x.shape[0]])
|
499 |
+
sigma_fn = lambda t: t.neg().exp()
|
500 |
+
t_fn = lambda sigma: sigma.log().neg()
|
501 |
+
|
502 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
503 |
+
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
504 |
+
sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
|
505 |
+
if callback is not None:
|
506 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
507 |
+
if sigma_down == 0:
|
508 |
+
# Euler method
|
509 |
+
d = to_d(x, sigmas[i], denoised)
|
510 |
+
dt = sigma_down - sigmas[i]
|
511 |
+
x = x + d * dt
|
512 |
+
else:
|
513 |
+
# DPM-Solver++(2S)
|
514 |
+
t, t_next = t_fn(sigmas[i]), t_fn(sigma_down)
|
515 |
+
r = 1 / 2
|
516 |
+
h = t_next - t
|
517 |
+
s = t + r * h
|
518 |
+
x_2 = (sigma_fn(s) / sigma_fn(t)) * x - (-h * r).expm1() * denoised
|
519 |
+
denoised_2 = model(x_2, sigma_fn(s) * s_in, **extra_args)
|
520 |
+
x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised_2
|
521 |
+
# Noise addition
|
522 |
+
if sigmas[i + 1] > 0:
|
523 |
+
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up
|
524 |
+
return x
|
525 |
+
|
526 |
+
|
527 |
+
@torch.no_grad()
|
528 |
+
def sample_dpmpp_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r=1 / 2):
|
529 |
+
"""DPM-Solver++ (stochastic)."""
|
530 |
+
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
531 |
+
seed = extra_args.get("seed", None)
|
532 |
+
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed, cpu=True) if noise_sampler is None else noise_sampler
|
533 |
+
extra_args = {} if extra_args is None else extra_args
|
534 |
+
s_in = x.new_ones([x.shape[0]])
|
535 |
+
sigma_fn = lambda t: t.neg().exp()
|
536 |
+
t_fn = lambda sigma: sigma.log().neg()
|
537 |
+
|
538 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
539 |
+
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
540 |
+
if callback is not None:
|
541 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
542 |
+
if sigmas[i + 1] == 0:
|
543 |
+
# Euler method
|
544 |
+
d = to_d(x, sigmas[i], denoised)
|
545 |
+
dt = sigmas[i + 1] - sigmas[i]
|
546 |
+
x = x + d * dt
|
547 |
+
else:
|
548 |
+
# DPM-Solver++
|
549 |
+
t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1])
|
550 |
+
h = t_next - t
|
551 |
+
s = t + h * r
|
552 |
+
fac = 1 / (2 * r)
|
553 |
+
|
554 |
+
# Step 1
|
555 |
+
sd, su = get_ancestral_step(sigma_fn(t), sigma_fn(s), eta)
|
556 |
+
s_ = t_fn(sd)
|
557 |
+
x_2 = (sigma_fn(s_) / sigma_fn(t)) * x - (t - s_).expm1() * denoised
|
558 |
+
x_2 = x_2 + noise_sampler(sigma_fn(t), sigma_fn(s)) * s_noise * su
|
559 |
+
denoised_2 = model(x_2, sigma_fn(s) * s_in, **extra_args)
|
560 |
+
|
561 |
+
# Step 2
|
562 |
+
sd, su = get_ancestral_step(sigma_fn(t), sigma_fn(t_next), eta)
|
563 |
+
t_next_ = t_fn(sd)
|
564 |
+
denoised_d = (1 - fac) * denoised + fac * denoised_2
|
565 |
+
x = (sigma_fn(t_next_) / sigma_fn(t)) * x - (t - t_next_).expm1() * denoised_d
|
566 |
+
x = x + noise_sampler(sigma_fn(t), sigma_fn(t_next)) * s_noise * su
|
567 |
+
return x
|
568 |
+
|
569 |
+
|
570 |
+
@torch.no_grad()
|
571 |
+
def sample_dpmpp_2m(model, x, sigmas, extra_args=None, callback=None, disable=None):
|
572 |
+
"""DPM-Solver++(2M)."""
|
573 |
+
extra_args = {} if extra_args is None else extra_args
|
574 |
+
s_in = x.new_ones([x.shape[0]])
|
575 |
+
sigma_fn = lambda t: t.neg().exp()
|
576 |
+
t_fn = lambda sigma: sigma.log().neg()
|
577 |
+
old_denoised = None
|
578 |
+
|
579 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
580 |
+
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
581 |
+
if callback is not None:
|
582 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
583 |
+
t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1])
|
584 |
+
h = t_next - t
|
585 |
+
if old_denoised is None or sigmas[i + 1] == 0:
|
586 |
+
x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised
|
587 |
+
else:
|
588 |
+
h_last = t - t_fn(sigmas[i - 1])
|
589 |
+
r = h_last / h
|
590 |
+
denoised_d = (1 + 1 / (2 * r)) * denoised - (1 / (2 * r)) * old_denoised
|
591 |
+
x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised_d
|
592 |
+
old_denoised = denoised
|
593 |
+
return x
|
594 |
+
|
595 |
+
@torch.no_grad()
|
596 |
+
def sample_dpmpp_2m_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, solver_type='midpoint'):
|
597 |
+
"""DPM-Solver++(2M) SDE."""
|
598 |
+
|
599 |
+
if solver_type not in {'heun', 'midpoint'}:
|
600 |
+
raise ValueError('solver_type must be \'heun\' or \'midpoint\'')
|
601 |
+
|
602 |
+
seed = extra_args.get("seed", None)
|
603 |
+
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
604 |
+
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed, cpu=True) if noise_sampler is None else noise_sampler
|
605 |
+
extra_args = {} if extra_args is None else extra_args
|
606 |
+
s_in = x.new_ones([x.shape[0]])
|
607 |
+
|
608 |
+
old_denoised = None
|
609 |
+
h_last = None
|
610 |
+
h = None
|
611 |
+
|
612 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
613 |
+
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
614 |
+
if callback is not None:
|
615 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
616 |
+
if sigmas[i + 1] == 0:
|
617 |
+
# Denoising step
|
618 |
+
x = denoised
|
619 |
+
else:
|
620 |
+
# DPM-Solver++(2M) SDE
|
621 |
+
t, s = -sigmas[i].log(), -sigmas[i + 1].log()
|
622 |
+
h = s - t
|
623 |
+
eta_h = eta * h
|
624 |
+
|
625 |
+
x = sigmas[i + 1] / sigmas[i] * (-eta_h).exp() * x + (-h - eta_h).expm1().neg() * denoised
|
626 |
+
|
627 |
+
if old_denoised is not None:
|
628 |
+
r = h_last / h
|
629 |
+
if solver_type == 'heun':
|
630 |
+
x = x + ((-h - eta_h).expm1().neg() / (-h - eta_h) + 1) * (1 / r) * (denoised - old_denoised)
|
631 |
+
elif solver_type == 'midpoint':
|
632 |
+
x = x + 0.5 * (-h - eta_h).expm1().neg() * (1 / r) * (denoised - old_denoised)
|
633 |
+
|
634 |
+
if eta:
|
635 |
+
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * sigmas[i + 1] * (-2 * eta_h).expm1().neg().sqrt() * s_noise
|
636 |
+
|
637 |
+
old_denoised = denoised
|
638 |
+
h_last = h
|
639 |
+
return x
|
640 |
+
|
641 |
+
@torch.no_grad()
|
642 |
+
def sample_dpmpp_3m_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
|
643 |
+
"""DPM-Solver++(3M) SDE."""
|
644 |
+
|
645 |
+
seed = extra_args.get("seed", None)
|
646 |
+
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
647 |
+
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed, cpu=True) if noise_sampler is None else noise_sampler
|
648 |
+
extra_args = {} if extra_args is None else extra_args
|
649 |
+
s_in = x.new_ones([x.shape[0]])
|
650 |
+
|
651 |
+
denoised_1, denoised_2 = None, None
|
652 |
+
h, h_1, h_2 = None, None, None
|
653 |
+
|
654 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
655 |
+
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
656 |
+
if callback is not None:
|
657 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
658 |
+
if sigmas[i + 1] == 0:
|
659 |
+
# Denoising step
|
660 |
+
x = denoised
|
661 |
+
else:
|
662 |
+
t, s = -sigmas[i].log(), -sigmas[i + 1].log()
|
663 |
+
h = s - t
|
664 |
+
h_eta = h * (eta + 1)
|
665 |
+
|
666 |
+
x = torch.exp(-h_eta) * x + (-h_eta).expm1().neg() * denoised
|
667 |
+
|
668 |
+
if h_2 is not None:
|
669 |
+
r0 = h_1 / h
|
670 |
+
r1 = h_2 / h
|
671 |
+
d1_0 = (denoised - denoised_1) / r0
|
672 |
+
d1_1 = (denoised_1 - denoised_2) / r1
|
673 |
+
d1 = d1_0 + (d1_0 - d1_1) * r0 / (r0 + r1)
|
674 |
+
d2 = (d1_0 - d1_1) / (r0 + r1)
|
675 |
+
phi_2 = h_eta.neg().expm1() / h_eta + 1
|
676 |
+
phi_3 = phi_2 / h_eta - 0.5
|
677 |
+
x = x + phi_2 * d1 - phi_3 * d2
|
678 |
+
elif h_1 is not None:
|
679 |
+
r = h_1 / h
|
680 |
+
d = (denoised - denoised_1) / r
|
681 |
+
phi_2 = h_eta.neg().expm1() / h_eta + 1
|
682 |
+
x = x + phi_2 * d
|
683 |
+
|
684 |
+
if eta:
|
685 |
+
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * sigmas[i + 1] * (-2 * h * eta).expm1().neg().sqrt() * s_noise
|
686 |
+
|
687 |
+
denoised_1, denoised_2 = denoised, denoised_1
|
688 |
+
h_1, h_2 = h, h_1
|
689 |
+
return x
|
690 |
+
|
691 |
+
@torch.no_grad()
|
692 |
+
def sample_dpmpp_3m_sde_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
|
693 |
+
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
694 |
+
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler
|
695 |
+
return sample_dpmpp_3m_sde(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler)
|
696 |
+
|
697 |
+
@torch.no_grad()
|
698 |
+
def sample_dpmpp_2m_sde_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, solver_type='midpoint'):
|
699 |
+
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
700 |
+
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler
|
701 |
+
return sample_dpmpp_2m_sde(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler, solver_type=solver_type)
|
702 |
+
|
703 |
+
@torch.no_grad()
|
704 |
+
def sample_dpmpp_sde_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r=1 / 2):
|
705 |
+
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
706 |
+
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler
|
707 |
+
return sample_dpmpp_sde(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler, r=r)
|
708 |
+
|
709 |
+
|
710 |
+
def DDPMSampler_step(x, sigma, sigma_prev, noise, noise_sampler):
|
711 |
+
alpha_cumprod = 1 / ((sigma * sigma) + 1)
|
712 |
+
alpha_cumprod_prev = 1 / ((sigma_prev * sigma_prev) + 1)
|
713 |
+
alpha = (alpha_cumprod / alpha_cumprod_prev)
|
714 |
+
|
715 |
+
mu = (1.0 / alpha).sqrt() * (x - (1 - alpha) * noise / (1 - alpha_cumprod).sqrt())
|
716 |
+
if sigma_prev > 0:
|
717 |
+
mu += ((1 - alpha) * (1. - alpha_cumprod_prev) / (1. - alpha_cumprod)).sqrt() * noise_sampler(sigma, sigma_prev)
|
718 |
+
return mu
|
719 |
+
|
720 |
+
def generic_step_sampler(model, x, sigmas, extra_args=None, callback=None, disable=None, noise_sampler=None, step_function=None):
|
721 |
+
extra_args = {} if extra_args is None else extra_args
|
722 |
+
noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
|
723 |
+
s_in = x.new_ones([x.shape[0]])
|
724 |
+
|
725 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
726 |
+
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
727 |
+
if callback is not None:
|
728 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
729 |
+
x = step_function(x / torch.sqrt(1.0 + sigmas[i] ** 2.0), sigmas[i], sigmas[i + 1], (x - denoised) / sigmas[i], noise_sampler)
|
730 |
+
if sigmas[i + 1] != 0:
|
731 |
+
x *= torch.sqrt(1.0 + sigmas[i + 1] ** 2.0)
|
732 |
+
return x
|
733 |
+
|
734 |
+
|
735 |
+
@torch.no_grad()
|
736 |
+
def sample_ddpm(model, x, sigmas, extra_args=None, callback=None, disable=None, noise_sampler=None):
|
737 |
+
return generic_step_sampler(model, x, sigmas, extra_args, callback, disable, noise_sampler, DDPMSampler_step)
|
738 |
+
|
739 |
+
@torch.no_grad()
|
740 |
+
def sample_lcm(model, x, sigmas, extra_args=None, callback=None, disable=None, noise_sampler=None):
|
741 |
+
extra_args = {} if extra_args is None else extra_args
|
742 |
+
noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
|
743 |
+
s_in = x.new_ones([x.shape[0]])
|
744 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
745 |
+
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
746 |
+
if callback is not None:
|
747 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
748 |
+
|
749 |
+
x = denoised
|
750 |
+
if sigmas[i + 1] > 0:
|
751 |
+
x += sigmas[i + 1] * noise_sampler(sigmas[i], sigmas[i + 1])
|
752 |
+
return x
|
753 |
+
|
754 |
+
|
755 |
+
|
756 |
+
@torch.no_grad()
|
757 |
+
def sample_heunpp2(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
758 |
+
# From MIT licensed: https://github.com/Carzit/sd-webui-samplers-scheduler/
|
759 |
+
extra_args = {} if extra_args is None else extra_args
|
760 |
+
s_in = x.new_ones([x.shape[0]])
|
761 |
+
s_end = sigmas[-1]
|
762 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
763 |
+
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
764 |
+
eps = torch.randn_like(x) * s_noise
|
765 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
766 |
+
if gamma > 0:
|
767 |
+
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
768 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
769 |
+
d = to_d(x, sigma_hat, denoised)
|
770 |
+
if callback is not None:
|
771 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
772 |
+
dt = sigmas[i + 1] - sigma_hat
|
773 |
+
if sigmas[i + 1] == s_end:
|
774 |
+
# Euler method
|
775 |
+
x = x + d * dt
|
776 |
+
elif sigmas[i + 2] == s_end:
|
777 |
+
|
778 |
+
# Heun's method
|
779 |
+
x_2 = x + d * dt
|
780 |
+
denoised_2 = model(x_2, sigmas[i + 1] * s_in, **extra_args)
|
781 |
+
d_2 = to_d(x_2, sigmas[i + 1], denoised_2)
|
782 |
+
|
783 |
+
w = 2 * sigmas[0]
|
784 |
+
w2 = sigmas[i+1]/w
|
785 |
+
w1 = 1 - w2
|
786 |
+
|
787 |
+
d_prime = d * w1 + d_2 * w2
|
788 |
+
|
789 |
+
|
790 |
+
x = x + d_prime * dt
|
791 |
+
|
792 |
+
else:
|
793 |
+
# Heun++
|
794 |
+
x_2 = x + d * dt
|
795 |
+
denoised_2 = model(x_2, sigmas[i + 1] * s_in, **extra_args)
|
796 |
+
d_2 = to_d(x_2, sigmas[i + 1], denoised_2)
|
797 |
+
dt_2 = sigmas[i + 2] - sigmas[i + 1]
|
798 |
+
|
799 |
+
x_3 = x_2 + d_2 * dt_2
|
800 |
+
denoised_3 = model(x_3, sigmas[i + 2] * s_in, **extra_args)
|
801 |
+
d_3 = to_d(x_3, sigmas[i + 2], denoised_3)
|
802 |
+
|
803 |
+
w = 3 * sigmas[0]
|
804 |
+
w2 = sigmas[i + 1] / w
|
805 |
+
w3 = sigmas[i + 2] / w
|
806 |
+
w1 = 1 - w2 - w3
|
807 |
+
|
808 |
+
d_prime = w1 * d + w2 * d_2 + w3 * d_3
|
809 |
+
x = x + d_prime * dt
|
810 |
+
return x
|
comfy/k_diffusion/utils.py
ADDED
@@ -0,0 +1,313 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from contextlib import contextmanager
|
2 |
+
import hashlib
|
3 |
+
import math
|
4 |
+
from pathlib import Path
|
5 |
+
import shutil
|
6 |
+
import urllib
|
7 |
+
import warnings
|
8 |
+
|
9 |
+
from PIL import Image
|
10 |
+
import torch
|
11 |
+
from torch import nn, optim
|
12 |
+
from torch.utils import data
|
13 |
+
|
14 |
+
|
15 |
+
def hf_datasets_augs_helper(examples, transform, image_key, mode='RGB'):
|
16 |
+
"""Apply passed in transforms for HuggingFace Datasets."""
|
17 |
+
images = [transform(image.convert(mode)) for image in examples[image_key]]
|
18 |
+
return {image_key: images}
|
19 |
+
|
20 |
+
|
21 |
+
def append_dims(x, target_dims):
|
22 |
+
"""Appends dimensions to the end of a tensor until it has target_dims dimensions."""
|
23 |
+
dims_to_append = target_dims - x.ndim
|
24 |
+
if dims_to_append < 0:
|
25 |
+
raise ValueError(f'input has {x.ndim} dims but target_dims is {target_dims}, which is less')
|
26 |
+
expanded = x[(...,) + (None,) * dims_to_append]
|
27 |
+
# MPS will get inf values if it tries to index into the new axes, but detaching fixes this.
|
28 |
+
# https://github.com/pytorch/pytorch/issues/84364
|
29 |
+
return expanded.detach().clone() if expanded.device.type == 'mps' else expanded
|
30 |
+
|
31 |
+
|
32 |
+
def n_params(module):
|
33 |
+
"""Returns the number of trainable parameters in a module."""
|
34 |
+
return sum(p.numel() for p in module.parameters())
|
35 |
+
|
36 |
+
|
37 |
+
def download_file(path, url, digest=None):
|
38 |
+
"""Downloads a file if it does not exist, optionally checking its SHA-256 hash."""
|
39 |
+
path = Path(path)
|
40 |
+
path.parent.mkdir(parents=True, exist_ok=True)
|
41 |
+
if not path.exists():
|
42 |
+
with urllib.request.urlopen(url) as response, open(path, 'wb') as f:
|
43 |
+
shutil.copyfileobj(response, f)
|
44 |
+
if digest is not None:
|
45 |
+
file_digest = hashlib.sha256(open(path, 'rb').read()).hexdigest()
|
46 |
+
if digest != file_digest:
|
47 |
+
raise OSError(f'hash of {path} (url: {url}) failed to validate')
|
48 |
+
return path
|
49 |
+
|
50 |
+
|
51 |
+
@contextmanager
|
52 |
+
def train_mode(model, mode=True):
|
53 |
+
"""A context manager that places a model into training mode and restores
|
54 |
+
the previous mode on exit."""
|
55 |
+
modes = [module.training for module in model.modules()]
|
56 |
+
try:
|
57 |
+
yield model.train(mode)
|
58 |
+
finally:
|
59 |
+
for i, module in enumerate(model.modules()):
|
60 |
+
module.training = modes[i]
|
61 |
+
|
62 |
+
|
63 |
+
def eval_mode(model):
|
64 |
+
"""A context manager that places a model into evaluation mode and restores
|
65 |
+
the previous mode on exit."""
|
66 |
+
return train_mode(model, False)
|
67 |
+
|
68 |
+
|
69 |
+
@torch.no_grad()
|
70 |
+
def ema_update(model, averaged_model, decay):
|
71 |
+
"""Incorporates updated model parameters into an exponential moving averaged
|
72 |
+
version of a model. It should be called after each optimizer step."""
|
73 |
+
model_params = dict(model.named_parameters())
|
74 |
+
averaged_params = dict(averaged_model.named_parameters())
|
75 |
+
assert model_params.keys() == averaged_params.keys()
|
76 |
+
|
77 |
+
for name, param in model_params.items():
|
78 |
+
averaged_params[name].mul_(decay).add_(param, alpha=1 - decay)
|
79 |
+
|
80 |
+
model_buffers = dict(model.named_buffers())
|
81 |
+
averaged_buffers = dict(averaged_model.named_buffers())
|
82 |
+
assert model_buffers.keys() == averaged_buffers.keys()
|
83 |
+
|
84 |
+
for name, buf in model_buffers.items():
|
85 |
+
averaged_buffers[name].copy_(buf)
|
86 |
+
|
87 |
+
|
88 |
+
class EMAWarmup:
|
89 |
+
"""Implements an EMA warmup using an inverse decay schedule.
|
90 |
+
If inv_gamma=1 and power=1, implements a simple average. inv_gamma=1, power=2/3 are
|
91 |
+
good values for models you plan to train for a million or more steps (reaches decay
|
92 |
+
factor 0.999 at 31.6K steps, 0.9999 at 1M steps), inv_gamma=1, power=3/4 for models
|
93 |
+
you plan to train for less (reaches decay factor 0.999 at 10K steps, 0.9999 at
|
94 |
+
215.4k steps).
|
95 |
+
Args:
|
96 |
+
inv_gamma (float): Inverse multiplicative factor of EMA warmup. Default: 1.
|
97 |
+
power (float): Exponential factor of EMA warmup. Default: 1.
|
98 |
+
min_value (float): The minimum EMA decay rate. Default: 0.
|
99 |
+
max_value (float): The maximum EMA decay rate. Default: 1.
|
100 |
+
start_at (int): The epoch to start averaging at. Default: 0.
|
101 |
+
last_epoch (int): The index of last epoch. Default: 0.
|
102 |
+
"""
|
103 |
+
|
104 |
+
def __init__(self, inv_gamma=1., power=1., min_value=0., max_value=1., start_at=0,
|
105 |
+
last_epoch=0):
|
106 |
+
self.inv_gamma = inv_gamma
|
107 |
+
self.power = power
|
108 |
+
self.min_value = min_value
|
109 |
+
self.max_value = max_value
|
110 |
+
self.start_at = start_at
|
111 |
+
self.last_epoch = last_epoch
|
112 |
+
|
113 |
+
def state_dict(self):
|
114 |
+
"""Returns the state of the class as a :class:`dict`."""
|
115 |
+
return dict(self.__dict__.items())
|
116 |
+
|
117 |
+
def load_state_dict(self, state_dict):
|
118 |
+
"""Loads the class's state.
|
119 |
+
Args:
|
120 |
+
state_dict (dict): scaler state. Should be an object returned
|
121 |
+
from a call to :meth:`state_dict`.
|
122 |
+
"""
|
123 |
+
self.__dict__.update(state_dict)
|
124 |
+
|
125 |
+
def get_value(self):
|
126 |
+
"""Gets the current EMA decay rate."""
|
127 |
+
epoch = max(0, self.last_epoch - self.start_at)
|
128 |
+
value = 1 - (1 + epoch / self.inv_gamma) ** -self.power
|
129 |
+
return 0. if epoch < 0 else min(self.max_value, max(self.min_value, value))
|
130 |
+
|
131 |
+
def step(self):
|
132 |
+
"""Updates the step count."""
|
133 |
+
self.last_epoch += 1
|
134 |
+
|
135 |
+
|
136 |
+
class InverseLR(optim.lr_scheduler._LRScheduler):
|
137 |
+
"""Implements an inverse decay learning rate schedule with an optional exponential
|
138 |
+
warmup. When last_epoch=-1, sets initial lr as lr.
|
139 |
+
inv_gamma is the number of steps/epochs required for the learning rate to decay to
|
140 |
+
(1 / 2)**power of its original value.
|
141 |
+
Args:
|
142 |
+
optimizer (Optimizer): Wrapped optimizer.
|
143 |
+
inv_gamma (float): Inverse multiplicative factor of learning rate decay. Default: 1.
|
144 |
+
power (float): Exponential factor of learning rate decay. Default: 1.
|
145 |
+
warmup (float): Exponential warmup factor (0 <= warmup < 1, 0 to disable)
|
146 |
+
Default: 0.
|
147 |
+
min_lr (float): The minimum learning rate. Default: 0.
|
148 |
+
last_epoch (int): The index of last epoch. Default: -1.
|
149 |
+
verbose (bool): If ``True``, prints a message to stdout for
|
150 |
+
each update. Default: ``False``.
|
151 |
+
"""
|
152 |
+
|
153 |
+
def __init__(self, optimizer, inv_gamma=1., power=1., warmup=0., min_lr=0.,
|
154 |
+
last_epoch=-1, verbose=False):
|
155 |
+
self.inv_gamma = inv_gamma
|
156 |
+
self.power = power
|
157 |
+
if not 0. <= warmup < 1:
|
158 |
+
raise ValueError('Invalid value for warmup')
|
159 |
+
self.warmup = warmup
|
160 |
+
self.min_lr = min_lr
|
161 |
+
super().__init__(optimizer, last_epoch, verbose)
|
162 |
+
|
163 |
+
def get_lr(self):
|
164 |
+
if not self._get_lr_called_within_step:
|
165 |
+
warnings.warn("To get the last learning rate computed by the scheduler, "
|
166 |
+
"please use `get_last_lr()`.")
|
167 |
+
|
168 |
+
return self._get_closed_form_lr()
|
169 |
+
|
170 |
+
def _get_closed_form_lr(self):
|
171 |
+
warmup = 1 - self.warmup ** (self.last_epoch + 1)
|
172 |
+
lr_mult = (1 + self.last_epoch / self.inv_gamma) ** -self.power
|
173 |
+
return [warmup * max(self.min_lr, base_lr * lr_mult)
|
174 |
+
for base_lr in self.base_lrs]
|
175 |
+
|
176 |
+
|
177 |
+
class ExponentialLR(optim.lr_scheduler._LRScheduler):
|
178 |
+
"""Implements an exponential learning rate schedule with an optional exponential
|
179 |
+
warmup. When last_epoch=-1, sets initial lr as lr. Decays the learning rate
|
180 |
+
continuously by decay (default 0.5) every num_steps steps.
|
181 |
+
Args:
|
182 |
+
optimizer (Optimizer): Wrapped optimizer.
|
183 |
+
num_steps (float): The number of steps to decay the learning rate by decay in.
|
184 |
+
decay (float): The factor by which to decay the learning rate every num_steps
|
185 |
+
steps. Default: 0.5.
|
186 |
+
warmup (float): Exponential warmup factor (0 <= warmup < 1, 0 to disable)
|
187 |
+
Default: 0.
|
188 |
+
min_lr (float): The minimum learning rate. Default: 0.
|
189 |
+
last_epoch (int): The index of last epoch. Default: -1.
|
190 |
+
verbose (bool): If ``True``, prints a message to stdout for
|
191 |
+
each update. Default: ``False``.
|
192 |
+
"""
|
193 |
+
|
194 |
+
def __init__(self, optimizer, num_steps, decay=0.5, warmup=0., min_lr=0.,
|
195 |
+
last_epoch=-1, verbose=False):
|
196 |
+
self.num_steps = num_steps
|
197 |
+
self.decay = decay
|
198 |
+
if not 0. <= warmup < 1:
|
199 |
+
raise ValueError('Invalid value for warmup')
|
200 |
+
self.warmup = warmup
|
201 |
+
self.min_lr = min_lr
|
202 |
+
super().__init__(optimizer, last_epoch, verbose)
|
203 |
+
|
204 |
+
def get_lr(self):
|
205 |
+
if not self._get_lr_called_within_step:
|
206 |
+
warnings.warn("To get the last learning rate computed by the scheduler, "
|
207 |
+
"please use `get_last_lr()`.")
|
208 |
+
|
209 |
+
return self._get_closed_form_lr()
|
210 |
+
|
211 |
+
def _get_closed_form_lr(self):
|
212 |
+
warmup = 1 - self.warmup ** (self.last_epoch + 1)
|
213 |
+
lr_mult = (self.decay ** (1 / self.num_steps)) ** self.last_epoch
|
214 |
+
return [warmup * max(self.min_lr, base_lr * lr_mult)
|
215 |
+
for base_lr in self.base_lrs]
|
216 |
+
|
217 |
+
|
218 |
+
def rand_log_normal(shape, loc=0., scale=1., device='cpu', dtype=torch.float32):
|
219 |
+
"""Draws samples from an lognormal distribution."""
|
220 |
+
return (torch.randn(shape, device=device, dtype=dtype) * scale + loc).exp()
|
221 |
+
|
222 |
+
|
223 |
+
def rand_log_logistic(shape, loc=0., scale=1., min_value=0., max_value=float('inf'), device='cpu', dtype=torch.float32):
|
224 |
+
"""Draws samples from an optionally truncated log-logistic distribution."""
|
225 |
+
min_value = torch.as_tensor(min_value, device=device, dtype=torch.float64)
|
226 |
+
max_value = torch.as_tensor(max_value, device=device, dtype=torch.float64)
|
227 |
+
min_cdf = min_value.log().sub(loc).div(scale).sigmoid()
|
228 |
+
max_cdf = max_value.log().sub(loc).div(scale).sigmoid()
|
229 |
+
u = torch.rand(shape, device=device, dtype=torch.float64) * (max_cdf - min_cdf) + min_cdf
|
230 |
+
return u.logit().mul(scale).add(loc).exp().to(dtype)
|
231 |
+
|
232 |
+
|
233 |
+
def rand_log_uniform(shape, min_value, max_value, device='cpu', dtype=torch.float32):
|
234 |
+
"""Draws samples from an log-uniform distribution."""
|
235 |
+
min_value = math.log(min_value)
|
236 |
+
max_value = math.log(max_value)
|
237 |
+
return (torch.rand(shape, device=device, dtype=dtype) * (max_value - min_value) + min_value).exp()
|
238 |
+
|
239 |
+
|
240 |
+
def rand_v_diffusion(shape, sigma_data=1., min_value=0., max_value=float('inf'), device='cpu', dtype=torch.float32):
|
241 |
+
"""Draws samples from a truncated v-diffusion training timestep distribution."""
|
242 |
+
min_cdf = math.atan(min_value / sigma_data) * 2 / math.pi
|
243 |
+
max_cdf = math.atan(max_value / sigma_data) * 2 / math.pi
|
244 |
+
u = torch.rand(shape, device=device, dtype=dtype) * (max_cdf - min_cdf) + min_cdf
|
245 |
+
return torch.tan(u * math.pi / 2) * sigma_data
|
246 |
+
|
247 |
+
|
248 |
+
def rand_split_log_normal(shape, loc, scale_1, scale_2, device='cpu', dtype=torch.float32):
|
249 |
+
"""Draws samples from a split lognormal distribution."""
|
250 |
+
n = torch.randn(shape, device=device, dtype=dtype).abs()
|
251 |
+
u = torch.rand(shape, device=device, dtype=dtype)
|
252 |
+
n_left = n * -scale_1 + loc
|
253 |
+
n_right = n * scale_2 + loc
|
254 |
+
ratio = scale_1 / (scale_1 + scale_2)
|
255 |
+
return torch.where(u < ratio, n_left, n_right).exp()
|
256 |
+
|
257 |
+
|
258 |
+
class FolderOfImages(data.Dataset):
|
259 |
+
"""Recursively finds all images in a directory. It does not support
|
260 |
+
classes/targets."""
|
261 |
+
|
262 |
+
IMG_EXTENSIONS = {'.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm', '.tif', '.tiff', '.webp'}
|
263 |
+
|
264 |
+
def __init__(self, root, transform=None):
|
265 |
+
super().__init__()
|
266 |
+
self.root = Path(root)
|
267 |
+
self.transform = nn.Identity() if transform is None else transform
|
268 |
+
self.paths = sorted(path for path in self.root.rglob('*') if path.suffix.lower() in self.IMG_EXTENSIONS)
|
269 |
+
|
270 |
+
def __repr__(self):
|
271 |
+
return f'FolderOfImages(root="{self.root}", len: {len(self)})'
|
272 |
+
|
273 |
+
def __len__(self):
|
274 |
+
return len(self.paths)
|
275 |
+
|
276 |
+
def __getitem__(self, key):
|
277 |
+
path = self.paths[key]
|
278 |
+
with open(path, 'rb') as f:
|
279 |
+
image = Image.open(f).convert('RGB')
|
280 |
+
image = self.transform(image)
|
281 |
+
return image,
|
282 |
+
|
283 |
+
|
284 |
+
class CSVLogger:
|
285 |
+
def __init__(self, filename, columns):
|
286 |
+
self.filename = Path(filename)
|
287 |
+
self.columns = columns
|
288 |
+
if self.filename.exists():
|
289 |
+
self.file = open(self.filename, 'a')
|
290 |
+
else:
|
291 |
+
self.file = open(self.filename, 'w')
|
292 |
+
self.write(*self.columns)
|
293 |
+
|
294 |
+
def write(self, *args):
|
295 |
+
print(*args, sep=',', file=self.file, flush=True)
|
296 |
+
|
297 |
+
|
298 |
+
@contextmanager
|
299 |
+
def tf32_mode(cudnn=None, matmul=None):
|
300 |
+
"""A context manager that sets whether TF32 is allowed on cuDNN or matmul."""
|
301 |
+
cudnn_old = torch.backends.cudnn.allow_tf32
|
302 |
+
matmul_old = torch.backends.cuda.matmul.allow_tf32
|
303 |
+
try:
|
304 |
+
if cudnn is not None:
|
305 |
+
torch.backends.cudnn.allow_tf32 = cudnn
|
306 |
+
if matmul is not None:
|
307 |
+
torch.backends.cuda.matmul.allow_tf32 = matmul
|
308 |
+
yield
|
309 |
+
finally:
|
310 |
+
if cudnn is not None:
|
311 |
+
torch.backends.cudnn.allow_tf32 = cudnn_old
|
312 |
+
if matmul is not None:
|
313 |
+
torch.backends.cuda.matmul.allow_tf32 = matmul_old
|
comfy/latent_formats.py
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
class LatentFormat:
|
4 |
+
scale_factor = 1.0
|
5 |
+
latent_rgb_factors = None
|
6 |
+
taesd_decoder_name = None
|
7 |
+
|
8 |
+
def process_in(self, latent):
|
9 |
+
return latent * self.scale_factor
|
10 |
+
|
11 |
+
def process_out(self, latent):
|
12 |
+
return latent / self.scale_factor
|
13 |
+
|
14 |
+
class SD15(LatentFormat):
|
15 |
+
def __init__(self, scale_factor=0.18215):
|
16 |
+
self.scale_factor = scale_factor
|
17 |
+
self.latent_rgb_factors = [
|
18 |
+
# R G B
|
19 |
+
[ 0.3512, 0.2297, 0.3227],
|
20 |
+
[ 0.3250, 0.4974, 0.2350],
|
21 |
+
[-0.2829, 0.1762, 0.2721],
|
22 |
+
[-0.2120, -0.2616, -0.7177]
|
23 |
+
]
|
24 |
+
self.taesd_decoder_name = "taesd_decoder"
|
25 |
+
|
26 |
+
class SDXL(LatentFormat):
|
27 |
+
def __init__(self):
|
28 |
+
self.scale_factor = 0.13025
|
29 |
+
self.latent_rgb_factors = [
|
30 |
+
# R G B
|
31 |
+
[ 0.3920, 0.4054, 0.4549],
|
32 |
+
[-0.2634, -0.0196, 0.0653],
|
33 |
+
[ 0.0568, 0.1687, -0.0755],
|
34 |
+
[-0.3112, -0.2359, -0.2076]
|
35 |
+
]
|
36 |
+
self.taesd_decoder_name = "taesdxl_decoder"
|
37 |
+
|
38 |
+
class SDXL_Playground_2_5(LatentFormat):
|
39 |
+
def __init__(self):
|
40 |
+
self.scale_factor = 0.5
|
41 |
+
self.latents_mean = torch.tensor([-1.6574, 1.886, -1.383, 2.5155]).view(1, 4, 1, 1)
|
42 |
+
self.latents_std = torch.tensor([8.4927, 5.9022, 6.5498, 5.2299]).view(1, 4, 1, 1)
|
43 |
+
|
44 |
+
self.latent_rgb_factors = [
|
45 |
+
# R G B
|
46 |
+
[ 0.3920, 0.4054, 0.4549],
|
47 |
+
[-0.2634, -0.0196, 0.0653],
|
48 |
+
[ 0.0568, 0.1687, -0.0755],
|
49 |
+
[-0.3112, -0.2359, -0.2076]
|
50 |
+
]
|
51 |
+
self.taesd_decoder_name = "taesdxl_decoder"
|
52 |
+
|
53 |
+
def process_in(self, latent):
|
54 |
+
latents_mean = self.latents_mean.to(latent.device, latent.dtype)
|
55 |
+
latents_std = self.latents_std.to(latent.device, latent.dtype)
|
56 |
+
return (latent - latents_mean) * self.scale_factor / latents_std
|
57 |
+
|
58 |
+
def process_out(self, latent):
|
59 |
+
latents_mean = self.latents_mean.to(latent.device, latent.dtype)
|
60 |
+
latents_std = self.latents_std.to(latent.device, latent.dtype)
|
61 |
+
return latent * latents_std / self.scale_factor + latents_mean
|
62 |
+
|
63 |
+
|
64 |
+
class SD_X4(LatentFormat):
|
65 |
+
def __init__(self):
|
66 |
+
self.scale_factor = 0.08333
|
67 |
+
self.latent_rgb_factors = [
|
68 |
+
[-0.2340, -0.3863, -0.3257],
|
69 |
+
[ 0.0994, 0.0885, -0.0908],
|
70 |
+
[-0.2833, -0.2349, -0.3741],
|
71 |
+
[ 0.2523, -0.0055, -0.1651]
|
72 |
+
]
|
73 |
+
|
74 |
+
class SC_Prior(LatentFormat):
|
75 |
+
def __init__(self):
|
76 |
+
self.scale_factor = 1.0
|
77 |
+
self.latent_rgb_factors = [
|
78 |
+
[-0.0326, -0.0204, -0.0127],
|
79 |
+
[-0.1592, -0.0427, 0.0216],
|
80 |
+
[ 0.0873, 0.0638, -0.0020],
|
81 |
+
[-0.0602, 0.0442, 0.1304],
|
82 |
+
[ 0.0800, -0.0313, -0.1796],
|
83 |
+
[-0.0810, -0.0638, -0.1581],
|
84 |
+
[ 0.1791, 0.1180, 0.0967],
|
85 |
+
[ 0.0740, 0.1416, 0.0432],
|
86 |
+
[-0.1745, -0.1888, -0.1373],
|
87 |
+
[ 0.2412, 0.1577, 0.0928],
|
88 |
+
[ 0.1908, 0.0998, 0.0682],
|
89 |
+
[ 0.0209, 0.0365, -0.0092],
|
90 |
+
[ 0.0448, -0.0650, -0.1728],
|
91 |
+
[-0.1658, -0.1045, -0.1308],
|
92 |
+
[ 0.0542, 0.1545, 0.1325],
|
93 |
+
[-0.0352, -0.1672, -0.2541]
|
94 |
+
]
|
95 |
+
|
96 |
+
class SC_B(LatentFormat):
|
97 |
+
def __init__(self):
|
98 |
+
self.scale_factor = 1.0
|
99 |
+
self.latent_rgb_factors = [
|
100 |
+
[ 0.1121, 0.2006, 0.1023],
|
101 |
+
[-0.2093, -0.0222, -0.0195],
|
102 |
+
[-0.3087, -0.1535, 0.0366],
|
103 |
+
[ 0.0290, -0.1574, -0.4078]
|
104 |
+
]
|
comfy/ldm/cascade/common.py
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
This file is part of ComfyUI.
|
3 |
+
Copyright (C) 2024 Stability AI
|
4 |
+
|
5 |
+
This program is free software: you can redistribute it and/or modify
|
6 |
+
it under the terms of the GNU General Public License as published by
|
7 |
+
the Free Software Foundation, either version 3 of the License, or
|
8 |
+
(at your option) any later version.
|
9 |
+
|
10 |
+
This program is distributed in the hope that it will be useful,
|
11 |
+
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
12 |
+
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
13 |
+
GNU General Public License for more details.
|
14 |
+
|
15 |
+
You should have received a copy of the GNU General Public License
|
16 |
+
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
17 |
+
"""
|
18 |
+
|
19 |
+
import torch
|
20 |
+
import torch.nn as nn
|
21 |
+
from comfy.ldm.modules.attention import optimized_attention
|
22 |
+
|
23 |
+
class Linear(torch.nn.Linear):
|
24 |
+
def reset_parameters(self):
|
25 |
+
return None
|
26 |
+
|
27 |
+
class Conv2d(torch.nn.Conv2d):
|
28 |
+
def reset_parameters(self):
|
29 |
+
return None
|
30 |
+
|
31 |
+
class OptimizedAttention(nn.Module):
|
32 |
+
def __init__(self, c, nhead, dropout=0.0, dtype=None, device=None, operations=None):
|
33 |
+
super().__init__()
|
34 |
+
self.heads = nhead
|
35 |
+
|
36 |
+
self.to_q = operations.Linear(c, c, bias=True, dtype=dtype, device=device)
|
37 |
+
self.to_k = operations.Linear(c, c, bias=True, dtype=dtype, device=device)
|
38 |
+
self.to_v = operations.Linear(c, c, bias=True, dtype=dtype, device=device)
|
39 |
+
|
40 |
+
self.out_proj = operations.Linear(c, c, bias=True, dtype=dtype, device=device)
|
41 |
+
|
42 |
+
def forward(self, q, k, v):
|
43 |
+
q = self.to_q(q)
|
44 |
+
k = self.to_k(k)
|
45 |
+
v = self.to_v(v)
|
46 |
+
|
47 |
+
out = optimized_attention(q, k, v, self.heads)
|
48 |
+
|
49 |
+
return self.out_proj(out)
|
50 |
+
|
51 |
+
class Attention2D(nn.Module):
|
52 |
+
def __init__(self, c, nhead, dropout=0.0, dtype=None, device=None, operations=None):
|
53 |
+
super().__init__()
|
54 |
+
self.attn = OptimizedAttention(c, nhead, dtype=dtype, device=device, operations=operations)
|
55 |
+
# self.attn = nn.MultiheadAttention(c, nhead, dropout=dropout, bias=True, batch_first=True, dtype=dtype, device=device)
|
56 |
+
|
57 |
+
def forward(self, x, kv, self_attn=False):
|
58 |
+
orig_shape = x.shape
|
59 |
+
x = x.view(x.size(0), x.size(1), -1).permute(0, 2, 1) # Bx4xHxW -> Bx(HxW)x4
|
60 |
+
if self_attn:
|
61 |
+
kv = torch.cat([x, kv], dim=1)
|
62 |
+
# x = self.attn(x, kv, kv, need_weights=False)[0]
|
63 |
+
x = self.attn(x, kv, kv)
|
64 |
+
x = x.permute(0, 2, 1).view(*orig_shape)
|
65 |
+
return x
|
66 |
+
|
67 |
+
|
68 |
+
def LayerNorm2d_op(operations):
|
69 |
+
class LayerNorm2d(operations.LayerNorm):
|
70 |
+
def __init__(self, *args, **kwargs):
|
71 |
+
super().__init__(*args, **kwargs)
|
72 |
+
|
73 |
+
def forward(self, x):
|
74 |
+
return super().forward(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
|
75 |
+
return LayerNorm2d
|
76 |
+
|
77 |
+
class GlobalResponseNorm(nn.Module):
|
78 |
+
"from https://github.com/facebookresearch/ConvNeXt-V2/blob/3608f67cc1dae164790c5d0aead7bf2d73d9719b/models/utils.py#L105"
|
79 |
+
def __init__(self, dim, dtype=None, device=None):
|
80 |
+
super().__init__()
|
81 |
+
self.gamma = nn.Parameter(torch.zeros(1, 1, 1, dim, dtype=dtype, device=device))
|
82 |
+
self.beta = nn.Parameter(torch.zeros(1, 1, 1, dim, dtype=dtype, device=device))
|
83 |
+
|
84 |
+
def forward(self, x):
|
85 |
+
Gx = torch.norm(x, p=2, dim=(1, 2), keepdim=True)
|
86 |
+
Nx = Gx / (Gx.mean(dim=-1, keepdim=True) + 1e-6)
|
87 |
+
return self.gamma.to(device=x.device, dtype=x.dtype) * (x * Nx) + self.beta.to(device=x.device, dtype=x.dtype) + x
|
88 |
+
|
89 |
+
|
90 |
+
class ResBlock(nn.Module):
|
91 |
+
def __init__(self, c, c_skip=0, kernel_size=3, dropout=0.0, dtype=None, device=None, operations=None): # , num_heads=4, expansion=2):
|
92 |
+
super().__init__()
|
93 |
+
self.depthwise = operations.Conv2d(c, c, kernel_size=kernel_size, padding=kernel_size // 2, groups=c, dtype=dtype, device=device)
|
94 |
+
# self.depthwise = SAMBlock(c, num_heads, expansion)
|
95 |
+
self.norm = LayerNorm2d_op(operations)(c, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
96 |
+
self.channelwise = nn.Sequential(
|
97 |
+
operations.Linear(c + c_skip, c * 4, dtype=dtype, device=device),
|
98 |
+
nn.GELU(),
|
99 |
+
GlobalResponseNorm(c * 4, dtype=dtype, device=device),
|
100 |
+
nn.Dropout(dropout),
|
101 |
+
operations.Linear(c * 4, c, dtype=dtype, device=device)
|
102 |
+
)
|
103 |
+
|
104 |
+
def forward(self, x, x_skip=None):
|
105 |
+
x_res = x
|
106 |
+
x = self.norm(self.depthwise(x))
|
107 |
+
if x_skip is not None:
|
108 |
+
x = torch.cat([x, x_skip], dim=1)
|
109 |
+
x = self.channelwise(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
|
110 |
+
return x + x_res
|
111 |
+
|
112 |
+
|
113 |
+
class AttnBlock(nn.Module):
|
114 |
+
def __init__(self, c, c_cond, nhead, self_attn=True, dropout=0.0, dtype=None, device=None, operations=None):
|
115 |
+
super().__init__()
|
116 |
+
self.self_attn = self_attn
|
117 |
+
self.norm = LayerNorm2d_op(operations)(c, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
118 |
+
self.attention = Attention2D(c, nhead, dropout, dtype=dtype, device=device, operations=operations)
|
119 |
+
self.kv_mapper = nn.Sequential(
|
120 |
+
nn.SiLU(),
|
121 |
+
operations.Linear(c_cond, c, dtype=dtype, device=device)
|
122 |
+
)
|
123 |
+
|
124 |
+
def forward(self, x, kv):
|
125 |
+
kv = self.kv_mapper(kv)
|
126 |
+
x = x + self.attention(self.norm(x), kv, self_attn=self.self_attn)
|
127 |
+
return x
|
128 |
+
|
129 |
+
|
130 |
+
class FeedForwardBlock(nn.Module):
|
131 |
+
def __init__(self, c, dropout=0.0, dtype=None, device=None, operations=None):
|
132 |
+
super().__init__()
|
133 |
+
self.norm = LayerNorm2d_op(operations)(c, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
134 |
+
self.channelwise = nn.Sequential(
|
135 |
+
operations.Linear(c, c * 4, dtype=dtype, device=device),
|
136 |
+
nn.GELU(),
|
137 |
+
GlobalResponseNorm(c * 4, dtype=dtype, device=device),
|
138 |
+
nn.Dropout(dropout),
|
139 |
+
operations.Linear(c * 4, c, dtype=dtype, device=device)
|
140 |
+
)
|
141 |
+
|
142 |
+
def forward(self, x):
|
143 |
+
x = x + self.channelwise(self.norm(x).permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
|
144 |
+
return x
|
145 |
+
|
146 |
+
|
147 |
+
class TimestepBlock(nn.Module):
|
148 |
+
def __init__(self, c, c_timestep, conds=['sca'], dtype=None, device=None, operations=None):
|
149 |
+
super().__init__()
|
150 |
+
self.mapper = operations.Linear(c_timestep, c * 2, dtype=dtype, device=device)
|
151 |
+
self.conds = conds
|
152 |
+
for cname in conds:
|
153 |
+
setattr(self, f"mapper_{cname}", operations.Linear(c_timestep, c * 2, dtype=dtype, device=device))
|
154 |
+
|
155 |
+
def forward(self, x, t):
|
156 |
+
t = t.chunk(len(self.conds) + 1, dim=1)
|
157 |
+
a, b = self.mapper(t[0])[:, :, None, None].chunk(2, dim=1)
|
158 |
+
for i, c in enumerate(self.conds):
|
159 |
+
ac, bc = getattr(self, f"mapper_{c}")(t[i + 1])[:, :, None, None].chunk(2, dim=1)
|
160 |
+
a, b = a + ac, b + bc
|
161 |
+
return x * (1 + a) + b
|
comfy/ldm/cascade/controlnet.py
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
This file is part of ComfyUI.
|
3 |
+
Copyright (C) 2024 Stability AI
|
4 |
+
|
5 |
+
This program is free software: you can redistribute it and/or modify
|
6 |
+
it under the terms of the GNU General Public License as published by
|
7 |
+
the Free Software Foundation, either version 3 of the License, or
|
8 |
+
(at your option) any later version.
|
9 |
+
|
10 |
+
This program is distributed in the hope that it will be useful,
|
11 |
+
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
12 |
+
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
13 |
+
GNU General Public License for more details.
|
14 |
+
|
15 |
+
You should have received a copy of the GNU General Public License
|
16 |
+
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
17 |
+
"""
|
18 |
+
|
19 |
+
import torch
|
20 |
+
import torchvision
|
21 |
+
from torch import nn
|
22 |
+
from .common import LayerNorm2d_op
|
23 |
+
|
24 |
+
|
25 |
+
class CNetResBlock(nn.Module):
|
26 |
+
def __init__(self, c, dtype=None, device=None, operations=None):
|
27 |
+
super().__init__()
|
28 |
+
self.blocks = nn.Sequential(
|
29 |
+
LayerNorm2d_op(operations)(c, dtype=dtype, device=device),
|
30 |
+
nn.GELU(),
|
31 |
+
operations.Conv2d(c, c, kernel_size=3, padding=1),
|
32 |
+
LayerNorm2d_op(operations)(c, dtype=dtype, device=device),
|
33 |
+
nn.GELU(),
|
34 |
+
operations.Conv2d(c, c, kernel_size=3, padding=1),
|
35 |
+
)
|
36 |
+
|
37 |
+
def forward(self, x):
|
38 |
+
return x + self.blocks(x)
|
39 |
+
|
40 |
+
|
41 |
+
class ControlNet(nn.Module):
|
42 |
+
def __init__(self, c_in=3, c_proj=2048, proj_blocks=None, bottleneck_mode=None, dtype=None, device=None, operations=nn):
|
43 |
+
super().__init__()
|
44 |
+
if bottleneck_mode is None:
|
45 |
+
bottleneck_mode = 'effnet'
|
46 |
+
self.proj_blocks = proj_blocks
|
47 |
+
if bottleneck_mode == 'effnet':
|
48 |
+
embd_channels = 1280
|
49 |
+
self.backbone = torchvision.models.efficientnet_v2_s().features.eval()
|
50 |
+
if c_in != 3:
|
51 |
+
in_weights = self.backbone[0][0].weight.data
|
52 |
+
self.backbone[0][0] = operations.Conv2d(c_in, 24, kernel_size=3, stride=2, bias=False, dtype=dtype, device=device)
|
53 |
+
if c_in > 3:
|
54 |
+
# nn.init.constant_(self.backbone[0][0].weight, 0)
|
55 |
+
self.backbone[0][0].weight.data[:, :3] = in_weights[:, :3].clone()
|
56 |
+
else:
|
57 |
+
self.backbone[0][0].weight.data = in_weights[:, :c_in].clone()
|
58 |
+
elif bottleneck_mode == 'simple':
|
59 |
+
embd_channels = c_in
|
60 |
+
self.backbone = nn.Sequential(
|
61 |
+
operations.Conv2d(embd_channels, embd_channels * 4, kernel_size=3, padding=1, dtype=dtype, device=device),
|
62 |
+
nn.LeakyReLU(0.2, inplace=True),
|
63 |
+
operations.Conv2d(embd_channels * 4, embd_channels, kernel_size=3, padding=1, dtype=dtype, device=device),
|
64 |
+
)
|
65 |
+
elif bottleneck_mode == 'large':
|
66 |
+
self.backbone = nn.Sequential(
|
67 |
+
operations.Conv2d(c_in, 4096 * 4, kernel_size=1, dtype=dtype, device=device),
|
68 |
+
nn.LeakyReLU(0.2, inplace=True),
|
69 |
+
operations.Conv2d(4096 * 4, 1024, kernel_size=1, dtype=dtype, device=device),
|
70 |
+
*[CNetResBlock(1024, dtype=dtype, device=device, operations=operations) for _ in range(8)],
|
71 |
+
operations.Conv2d(1024, 1280, kernel_size=1, dtype=dtype, device=device),
|
72 |
+
)
|
73 |
+
embd_channels = 1280
|
74 |
+
else:
|
75 |
+
raise ValueError(f'Unknown bottleneck mode: {bottleneck_mode}')
|
76 |
+
self.projections = nn.ModuleList()
|
77 |
+
for _ in range(len(proj_blocks)):
|
78 |
+
self.projections.append(nn.Sequential(
|
79 |
+
operations.Conv2d(embd_channels, embd_channels, kernel_size=1, bias=False, dtype=dtype, device=device),
|
80 |
+
nn.LeakyReLU(0.2, inplace=True),
|
81 |
+
operations.Conv2d(embd_channels, c_proj, kernel_size=1, bias=False, dtype=dtype, device=device),
|
82 |
+
))
|
83 |
+
# nn.init.constant_(self.projections[-1][-1].weight, 0) # zero output projection
|
84 |
+
self.xl = False
|
85 |
+
self.input_channels = c_in
|
86 |
+
self.unshuffle_amount = 8
|
87 |
+
|
88 |
+
def forward(self, x):
|
89 |
+
x = self.backbone(x)
|
90 |
+
proj_outputs = [None for _ in range(max(self.proj_blocks) + 1)]
|
91 |
+
for i, idx in enumerate(self.proj_blocks):
|
92 |
+
proj_outputs[idx] = self.projections[i](x)
|
93 |
+
return proj_outputs
|
comfy/ldm/cascade/stage_a.py
ADDED
@@ -0,0 +1,258 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
This file is part of ComfyUI.
|
3 |
+
Copyright (C) 2024 Stability AI
|
4 |
+
|
5 |
+
This program is free software: you can redistribute it and/or modify
|
6 |
+
it under the terms of the GNU General Public License as published by
|
7 |
+
the Free Software Foundation, either version 3 of the License, or
|
8 |
+
(at your option) any later version.
|
9 |
+
|
10 |
+
This program is distributed in the hope that it will be useful,
|
11 |
+
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
12 |
+
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
13 |
+
GNU General Public License for more details.
|
14 |
+
|
15 |
+
You should have received a copy of the GNU General Public License
|
16 |
+
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
17 |
+
"""
|
18 |
+
|
19 |
+
import torch
|
20 |
+
from torch import nn
|
21 |
+
from torch.autograd import Function
|
22 |
+
|
23 |
+
class vector_quantize(Function):
|
24 |
+
@staticmethod
|
25 |
+
def forward(ctx, x, codebook):
|
26 |
+
with torch.no_grad():
|
27 |
+
codebook_sqr = torch.sum(codebook ** 2, dim=1)
|
28 |
+
x_sqr = torch.sum(x ** 2, dim=1, keepdim=True)
|
29 |
+
|
30 |
+
dist = torch.addmm(codebook_sqr + x_sqr, x, codebook.t(), alpha=-2.0, beta=1.0)
|
31 |
+
_, indices = dist.min(dim=1)
|
32 |
+
|
33 |
+
ctx.save_for_backward(indices, codebook)
|
34 |
+
ctx.mark_non_differentiable(indices)
|
35 |
+
|
36 |
+
nn = torch.index_select(codebook, 0, indices)
|
37 |
+
return nn, indices
|
38 |
+
|
39 |
+
@staticmethod
|
40 |
+
def backward(ctx, grad_output, grad_indices):
|
41 |
+
grad_inputs, grad_codebook = None, None
|
42 |
+
|
43 |
+
if ctx.needs_input_grad[0]:
|
44 |
+
grad_inputs = grad_output.clone()
|
45 |
+
if ctx.needs_input_grad[1]:
|
46 |
+
# Gradient wrt. the codebook
|
47 |
+
indices, codebook = ctx.saved_tensors
|
48 |
+
|
49 |
+
grad_codebook = torch.zeros_like(codebook)
|
50 |
+
grad_codebook.index_add_(0, indices, grad_output)
|
51 |
+
|
52 |
+
return (grad_inputs, grad_codebook)
|
53 |
+
|
54 |
+
|
55 |
+
class VectorQuantize(nn.Module):
|
56 |
+
def __init__(self, embedding_size, k, ema_decay=0.99, ema_loss=False):
|
57 |
+
"""
|
58 |
+
Takes an input of variable size (as long as the last dimension matches the embedding size).
|
59 |
+
Returns one tensor containing the nearest neigbour embeddings to each of the inputs,
|
60 |
+
with the same size as the input, vq and commitment components for the loss as a touple
|
61 |
+
in the second output and the indices of the quantized vectors in the third:
|
62 |
+
quantized, (vq_loss, commit_loss), indices
|
63 |
+
"""
|
64 |
+
super(VectorQuantize, self).__init__()
|
65 |
+
|
66 |
+
self.codebook = nn.Embedding(k, embedding_size)
|
67 |
+
self.codebook.weight.data.uniform_(-1./k, 1./k)
|
68 |
+
self.vq = vector_quantize.apply
|
69 |
+
|
70 |
+
self.ema_decay = ema_decay
|
71 |
+
self.ema_loss = ema_loss
|
72 |
+
if ema_loss:
|
73 |
+
self.register_buffer('ema_element_count', torch.ones(k))
|
74 |
+
self.register_buffer('ema_weight_sum', torch.zeros_like(self.codebook.weight))
|
75 |
+
|
76 |
+
def _laplace_smoothing(self, x, epsilon):
|
77 |
+
n = torch.sum(x)
|
78 |
+
return ((x + epsilon) / (n + x.size(0) * epsilon) * n)
|
79 |
+
|
80 |
+
def _updateEMA(self, z_e_x, indices):
|
81 |
+
mask = nn.functional.one_hot(indices, self.ema_element_count.size(0)).float()
|
82 |
+
elem_count = mask.sum(dim=0)
|
83 |
+
weight_sum = torch.mm(mask.t(), z_e_x)
|
84 |
+
|
85 |
+
self.ema_element_count = (self.ema_decay * self.ema_element_count) + ((1-self.ema_decay) * elem_count)
|
86 |
+
self.ema_element_count = self._laplace_smoothing(self.ema_element_count, 1e-5)
|
87 |
+
self.ema_weight_sum = (self.ema_decay * self.ema_weight_sum) + ((1-self.ema_decay) * weight_sum)
|
88 |
+
|
89 |
+
self.codebook.weight.data = self.ema_weight_sum / self.ema_element_count.unsqueeze(-1)
|
90 |
+
|
91 |
+
def idx2vq(self, idx, dim=-1):
|
92 |
+
q_idx = self.codebook(idx)
|
93 |
+
if dim != -1:
|
94 |
+
q_idx = q_idx.movedim(-1, dim)
|
95 |
+
return q_idx
|
96 |
+
|
97 |
+
def forward(self, x, get_losses=True, dim=-1):
|
98 |
+
if dim != -1:
|
99 |
+
x = x.movedim(dim, -1)
|
100 |
+
z_e_x = x.contiguous().view(-1, x.size(-1)) if len(x.shape) > 2 else x
|
101 |
+
z_q_x, indices = self.vq(z_e_x, self.codebook.weight.detach())
|
102 |
+
vq_loss, commit_loss = None, None
|
103 |
+
if self.ema_loss and self.training:
|
104 |
+
self._updateEMA(z_e_x.detach(), indices.detach())
|
105 |
+
# pick the graded embeddings after updating the codebook in order to have a more accurate commitment loss
|
106 |
+
z_q_x_grd = torch.index_select(self.codebook.weight, dim=0, index=indices)
|
107 |
+
if get_losses:
|
108 |
+
vq_loss = (z_q_x_grd - z_e_x.detach()).pow(2).mean()
|
109 |
+
commit_loss = (z_e_x - z_q_x_grd.detach()).pow(2).mean()
|
110 |
+
|
111 |
+
z_q_x = z_q_x.view(x.shape)
|
112 |
+
if dim != -1:
|
113 |
+
z_q_x = z_q_x.movedim(-1, dim)
|
114 |
+
return z_q_x, (vq_loss, commit_loss), indices.view(x.shape[:-1])
|
115 |
+
|
116 |
+
|
117 |
+
class ResBlock(nn.Module):
|
118 |
+
def __init__(self, c, c_hidden):
|
119 |
+
super().__init__()
|
120 |
+
# depthwise/attention
|
121 |
+
self.norm1 = nn.LayerNorm(c, elementwise_affine=False, eps=1e-6)
|
122 |
+
self.depthwise = nn.Sequential(
|
123 |
+
nn.ReplicationPad2d(1),
|
124 |
+
nn.Conv2d(c, c, kernel_size=3, groups=c)
|
125 |
+
)
|
126 |
+
|
127 |
+
# channelwise
|
128 |
+
self.norm2 = nn.LayerNorm(c, elementwise_affine=False, eps=1e-6)
|
129 |
+
self.channelwise = nn.Sequential(
|
130 |
+
nn.Linear(c, c_hidden),
|
131 |
+
nn.GELU(),
|
132 |
+
nn.Linear(c_hidden, c),
|
133 |
+
)
|
134 |
+
|
135 |
+
self.gammas = nn.Parameter(torch.zeros(6), requires_grad=True)
|
136 |
+
|
137 |
+
# Init weights
|
138 |
+
def _basic_init(module):
|
139 |
+
if isinstance(module, nn.Linear) or isinstance(module, nn.Conv2d):
|
140 |
+
torch.nn.init.xavier_uniform_(module.weight)
|
141 |
+
if module.bias is not None:
|
142 |
+
nn.init.constant_(module.bias, 0)
|
143 |
+
|
144 |
+
self.apply(_basic_init)
|
145 |
+
|
146 |
+
def _norm(self, x, norm):
|
147 |
+
return norm(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
|
148 |
+
|
149 |
+
def forward(self, x):
|
150 |
+
mods = self.gammas
|
151 |
+
|
152 |
+
x_temp = self._norm(x, self.norm1) * (1 + mods[0]) + mods[1]
|
153 |
+
try:
|
154 |
+
x = x + self.depthwise(x_temp) * mods[2]
|
155 |
+
except: #operation not implemented for bf16
|
156 |
+
x_temp = self.depthwise[0](x_temp.float()).to(x.dtype)
|
157 |
+
x = x + self.depthwise[1](x_temp) * mods[2]
|
158 |
+
|
159 |
+
x_temp = self._norm(x, self.norm2) * (1 + mods[3]) + mods[4]
|
160 |
+
x = x + self.channelwise(x_temp.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) * mods[5]
|
161 |
+
|
162 |
+
return x
|
163 |
+
|
164 |
+
|
165 |
+
class StageA(nn.Module):
|
166 |
+
def __init__(self, levels=2, bottleneck_blocks=12, c_hidden=384, c_latent=4, codebook_size=8192,
|
167 |
+
scale_factor=0.43): # 0.3764
|
168 |
+
super().__init__()
|
169 |
+
self.c_latent = c_latent
|
170 |
+
self.scale_factor = scale_factor
|
171 |
+
c_levels = [c_hidden // (2 ** i) for i in reversed(range(levels))]
|
172 |
+
|
173 |
+
# Encoder blocks
|
174 |
+
self.in_block = nn.Sequential(
|
175 |
+
nn.PixelUnshuffle(2),
|
176 |
+
nn.Conv2d(3 * 4, c_levels[0], kernel_size=1)
|
177 |
+
)
|
178 |
+
down_blocks = []
|
179 |
+
for i in range(levels):
|
180 |
+
if i > 0:
|
181 |
+
down_blocks.append(nn.Conv2d(c_levels[i - 1], c_levels[i], kernel_size=4, stride=2, padding=1))
|
182 |
+
block = ResBlock(c_levels[i], c_levels[i] * 4)
|
183 |
+
down_blocks.append(block)
|
184 |
+
down_blocks.append(nn.Sequential(
|
185 |
+
nn.Conv2d(c_levels[-1], c_latent, kernel_size=1, bias=False),
|
186 |
+
nn.BatchNorm2d(c_latent), # then normalize them to have mean 0 and std 1
|
187 |
+
))
|
188 |
+
self.down_blocks = nn.Sequential(*down_blocks)
|
189 |
+
self.down_blocks[0]
|
190 |
+
|
191 |
+
self.codebook_size = codebook_size
|
192 |
+
self.vquantizer = VectorQuantize(c_latent, k=codebook_size)
|
193 |
+
|
194 |
+
# Decoder blocks
|
195 |
+
up_blocks = [nn.Sequential(
|
196 |
+
nn.Conv2d(c_latent, c_levels[-1], kernel_size=1)
|
197 |
+
)]
|
198 |
+
for i in range(levels):
|
199 |
+
for j in range(bottleneck_blocks if i == 0 else 1):
|
200 |
+
block = ResBlock(c_levels[levels - 1 - i], c_levels[levels - 1 - i] * 4)
|
201 |
+
up_blocks.append(block)
|
202 |
+
if i < levels - 1:
|
203 |
+
up_blocks.append(
|
204 |
+
nn.ConvTranspose2d(c_levels[levels - 1 - i], c_levels[levels - 2 - i], kernel_size=4, stride=2,
|
205 |
+
padding=1))
|
206 |
+
self.up_blocks = nn.Sequential(*up_blocks)
|
207 |
+
self.out_block = nn.Sequential(
|
208 |
+
nn.Conv2d(c_levels[0], 3 * 4, kernel_size=1),
|
209 |
+
nn.PixelShuffle(2),
|
210 |
+
)
|
211 |
+
|
212 |
+
def encode(self, x, quantize=False):
|
213 |
+
x = self.in_block(x)
|
214 |
+
x = self.down_blocks(x)
|
215 |
+
if quantize:
|
216 |
+
qe, (vq_loss, commit_loss), indices = self.vquantizer.forward(x, dim=1)
|
217 |
+
return qe / self.scale_factor, x / self.scale_factor, indices, vq_loss + commit_loss * 0.25
|
218 |
+
else:
|
219 |
+
return x / self.scale_factor
|
220 |
+
|
221 |
+
def decode(self, x):
|
222 |
+
x = x * self.scale_factor
|
223 |
+
x = self.up_blocks(x)
|
224 |
+
x = self.out_block(x)
|
225 |
+
return x
|
226 |
+
|
227 |
+
def forward(self, x, quantize=False):
|
228 |
+
qe, x, _, vq_loss = self.encode(x, quantize)
|
229 |
+
x = self.decode(qe)
|
230 |
+
return x, vq_loss
|
231 |
+
|
232 |
+
|
233 |
+
class Discriminator(nn.Module):
|
234 |
+
def __init__(self, c_in=3, c_cond=0, c_hidden=512, depth=6):
|
235 |
+
super().__init__()
|
236 |
+
d = max(depth - 3, 3)
|
237 |
+
layers = [
|
238 |
+
nn.utils.spectral_norm(nn.Conv2d(c_in, c_hidden // (2 ** d), kernel_size=3, stride=2, padding=1)),
|
239 |
+
nn.LeakyReLU(0.2),
|
240 |
+
]
|
241 |
+
for i in range(depth - 1):
|
242 |
+
c_in = c_hidden // (2 ** max((d - i), 0))
|
243 |
+
c_out = c_hidden // (2 ** max((d - 1 - i), 0))
|
244 |
+
layers.append(nn.utils.spectral_norm(nn.Conv2d(c_in, c_out, kernel_size=3, stride=2, padding=1)))
|
245 |
+
layers.append(nn.InstanceNorm2d(c_out))
|
246 |
+
layers.append(nn.LeakyReLU(0.2))
|
247 |
+
self.encoder = nn.Sequential(*layers)
|
248 |
+
self.shuffle = nn.Conv2d((c_hidden + c_cond) if c_cond > 0 else c_hidden, 1, kernel_size=1)
|
249 |
+
self.logits = nn.Sigmoid()
|
250 |
+
|
251 |
+
def forward(self, x, cond=None):
|
252 |
+
x = self.encoder(x)
|
253 |
+
if cond is not None:
|
254 |
+
cond = cond.view(cond.size(0), cond.size(1), 1, 1, ).expand(-1, -1, x.size(-2), x.size(-1))
|
255 |
+
x = torch.cat([x, cond], dim=1)
|
256 |
+
x = self.shuffle(x)
|
257 |
+
x = self.logits(x)
|
258 |
+
return x
|
comfy/ldm/cascade/stage_b.py
ADDED
@@ -0,0 +1,257 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
This file is part of ComfyUI.
|
3 |
+
Copyright (C) 2024 Stability AI
|
4 |
+
|
5 |
+
This program is free software: you can redistribute it and/or modify
|
6 |
+
it under the terms of the GNU General Public License as published by
|
7 |
+
the Free Software Foundation, either version 3 of the License, or
|
8 |
+
(at your option) any later version.
|
9 |
+
|
10 |
+
This program is distributed in the hope that it will be useful,
|
11 |
+
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
12 |
+
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
13 |
+
GNU General Public License for more details.
|
14 |
+
|
15 |
+
You should have received a copy of the GNU General Public License
|
16 |
+
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
17 |
+
"""
|
18 |
+
|
19 |
+
import math
|
20 |
+
import numpy as np
|
21 |
+
import torch
|
22 |
+
from torch import nn
|
23 |
+
from .common import AttnBlock, LayerNorm2d_op, ResBlock, FeedForwardBlock, TimestepBlock
|
24 |
+
|
25 |
+
class StageB(nn.Module):
|
26 |
+
def __init__(self, c_in=4, c_out=4, c_r=64, patch_size=2, c_cond=1280, c_hidden=[320, 640, 1280, 1280],
|
27 |
+
nhead=[-1, -1, 20, 20], blocks=[[2, 6, 28, 6], [6, 28, 6, 2]],
|
28 |
+
block_repeat=[[1, 1, 1, 1], [3, 3, 2, 2]], level_config=['CT', 'CT', 'CTA', 'CTA'], c_clip=1280,
|
29 |
+
c_clip_seq=4, c_effnet=16, c_pixels=3, kernel_size=3, dropout=[0, 0, 0.0, 0.0], self_attn=True,
|
30 |
+
t_conds=['sca'], stable_cascade_stage=None, dtype=None, device=None, operations=None):
|
31 |
+
super().__init__()
|
32 |
+
self.dtype = dtype
|
33 |
+
self.c_r = c_r
|
34 |
+
self.t_conds = t_conds
|
35 |
+
self.c_clip_seq = c_clip_seq
|
36 |
+
if not isinstance(dropout, list):
|
37 |
+
dropout = [dropout] * len(c_hidden)
|
38 |
+
if not isinstance(self_attn, list):
|
39 |
+
self_attn = [self_attn] * len(c_hidden)
|
40 |
+
|
41 |
+
# CONDITIONING
|
42 |
+
self.effnet_mapper = nn.Sequential(
|
43 |
+
operations.Conv2d(c_effnet, c_hidden[0] * 4, kernel_size=1, dtype=dtype, device=device),
|
44 |
+
nn.GELU(),
|
45 |
+
operations.Conv2d(c_hidden[0] * 4, c_hidden[0], kernel_size=1, dtype=dtype, device=device),
|
46 |
+
LayerNorm2d_op(operations)(c_hidden[0], elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
47 |
+
)
|
48 |
+
self.pixels_mapper = nn.Sequential(
|
49 |
+
operations.Conv2d(c_pixels, c_hidden[0] * 4, kernel_size=1, dtype=dtype, device=device),
|
50 |
+
nn.GELU(),
|
51 |
+
operations.Conv2d(c_hidden[0] * 4, c_hidden[0], kernel_size=1, dtype=dtype, device=device),
|
52 |
+
LayerNorm2d_op(operations)(c_hidden[0], elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
53 |
+
)
|
54 |
+
self.clip_mapper = operations.Linear(c_clip, c_cond * c_clip_seq, dtype=dtype, device=device)
|
55 |
+
self.clip_norm = operations.LayerNorm(c_cond, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
56 |
+
|
57 |
+
self.embedding = nn.Sequential(
|
58 |
+
nn.PixelUnshuffle(patch_size),
|
59 |
+
operations.Conv2d(c_in * (patch_size ** 2), c_hidden[0], kernel_size=1, dtype=dtype, device=device),
|
60 |
+
LayerNorm2d_op(operations)(c_hidden[0], elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
61 |
+
)
|
62 |
+
|
63 |
+
def get_block(block_type, c_hidden, nhead, c_skip=0, dropout=0, self_attn=True):
|
64 |
+
if block_type == 'C':
|
65 |
+
return ResBlock(c_hidden, c_skip, kernel_size=kernel_size, dropout=dropout, dtype=dtype, device=device, operations=operations)
|
66 |
+
elif block_type == 'A':
|
67 |
+
return AttnBlock(c_hidden, c_cond, nhead, self_attn=self_attn, dropout=dropout, dtype=dtype, device=device, operations=operations)
|
68 |
+
elif block_type == 'F':
|
69 |
+
return FeedForwardBlock(c_hidden, dropout=dropout, dtype=dtype, device=device, operations=operations)
|
70 |
+
elif block_type == 'T':
|
71 |
+
return TimestepBlock(c_hidden, c_r, conds=t_conds, dtype=dtype, device=device, operations=operations)
|
72 |
+
else:
|
73 |
+
raise Exception(f'Block type {block_type} not supported')
|
74 |
+
|
75 |
+
# BLOCKS
|
76 |
+
# -- down blocks
|
77 |
+
self.down_blocks = nn.ModuleList()
|
78 |
+
self.down_downscalers = nn.ModuleList()
|
79 |
+
self.down_repeat_mappers = nn.ModuleList()
|
80 |
+
for i in range(len(c_hidden)):
|
81 |
+
if i > 0:
|
82 |
+
self.down_downscalers.append(nn.Sequential(
|
83 |
+
LayerNorm2d_op(operations)(c_hidden[i - 1], elementwise_affine=False, eps=1e-6, dtype=dtype, device=device),
|
84 |
+
operations.Conv2d(c_hidden[i - 1], c_hidden[i], kernel_size=2, stride=2, dtype=dtype, device=device),
|
85 |
+
))
|
86 |
+
else:
|
87 |
+
self.down_downscalers.append(nn.Identity())
|
88 |
+
down_block = nn.ModuleList()
|
89 |
+
for _ in range(blocks[0][i]):
|
90 |
+
for block_type in level_config[i]:
|
91 |
+
block = get_block(block_type, c_hidden[i], nhead[i], dropout=dropout[i], self_attn=self_attn[i])
|
92 |
+
down_block.append(block)
|
93 |
+
self.down_blocks.append(down_block)
|
94 |
+
if block_repeat is not None:
|
95 |
+
block_repeat_mappers = nn.ModuleList()
|
96 |
+
for _ in range(block_repeat[0][i] - 1):
|
97 |
+
block_repeat_mappers.append(operations.Conv2d(c_hidden[i], c_hidden[i], kernel_size=1, dtype=dtype, device=device))
|
98 |
+
self.down_repeat_mappers.append(block_repeat_mappers)
|
99 |
+
|
100 |
+
# -- up blocks
|
101 |
+
self.up_blocks = nn.ModuleList()
|
102 |
+
self.up_upscalers = nn.ModuleList()
|
103 |
+
self.up_repeat_mappers = nn.ModuleList()
|
104 |
+
for i in reversed(range(len(c_hidden))):
|
105 |
+
if i > 0:
|
106 |
+
self.up_upscalers.append(nn.Sequential(
|
107 |
+
LayerNorm2d_op(operations)(c_hidden[i], elementwise_affine=False, eps=1e-6, dtype=dtype, device=device),
|
108 |
+
operations.ConvTranspose2d(c_hidden[i], c_hidden[i - 1], kernel_size=2, stride=2, dtype=dtype, device=device),
|
109 |
+
))
|
110 |
+
else:
|
111 |
+
self.up_upscalers.append(nn.Identity())
|
112 |
+
up_block = nn.ModuleList()
|
113 |
+
for j in range(blocks[1][::-1][i]):
|
114 |
+
for k, block_type in enumerate(level_config[i]):
|
115 |
+
c_skip = c_hidden[i] if i < len(c_hidden) - 1 and j == k == 0 else 0
|
116 |
+
block = get_block(block_type, c_hidden[i], nhead[i], c_skip=c_skip, dropout=dropout[i],
|
117 |
+
self_attn=self_attn[i])
|
118 |
+
up_block.append(block)
|
119 |
+
self.up_blocks.append(up_block)
|
120 |
+
if block_repeat is not None:
|
121 |
+
block_repeat_mappers = nn.ModuleList()
|
122 |
+
for _ in range(block_repeat[1][::-1][i] - 1):
|
123 |
+
block_repeat_mappers.append(operations.Conv2d(c_hidden[i], c_hidden[i], kernel_size=1, dtype=dtype, device=device))
|
124 |
+
self.up_repeat_mappers.append(block_repeat_mappers)
|
125 |
+
|
126 |
+
# OUTPUT
|
127 |
+
self.clf = nn.Sequential(
|
128 |
+
LayerNorm2d_op(operations)(c_hidden[0], elementwise_affine=False, eps=1e-6, dtype=dtype, device=device),
|
129 |
+
operations.Conv2d(c_hidden[0], c_out * (patch_size ** 2), kernel_size=1, dtype=dtype, device=device),
|
130 |
+
nn.PixelShuffle(patch_size),
|
131 |
+
)
|
132 |
+
|
133 |
+
# --- WEIGHT INIT ---
|
134 |
+
# self.apply(self._init_weights) # General init
|
135 |
+
# nn.init.normal_(self.clip_mapper.weight, std=0.02) # conditionings
|
136 |
+
# nn.init.normal_(self.effnet_mapper[0].weight, std=0.02) # conditionings
|
137 |
+
# nn.init.normal_(self.effnet_mapper[2].weight, std=0.02) # conditionings
|
138 |
+
# nn.init.normal_(self.pixels_mapper[0].weight, std=0.02) # conditionings
|
139 |
+
# nn.init.normal_(self.pixels_mapper[2].weight, std=0.02) # conditionings
|
140 |
+
# torch.nn.init.xavier_uniform_(self.embedding[1].weight, 0.02) # inputs
|
141 |
+
# nn.init.constant_(self.clf[1].weight, 0) # outputs
|
142 |
+
#
|
143 |
+
# # blocks
|
144 |
+
# for level_block in self.down_blocks + self.up_blocks:
|
145 |
+
# for block in level_block:
|
146 |
+
# if isinstance(block, ResBlock) or isinstance(block, FeedForwardBlock):
|
147 |
+
# block.channelwise[-1].weight.data *= np.sqrt(1 / sum(blocks[0]))
|
148 |
+
# elif isinstance(block, TimestepBlock):
|
149 |
+
# for layer in block.modules():
|
150 |
+
# if isinstance(layer, nn.Linear):
|
151 |
+
# nn.init.constant_(layer.weight, 0)
|
152 |
+
#
|
153 |
+
# def _init_weights(self, m):
|
154 |
+
# if isinstance(m, (nn.Conv2d, nn.Linear)):
|
155 |
+
# torch.nn.init.xavier_uniform_(m.weight)
|
156 |
+
# if m.bias is not None:
|
157 |
+
# nn.init.constant_(m.bias, 0)
|
158 |
+
|
159 |
+
def gen_r_embedding(self, r, max_positions=10000):
|
160 |
+
r = r * max_positions
|
161 |
+
half_dim = self.c_r // 2
|
162 |
+
emb = math.log(max_positions) / (half_dim - 1)
|
163 |
+
emb = torch.arange(half_dim, device=r.device).float().mul(-emb).exp()
|
164 |
+
emb = r[:, None] * emb[None, :]
|
165 |
+
emb = torch.cat([emb.sin(), emb.cos()], dim=1)
|
166 |
+
if self.c_r % 2 == 1: # zero pad
|
167 |
+
emb = nn.functional.pad(emb, (0, 1), mode='constant')
|
168 |
+
return emb
|
169 |
+
|
170 |
+
def gen_c_embeddings(self, clip):
|
171 |
+
if len(clip.shape) == 2:
|
172 |
+
clip = clip.unsqueeze(1)
|
173 |
+
clip = self.clip_mapper(clip).view(clip.size(0), clip.size(1) * self.c_clip_seq, -1)
|
174 |
+
clip = self.clip_norm(clip)
|
175 |
+
return clip
|
176 |
+
|
177 |
+
def _down_encode(self, x, r_embed, clip):
|
178 |
+
level_outputs = []
|
179 |
+
block_group = zip(self.down_blocks, self.down_downscalers, self.down_repeat_mappers)
|
180 |
+
for down_block, downscaler, repmap in block_group:
|
181 |
+
x = downscaler(x)
|
182 |
+
for i in range(len(repmap) + 1):
|
183 |
+
for block in down_block:
|
184 |
+
if isinstance(block, ResBlock) or (
|
185 |
+
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
|
186 |
+
ResBlock)):
|
187 |
+
x = block(x)
|
188 |
+
elif isinstance(block, AttnBlock) or (
|
189 |
+
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
|
190 |
+
AttnBlock)):
|
191 |
+
x = block(x, clip)
|
192 |
+
elif isinstance(block, TimestepBlock) or (
|
193 |
+
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
|
194 |
+
TimestepBlock)):
|
195 |
+
x = block(x, r_embed)
|
196 |
+
else:
|
197 |
+
x = block(x)
|
198 |
+
if i < len(repmap):
|
199 |
+
x = repmap[i](x)
|
200 |
+
level_outputs.insert(0, x)
|
201 |
+
return level_outputs
|
202 |
+
|
203 |
+
def _up_decode(self, level_outputs, r_embed, clip):
|
204 |
+
x = level_outputs[0]
|
205 |
+
block_group = zip(self.up_blocks, self.up_upscalers, self.up_repeat_mappers)
|
206 |
+
for i, (up_block, upscaler, repmap) in enumerate(block_group):
|
207 |
+
for j in range(len(repmap) + 1):
|
208 |
+
for k, block in enumerate(up_block):
|
209 |
+
if isinstance(block, ResBlock) or (
|
210 |
+
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
|
211 |
+
ResBlock)):
|
212 |
+
skip = level_outputs[i] if k == 0 and i > 0 else None
|
213 |
+
if skip is not None and (x.size(-1) != skip.size(-1) or x.size(-2) != skip.size(-2)):
|
214 |
+
x = torch.nn.functional.interpolate(x, skip.shape[-2:], mode='bilinear',
|
215 |
+
align_corners=True)
|
216 |
+
x = block(x, skip)
|
217 |
+
elif isinstance(block, AttnBlock) or (
|
218 |
+
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
|
219 |
+
AttnBlock)):
|
220 |
+
x = block(x, clip)
|
221 |
+
elif isinstance(block, TimestepBlock) or (
|
222 |
+
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
|
223 |
+
TimestepBlock)):
|
224 |
+
x = block(x, r_embed)
|
225 |
+
else:
|
226 |
+
x = block(x)
|
227 |
+
if j < len(repmap):
|
228 |
+
x = repmap[j](x)
|
229 |
+
x = upscaler(x)
|
230 |
+
return x
|
231 |
+
|
232 |
+
def forward(self, x, r, effnet, clip, pixels=None, **kwargs):
|
233 |
+
if pixels is None:
|
234 |
+
pixels = x.new_zeros(x.size(0), 3, 8, 8)
|
235 |
+
|
236 |
+
# Process the conditioning embeddings
|
237 |
+
r_embed = self.gen_r_embedding(r).to(dtype=x.dtype)
|
238 |
+
for c in self.t_conds:
|
239 |
+
t_cond = kwargs.get(c, torch.zeros_like(r))
|
240 |
+
r_embed = torch.cat([r_embed, self.gen_r_embedding(t_cond).to(dtype=x.dtype)], dim=1)
|
241 |
+
clip = self.gen_c_embeddings(clip)
|
242 |
+
|
243 |
+
# Model Blocks
|
244 |
+
x = self.embedding(x)
|
245 |
+
x = x + self.effnet_mapper(
|
246 |
+
nn.functional.interpolate(effnet, size=x.shape[-2:], mode='bilinear', align_corners=True))
|
247 |
+
x = x + nn.functional.interpolate(self.pixels_mapper(pixels), size=x.shape[-2:], mode='bilinear',
|
248 |
+
align_corners=True)
|
249 |
+
level_outputs = self._down_encode(x, r_embed, clip)
|
250 |
+
x = self._up_decode(level_outputs, r_embed, clip)
|
251 |
+
return self.clf(x)
|
252 |
+
|
253 |
+
def update_weights_ema(self, src_model, beta=0.999):
|
254 |
+
for self_params, src_params in zip(self.parameters(), src_model.parameters()):
|
255 |
+
self_params.data = self_params.data * beta + src_params.data.clone().to(self_params.device) * (1 - beta)
|
256 |
+
for self_buffers, src_buffers in zip(self.buffers(), src_model.buffers()):
|
257 |
+
self_buffers.data = self_buffers.data * beta + src_buffers.data.clone().to(self_buffers.device) * (1 - beta)
|
comfy/ldm/cascade/stage_c.py
ADDED
@@ -0,0 +1,274 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
This file is part of ComfyUI.
|
3 |
+
Copyright (C) 2024 Stability AI
|
4 |
+
|
5 |
+
This program is free software: you can redistribute it and/or modify
|
6 |
+
it under the terms of the GNU General Public License as published by
|
7 |
+
the Free Software Foundation, either version 3 of the License, or
|
8 |
+
(at your option) any later version.
|
9 |
+
|
10 |
+
This program is distributed in the hope that it will be useful,
|
11 |
+
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
12 |
+
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
13 |
+
GNU General Public License for more details.
|
14 |
+
|
15 |
+
You should have received a copy of the GNU General Public License
|
16 |
+
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
17 |
+
"""
|
18 |
+
|
19 |
+
import torch
|
20 |
+
from torch import nn
|
21 |
+
import numpy as np
|
22 |
+
import math
|
23 |
+
from .common import AttnBlock, LayerNorm2d_op, ResBlock, FeedForwardBlock, TimestepBlock
|
24 |
+
# from .controlnet import ControlNetDeliverer
|
25 |
+
|
26 |
+
class UpDownBlock2d(nn.Module):
|
27 |
+
def __init__(self, c_in, c_out, mode, enabled=True, dtype=None, device=None, operations=None):
|
28 |
+
super().__init__()
|
29 |
+
assert mode in ['up', 'down']
|
30 |
+
interpolation = nn.Upsample(scale_factor=2 if mode == 'up' else 0.5, mode='bilinear',
|
31 |
+
align_corners=True) if enabled else nn.Identity()
|
32 |
+
mapping = operations.Conv2d(c_in, c_out, kernel_size=1, dtype=dtype, device=device)
|
33 |
+
self.blocks = nn.ModuleList([interpolation, mapping] if mode == 'up' else [mapping, interpolation])
|
34 |
+
|
35 |
+
def forward(self, x):
|
36 |
+
for block in self.blocks:
|
37 |
+
x = block(x)
|
38 |
+
return x
|
39 |
+
|
40 |
+
|
41 |
+
class StageC(nn.Module):
|
42 |
+
def __init__(self, c_in=16, c_out=16, c_r=64, patch_size=1, c_cond=2048, c_hidden=[2048, 2048], nhead=[32, 32],
|
43 |
+
blocks=[[8, 24], [24, 8]], block_repeat=[[1, 1], [1, 1]], level_config=['CTA', 'CTA'],
|
44 |
+
c_clip_text=1280, c_clip_text_pooled=1280, c_clip_img=768, c_clip_seq=4, kernel_size=3,
|
45 |
+
dropout=[0.0, 0.0], self_attn=True, t_conds=['sca', 'crp'], switch_level=[False], stable_cascade_stage=None,
|
46 |
+
dtype=None, device=None, operations=None):
|
47 |
+
super().__init__()
|
48 |
+
self.dtype = dtype
|
49 |
+
self.c_r = c_r
|
50 |
+
self.t_conds = t_conds
|
51 |
+
self.c_clip_seq = c_clip_seq
|
52 |
+
if not isinstance(dropout, list):
|
53 |
+
dropout = [dropout] * len(c_hidden)
|
54 |
+
if not isinstance(self_attn, list):
|
55 |
+
self_attn = [self_attn] * len(c_hidden)
|
56 |
+
|
57 |
+
# CONDITIONING
|
58 |
+
self.clip_txt_mapper = operations.Linear(c_clip_text, c_cond, dtype=dtype, device=device)
|
59 |
+
self.clip_txt_pooled_mapper = operations.Linear(c_clip_text_pooled, c_cond * c_clip_seq, dtype=dtype, device=device)
|
60 |
+
self.clip_img_mapper = operations.Linear(c_clip_img, c_cond * c_clip_seq, dtype=dtype, device=device)
|
61 |
+
self.clip_norm = operations.LayerNorm(c_cond, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
62 |
+
|
63 |
+
self.embedding = nn.Sequential(
|
64 |
+
nn.PixelUnshuffle(patch_size),
|
65 |
+
operations.Conv2d(c_in * (patch_size ** 2), c_hidden[0], kernel_size=1, dtype=dtype, device=device),
|
66 |
+
LayerNorm2d_op(operations)(c_hidden[0], elementwise_affine=False, eps=1e-6)
|
67 |
+
)
|
68 |
+
|
69 |
+
def get_block(block_type, c_hidden, nhead, c_skip=0, dropout=0, self_attn=True):
|
70 |
+
if block_type == 'C':
|
71 |
+
return ResBlock(c_hidden, c_skip, kernel_size=kernel_size, dropout=dropout, dtype=dtype, device=device, operations=operations)
|
72 |
+
elif block_type == 'A':
|
73 |
+
return AttnBlock(c_hidden, c_cond, nhead, self_attn=self_attn, dropout=dropout, dtype=dtype, device=device, operations=operations)
|
74 |
+
elif block_type == 'F':
|
75 |
+
return FeedForwardBlock(c_hidden, dropout=dropout, dtype=dtype, device=device, operations=operations)
|
76 |
+
elif block_type == 'T':
|
77 |
+
return TimestepBlock(c_hidden, c_r, conds=t_conds, dtype=dtype, device=device, operations=operations)
|
78 |
+
else:
|
79 |
+
raise Exception(f'Block type {block_type} not supported')
|
80 |
+
|
81 |
+
# BLOCKS
|
82 |
+
# -- down blocks
|
83 |
+
self.down_blocks = nn.ModuleList()
|
84 |
+
self.down_downscalers = nn.ModuleList()
|
85 |
+
self.down_repeat_mappers = nn.ModuleList()
|
86 |
+
for i in range(len(c_hidden)):
|
87 |
+
if i > 0:
|
88 |
+
self.down_downscalers.append(nn.Sequential(
|
89 |
+
LayerNorm2d_op(operations)(c_hidden[i - 1], elementwise_affine=False, eps=1e-6),
|
90 |
+
UpDownBlock2d(c_hidden[i - 1], c_hidden[i], mode='down', enabled=switch_level[i - 1], dtype=dtype, device=device, operations=operations)
|
91 |
+
))
|
92 |
+
else:
|
93 |
+
self.down_downscalers.append(nn.Identity())
|
94 |
+
down_block = nn.ModuleList()
|
95 |
+
for _ in range(blocks[0][i]):
|
96 |
+
for block_type in level_config[i]:
|
97 |
+
block = get_block(block_type, c_hidden[i], nhead[i], dropout=dropout[i], self_attn=self_attn[i])
|
98 |
+
down_block.append(block)
|
99 |
+
self.down_blocks.append(down_block)
|
100 |
+
if block_repeat is not None:
|
101 |
+
block_repeat_mappers = nn.ModuleList()
|
102 |
+
for _ in range(block_repeat[0][i] - 1):
|
103 |
+
block_repeat_mappers.append(operations.Conv2d(c_hidden[i], c_hidden[i], kernel_size=1, dtype=dtype, device=device))
|
104 |
+
self.down_repeat_mappers.append(block_repeat_mappers)
|
105 |
+
|
106 |
+
# -- up blocks
|
107 |
+
self.up_blocks = nn.ModuleList()
|
108 |
+
self.up_upscalers = nn.ModuleList()
|
109 |
+
self.up_repeat_mappers = nn.ModuleList()
|
110 |
+
for i in reversed(range(len(c_hidden))):
|
111 |
+
if i > 0:
|
112 |
+
self.up_upscalers.append(nn.Sequential(
|
113 |
+
LayerNorm2d_op(operations)(c_hidden[i], elementwise_affine=False, eps=1e-6),
|
114 |
+
UpDownBlock2d(c_hidden[i], c_hidden[i - 1], mode='up', enabled=switch_level[i - 1], dtype=dtype, device=device, operations=operations)
|
115 |
+
))
|
116 |
+
else:
|
117 |
+
self.up_upscalers.append(nn.Identity())
|
118 |
+
up_block = nn.ModuleList()
|
119 |
+
for j in range(blocks[1][::-1][i]):
|
120 |
+
for k, block_type in enumerate(level_config[i]):
|
121 |
+
c_skip = c_hidden[i] if i < len(c_hidden) - 1 and j == k == 0 else 0
|
122 |
+
block = get_block(block_type, c_hidden[i], nhead[i], c_skip=c_skip, dropout=dropout[i],
|
123 |
+
self_attn=self_attn[i])
|
124 |
+
up_block.append(block)
|
125 |
+
self.up_blocks.append(up_block)
|
126 |
+
if block_repeat is not None:
|
127 |
+
block_repeat_mappers = nn.ModuleList()
|
128 |
+
for _ in range(block_repeat[1][::-1][i] - 1):
|
129 |
+
block_repeat_mappers.append(operations.Conv2d(c_hidden[i], c_hidden[i], kernel_size=1, dtype=dtype, device=device))
|
130 |
+
self.up_repeat_mappers.append(block_repeat_mappers)
|
131 |
+
|
132 |
+
# OUTPUT
|
133 |
+
self.clf = nn.Sequential(
|
134 |
+
LayerNorm2d_op(operations)(c_hidden[0], elementwise_affine=False, eps=1e-6, dtype=dtype, device=device),
|
135 |
+
operations.Conv2d(c_hidden[0], c_out * (patch_size ** 2), kernel_size=1, dtype=dtype, device=device),
|
136 |
+
nn.PixelShuffle(patch_size),
|
137 |
+
)
|
138 |
+
|
139 |
+
# --- WEIGHT INIT ---
|
140 |
+
# self.apply(self._init_weights) # General init
|
141 |
+
# nn.init.normal_(self.clip_txt_mapper.weight, std=0.02) # conditionings
|
142 |
+
# nn.init.normal_(self.clip_txt_pooled_mapper.weight, std=0.02) # conditionings
|
143 |
+
# nn.init.normal_(self.clip_img_mapper.weight, std=0.02) # conditionings
|
144 |
+
# torch.nn.init.xavier_uniform_(self.embedding[1].weight, 0.02) # inputs
|
145 |
+
# nn.init.constant_(self.clf[1].weight, 0) # outputs
|
146 |
+
#
|
147 |
+
# # blocks
|
148 |
+
# for level_block in self.down_blocks + self.up_blocks:
|
149 |
+
# for block in level_block:
|
150 |
+
# if isinstance(block, ResBlock) or isinstance(block, FeedForwardBlock):
|
151 |
+
# block.channelwise[-1].weight.data *= np.sqrt(1 / sum(blocks[0]))
|
152 |
+
# elif isinstance(block, TimestepBlock):
|
153 |
+
# for layer in block.modules():
|
154 |
+
# if isinstance(layer, nn.Linear):
|
155 |
+
# nn.init.constant_(layer.weight, 0)
|
156 |
+
#
|
157 |
+
# def _init_weights(self, m):
|
158 |
+
# if isinstance(m, (nn.Conv2d, nn.Linear)):
|
159 |
+
# torch.nn.init.xavier_uniform_(m.weight)
|
160 |
+
# if m.bias is not None:
|
161 |
+
# nn.init.constant_(m.bias, 0)
|
162 |
+
|
163 |
+
def gen_r_embedding(self, r, max_positions=10000):
|
164 |
+
r = r * max_positions
|
165 |
+
half_dim = self.c_r // 2
|
166 |
+
emb = math.log(max_positions) / (half_dim - 1)
|
167 |
+
emb = torch.arange(half_dim, device=r.device).float().mul(-emb).exp()
|
168 |
+
emb = r[:, None] * emb[None, :]
|
169 |
+
emb = torch.cat([emb.sin(), emb.cos()], dim=1)
|
170 |
+
if self.c_r % 2 == 1: # zero pad
|
171 |
+
emb = nn.functional.pad(emb, (0, 1), mode='constant')
|
172 |
+
return emb
|
173 |
+
|
174 |
+
def gen_c_embeddings(self, clip_txt, clip_txt_pooled, clip_img):
|
175 |
+
clip_txt = self.clip_txt_mapper(clip_txt)
|
176 |
+
if len(clip_txt_pooled.shape) == 2:
|
177 |
+
clip_txt_pooled = clip_txt_pooled.unsqueeze(1)
|
178 |
+
if len(clip_img.shape) == 2:
|
179 |
+
clip_img = clip_img.unsqueeze(1)
|
180 |
+
clip_txt_pool = self.clip_txt_pooled_mapper(clip_txt_pooled).view(clip_txt_pooled.size(0), clip_txt_pooled.size(1) * self.c_clip_seq, -1)
|
181 |
+
clip_img = self.clip_img_mapper(clip_img).view(clip_img.size(0), clip_img.size(1) * self.c_clip_seq, -1)
|
182 |
+
clip = torch.cat([clip_txt, clip_txt_pool, clip_img], dim=1)
|
183 |
+
clip = self.clip_norm(clip)
|
184 |
+
return clip
|
185 |
+
|
186 |
+
def _down_encode(self, x, r_embed, clip, cnet=None):
|
187 |
+
level_outputs = []
|
188 |
+
block_group = zip(self.down_blocks, self.down_downscalers, self.down_repeat_mappers)
|
189 |
+
for down_block, downscaler, repmap in block_group:
|
190 |
+
x = downscaler(x)
|
191 |
+
for i in range(len(repmap) + 1):
|
192 |
+
for block in down_block:
|
193 |
+
if isinstance(block, ResBlock) or (
|
194 |
+
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
|
195 |
+
ResBlock)):
|
196 |
+
if cnet is not None:
|
197 |
+
next_cnet = cnet.pop()
|
198 |
+
if next_cnet is not None:
|
199 |
+
x = x + nn.functional.interpolate(next_cnet, size=x.shape[-2:], mode='bilinear',
|
200 |
+
align_corners=True).to(x.dtype)
|
201 |
+
x = block(x)
|
202 |
+
elif isinstance(block, AttnBlock) or (
|
203 |
+
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
|
204 |
+
AttnBlock)):
|
205 |
+
x = block(x, clip)
|
206 |
+
elif isinstance(block, TimestepBlock) or (
|
207 |
+
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
|
208 |
+
TimestepBlock)):
|
209 |
+
x = block(x, r_embed)
|
210 |
+
else:
|
211 |
+
x = block(x)
|
212 |
+
if i < len(repmap):
|
213 |
+
x = repmap[i](x)
|
214 |
+
level_outputs.insert(0, x)
|
215 |
+
return level_outputs
|
216 |
+
|
217 |
+
def _up_decode(self, level_outputs, r_embed, clip, cnet=None):
|
218 |
+
x = level_outputs[0]
|
219 |
+
block_group = zip(self.up_blocks, self.up_upscalers, self.up_repeat_mappers)
|
220 |
+
for i, (up_block, upscaler, repmap) in enumerate(block_group):
|
221 |
+
for j in range(len(repmap) + 1):
|
222 |
+
for k, block in enumerate(up_block):
|
223 |
+
if isinstance(block, ResBlock) or (
|
224 |
+
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
|
225 |
+
ResBlock)):
|
226 |
+
skip = level_outputs[i] if k == 0 and i > 0 else None
|
227 |
+
if skip is not None and (x.size(-1) != skip.size(-1) or x.size(-2) != skip.size(-2)):
|
228 |
+
x = torch.nn.functional.interpolate(x, skip.shape[-2:], mode='bilinear',
|
229 |
+
align_corners=True)
|
230 |
+
if cnet is not None:
|
231 |
+
next_cnet = cnet.pop()
|
232 |
+
if next_cnet is not None:
|
233 |
+
x = x + nn.functional.interpolate(next_cnet, size=x.shape[-2:], mode='bilinear',
|
234 |
+
align_corners=True).to(x.dtype)
|
235 |
+
x = block(x, skip)
|
236 |
+
elif isinstance(block, AttnBlock) or (
|
237 |
+
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
|
238 |
+
AttnBlock)):
|
239 |
+
x = block(x, clip)
|
240 |
+
elif isinstance(block, TimestepBlock) or (
|
241 |
+
hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
|
242 |
+
TimestepBlock)):
|
243 |
+
x = block(x, r_embed)
|
244 |
+
else:
|
245 |
+
x = block(x)
|
246 |
+
if j < len(repmap):
|
247 |
+
x = repmap[j](x)
|
248 |
+
x = upscaler(x)
|
249 |
+
return x
|
250 |
+
|
251 |
+
def forward(self, x, r, clip_text, clip_text_pooled, clip_img, control=None, **kwargs):
|
252 |
+
# Process the conditioning embeddings
|
253 |
+
r_embed = self.gen_r_embedding(r).to(dtype=x.dtype)
|
254 |
+
for c in self.t_conds:
|
255 |
+
t_cond = kwargs.get(c, torch.zeros_like(r))
|
256 |
+
r_embed = torch.cat([r_embed, self.gen_r_embedding(t_cond).to(dtype=x.dtype)], dim=1)
|
257 |
+
clip = self.gen_c_embeddings(clip_text, clip_text_pooled, clip_img)
|
258 |
+
|
259 |
+
if control is not None:
|
260 |
+
cnet = control.get("input")
|
261 |
+
else:
|
262 |
+
cnet = None
|
263 |
+
|
264 |
+
# Model Blocks
|
265 |
+
x = self.embedding(x)
|
266 |
+
level_outputs = self._down_encode(x, r_embed, clip, cnet)
|
267 |
+
x = self._up_decode(level_outputs, r_embed, clip, cnet)
|
268 |
+
return self.clf(x)
|
269 |
+
|
270 |
+
def update_weights_ema(self, src_model, beta=0.999):
|
271 |
+
for self_params, src_params in zip(self.parameters(), src_model.parameters()):
|
272 |
+
self_params.data = self_params.data * beta + src_params.data.clone().to(self_params.device) * (1 - beta)
|
273 |
+
for self_buffers, src_buffers in zip(self.buffers(), src_model.buffers()):
|
274 |
+
self_buffers.data = self_buffers.data * beta + src_buffers.data.clone().to(self_buffers.device) * (1 - beta)
|
comfy/ldm/cascade/stage_c_coder.py
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
This file is part of ComfyUI.
|
3 |
+
Copyright (C) 2024 Stability AI
|
4 |
+
|
5 |
+
This program is free software: you can redistribute it and/or modify
|
6 |
+
it under the terms of the GNU General Public License as published by
|
7 |
+
the Free Software Foundation, either version 3 of the License, or
|
8 |
+
(at your option) any later version.
|
9 |
+
|
10 |
+
This program is distributed in the hope that it will be useful,
|
11 |
+
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
12 |
+
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
13 |
+
GNU General Public License for more details.
|
14 |
+
|
15 |
+
You should have received a copy of the GNU General Public License
|
16 |
+
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
17 |
+
"""
|
18 |
+
import torch
|
19 |
+
import torchvision
|
20 |
+
from torch import nn
|
21 |
+
|
22 |
+
|
23 |
+
# EfficientNet
|
24 |
+
class EfficientNetEncoder(nn.Module):
|
25 |
+
def __init__(self, c_latent=16):
|
26 |
+
super().__init__()
|
27 |
+
self.backbone = torchvision.models.efficientnet_v2_s().features.eval()
|
28 |
+
self.mapper = nn.Sequential(
|
29 |
+
nn.Conv2d(1280, c_latent, kernel_size=1, bias=False),
|
30 |
+
nn.BatchNorm2d(c_latent, affine=False), # then normalize them to have mean 0 and std 1
|
31 |
+
)
|
32 |
+
self.mean = nn.Parameter(torch.tensor([0.485, 0.456, 0.406]))
|
33 |
+
self.std = nn.Parameter(torch.tensor([0.229, 0.224, 0.225]))
|
34 |
+
|
35 |
+
def forward(self, x):
|
36 |
+
x = x * 0.5 + 0.5
|
37 |
+
x = (x - self.mean.view([3,1,1])) / self.std.view([3,1,1])
|
38 |
+
o = self.mapper(self.backbone(x))
|
39 |
+
return o
|
40 |
+
|
41 |
+
|
42 |
+
# Fast Decoder for Stage C latents. E.g. 16 x 24 x 24 -> 3 x 192 x 192
|
43 |
+
class Previewer(nn.Module):
|
44 |
+
def __init__(self, c_in=16, c_hidden=512, c_out=3):
|
45 |
+
super().__init__()
|
46 |
+
self.blocks = nn.Sequential(
|
47 |
+
nn.Conv2d(c_in, c_hidden, kernel_size=1), # 16 channels to 512 channels
|
48 |
+
nn.GELU(),
|
49 |
+
nn.BatchNorm2d(c_hidden),
|
50 |
+
|
51 |
+
nn.Conv2d(c_hidden, c_hidden, kernel_size=3, padding=1),
|
52 |
+
nn.GELU(),
|
53 |
+
nn.BatchNorm2d(c_hidden),
|
54 |
+
|
55 |
+
nn.ConvTranspose2d(c_hidden, c_hidden // 2, kernel_size=2, stride=2), # 16 -> 32
|
56 |
+
nn.GELU(),
|
57 |
+
nn.BatchNorm2d(c_hidden // 2),
|
58 |
+
|
59 |
+
nn.Conv2d(c_hidden // 2, c_hidden // 2, kernel_size=3, padding=1),
|
60 |
+
nn.GELU(),
|
61 |
+
nn.BatchNorm2d(c_hidden // 2),
|
62 |
+
|
63 |
+
nn.ConvTranspose2d(c_hidden // 2, c_hidden // 4, kernel_size=2, stride=2), # 32 -> 64
|
64 |
+
nn.GELU(),
|
65 |
+
nn.BatchNorm2d(c_hidden // 4),
|
66 |
+
|
67 |
+
nn.Conv2d(c_hidden // 4, c_hidden // 4, kernel_size=3, padding=1),
|
68 |
+
nn.GELU(),
|
69 |
+
nn.BatchNorm2d(c_hidden // 4),
|
70 |
+
|
71 |
+
nn.ConvTranspose2d(c_hidden // 4, c_hidden // 4, kernel_size=2, stride=2), # 64 -> 128
|
72 |
+
nn.GELU(),
|
73 |
+
nn.BatchNorm2d(c_hidden // 4),
|
74 |
+
|
75 |
+
nn.Conv2d(c_hidden // 4, c_hidden // 4, kernel_size=3, padding=1),
|
76 |
+
nn.GELU(),
|
77 |
+
nn.BatchNorm2d(c_hidden // 4),
|
78 |
+
|
79 |
+
nn.Conv2d(c_hidden // 4, c_out, kernel_size=1),
|
80 |
+
)
|
81 |
+
|
82 |
+
def forward(self, x):
|
83 |
+
return (self.blocks(x) - 0.5) * 2.0
|
84 |
+
|
85 |
+
class StageC_coder(nn.Module):
|
86 |
+
def __init__(self):
|
87 |
+
super().__init__()
|
88 |
+
self.previewer = Previewer()
|
89 |
+
self.encoder = EfficientNetEncoder()
|
90 |
+
|
91 |
+
def encode(self, x):
|
92 |
+
return self.encoder(x)
|
93 |
+
|
94 |
+
def decode(self, x):
|
95 |
+
return self.previewer(x)
|
comfy/ldm/models/autoencoder.py
ADDED
@@ -0,0 +1,228 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
# import pytorch_lightning as pl
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from contextlib import contextmanager
|
5 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
6 |
+
|
7 |
+
from comfy.ldm.modules.distributions.distributions import DiagonalGaussianDistribution
|
8 |
+
|
9 |
+
from comfy.ldm.util import instantiate_from_config
|
10 |
+
from comfy.ldm.modules.ema import LitEma
|
11 |
+
import comfy.ops
|
12 |
+
|
13 |
+
class DiagonalGaussianRegularizer(torch.nn.Module):
|
14 |
+
def __init__(self, sample: bool = True):
|
15 |
+
super().__init__()
|
16 |
+
self.sample = sample
|
17 |
+
|
18 |
+
def get_trainable_parameters(self) -> Any:
|
19 |
+
yield from ()
|
20 |
+
|
21 |
+
def forward(self, z: torch.Tensor) -> Tuple[torch.Tensor, dict]:
|
22 |
+
log = dict()
|
23 |
+
posterior = DiagonalGaussianDistribution(z)
|
24 |
+
if self.sample:
|
25 |
+
z = posterior.sample()
|
26 |
+
else:
|
27 |
+
z = posterior.mode()
|
28 |
+
kl_loss = posterior.kl()
|
29 |
+
kl_loss = torch.sum(kl_loss) / kl_loss.shape[0]
|
30 |
+
log["kl_loss"] = kl_loss
|
31 |
+
return z, log
|
32 |
+
|
33 |
+
|
34 |
+
class AbstractAutoencoder(torch.nn.Module):
|
35 |
+
"""
|
36 |
+
This is the base class for all autoencoders, including image autoencoders, image autoencoders with discriminators,
|
37 |
+
unCLIP models, etc. Hence, it is fairly general, and specific features
|
38 |
+
(e.g. discriminator training, encoding, decoding) must be implemented in subclasses.
|
39 |
+
"""
|
40 |
+
|
41 |
+
def __init__(
|
42 |
+
self,
|
43 |
+
ema_decay: Union[None, float] = None,
|
44 |
+
monitor: Union[None, str] = None,
|
45 |
+
input_key: str = "jpg",
|
46 |
+
**kwargs,
|
47 |
+
):
|
48 |
+
super().__init__()
|
49 |
+
|
50 |
+
self.input_key = input_key
|
51 |
+
self.use_ema = ema_decay is not None
|
52 |
+
if monitor is not None:
|
53 |
+
self.monitor = monitor
|
54 |
+
|
55 |
+
if self.use_ema:
|
56 |
+
self.model_ema = LitEma(self, decay=ema_decay)
|
57 |
+
logpy.info(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
|
58 |
+
|
59 |
+
def get_input(self, batch) -> Any:
|
60 |
+
raise NotImplementedError()
|
61 |
+
|
62 |
+
def on_train_batch_end(self, *args, **kwargs):
|
63 |
+
# for EMA computation
|
64 |
+
if self.use_ema:
|
65 |
+
self.model_ema(self)
|
66 |
+
|
67 |
+
@contextmanager
|
68 |
+
def ema_scope(self, context=None):
|
69 |
+
if self.use_ema:
|
70 |
+
self.model_ema.store(self.parameters())
|
71 |
+
self.model_ema.copy_to(self)
|
72 |
+
if context is not None:
|
73 |
+
logpy.info(f"{context}: Switched to EMA weights")
|
74 |
+
try:
|
75 |
+
yield None
|
76 |
+
finally:
|
77 |
+
if self.use_ema:
|
78 |
+
self.model_ema.restore(self.parameters())
|
79 |
+
if context is not None:
|
80 |
+
logpy.info(f"{context}: Restored training weights")
|
81 |
+
|
82 |
+
def encode(self, *args, **kwargs) -> torch.Tensor:
|
83 |
+
raise NotImplementedError("encode()-method of abstract base class called")
|
84 |
+
|
85 |
+
def decode(self, *args, **kwargs) -> torch.Tensor:
|
86 |
+
raise NotImplementedError("decode()-method of abstract base class called")
|
87 |
+
|
88 |
+
def instantiate_optimizer_from_config(self, params, lr, cfg):
|
89 |
+
logpy.info(f"loading >>> {cfg['target']} <<< optimizer from config")
|
90 |
+
return get_obj_from_str(cfg["target"])(
|
91 |
+
params, lr=lr, **cfg.get("params", dict())
|
92 |
+
)
|
93 |
+
|
94 |
+
def configure_optimizers(self) -> Any:
|
95 |
+
raise NotImplementedError()
|
96 |
+
|
97 |
+
|
98 |
+
class AutoencodingEngine(AbstractAutoencoder):
|
99 |
+
"""
|
100 |
+
Base class for all image autoencoders that we train, like VQGAN or AutoencoderKL
|
101 |
+
(we also restore them explicitly as special cases for legacy reasons).
|
102 |
+
Regularizations such as KL or VQ are moved to the regularizer class.
|
103 |
+
"""
|
104 |
+
|
105 |
+
def __init__(
|
106 |
+
self,
|
107 |
+
*args,
|
108 |
+
encoder_config: Dict,
|
109 |
+
decoder_config: Dict,
|
110 |
+
regularizer_config: Dict,
|
111 |
+
**kwargs,
|
112 |
+
):
|
113 |
+
super().__init__(*args, **kwargs)
|
114 |
+
|
115 |
+
self.encoder: torch.nn.Module = instantiate_from_config(encoder_config)
|
116 |
+
self.decoder: torch.nn.Module = instantiate_from_config(decoder_config)
|
117 |
+
self.regularization: AbstractRegularizer = instantiate_from_config(
|
118 |
+
regularizer_config
|
119 |
+
)
|
120 |
+
|
121 |
+
def get_last_layer(self):
|
122 |
+
return self.decoder.get_last_layer()
|
123 |
+
|
124 |
+
def encode(
|
125 |
+
self,
|
126 |
+
x: torch.Tensor,
|
127 |
+
return_reg_log: bool = False,
|
128 |
+
unregularized: bool = False,
|
129 |
+
) -> Union[torch.Tensor, Tuple[torch.Tensor, dict]]:
|
130 |
+
z = self.encoder(x)
|
131 |
+
if unregularized:
|
132 |
+
return z, dict()
|
133 |
+
z, reg_log = self.regularization(z)
|
134 |
+
if return_reg_log:
|
135 |
+
return z, reg_log
|
136 |
+
return z
|
137 |
+
|
138 |
+
def decode(self, z: torch.Tensor, **kwargs) -> torch.Tensor:
|
139 |
+
x = self.decoder(z, **kwargs)
|
140 |
+
return x
|
141 |
+
|
142 |
+
def forward(
|
143 |
+
self, x: torch.Tensor, **additional_decode_kwargs
|
144 |
+
) -> Tuple[torch.Tensor, torch.Tensor, dict]:
|
145 |
+
z, reg_log = self.encode(x, return_reg_log=True)
|
146 |
+
dec = self.decode(z, **additional_decode_kwargs)
|
147 |
+
return z, dec, reg_log
|
148 |
+
|
149 |
+
|
150 |
+
class AutoencodingEngineLegacy(AutoencodingEngine):
|
151 |
+
def __init__(self, embed_dim: int, **kwargs):
|
152 |
+
self.max_batch_size = kwargs.pop("max_batch_size", None)
|
153 |
+
ddconfig = kwargs.pop("ddconfig")
|
154 |
+
super().__init__(
|
155 |
+
encoder_config={
|
156 |
+
"target": "comfy.ldm.modules.diffusionmodules.model.Encoder",
|
157 |
+
"params": ddconfig,
|
158 |
+
},
|
159 |
+
decoder_config={
|
160 |
+
"target": "comfy.ldm.modules.diffusionmodules.model.Decoder",
|
161 |
+
"params": ddconfig,
|
162 |
+
},
|
163 |
+
**kwargs,
|
164 |
+
)
|
165 |
+
self.quant_conv = comfy.ops.disable_weight_init.Conv2d(
|
166 |
+
(1 + ddconfig["double_z"]) * ddconfig["z_channels"],
|
167 |
+
(1 + ddconfig["double_z"]) * embed_dim,
|
168 |
+
1,
|
169 |
+
)
|
170 |
+
self.post_quant_conv = comfy.ops.disable_weight_init.Conv2d(embed_dim, ddconfig["z_channels"], 1)
|
171 |
+
self.embed_dim = embed_dim
|
172 |
+
|
173 |
+
def get_autoencoder_params(self) -> list:
|
174 |
+
params = super().get_autoencoder_params()
|
175 |
+
return params
|
176 |
+
|
177 |
+
def encode(
|
178 |
+
self, x: torch.Tensor, return_reg_log: bool = False
|
179 |
+
) -> Union[torch.Tensor, Tuple[torch.Tensor, dict]]:
|
180 |
+
if self.max_batch_size is None:
|
181 |
+
z = self.encoder(x)
|
182 |
+
z = self.quant_conv(z)
|
183 |
+
else:
|
184 |
+
N = x.shape[0]
|
185 |
+
bs = self.max_batch_size
|
186 |
+
n_batches = int(math.ceil(N / bs))
|
187 |
+
z = list()
|
188 |
+
for i_batch in range(n_batches):
|
189 |
+
z_batch = self.encoder(x[i_batch * bs : (i_batch + 1) * bs])
|
190 |
+
z_batch = self.quant_conv(z_batch)
|
191 |
+
z.append(z_batch)
|
192 |
+
z = torch.cat(z, 0)
|
193 |
+
|
194 |
+
z, reg_log = self.regularization(z)
|
195 |
+
if return_reg_log:
|
196 |
+
return z, reg_log
|
197 |
+
return z
|
198 |
+
|
199 |
+
def decode(self, z: torch.Tensor, **decoder_kwargs) -> torch.Tensor:
|
200 |
+
if self.max_batch_size is None:
|
201 |
+
dec = self.post_quant_conv(z)
|
202 |
+
dec = self.decoder(dec, **decoder_kwargs)
|
203 |
+
else:
|
204 |
+
N = z.shape[0]
|
205 |
+
bs = self.max_batch_size
|
206 |
+
n_batches = int(math.ceil(N / bs))
|
207 |
+
dec = list()
|
208 |
+
for i_batch in range(n_batches):
|
209 |
+
dec_batch = self.post_quant_conv(z[i_batch * bs : (i_batch + 1) * bs])
|
210 |
+
dec_batch = self.decoder(dec_batch, **decoder_kwargs)
|
211 |
+
dec.append(dec_batch)
|
212 |
+
dec = torch.cat(dec, 0)
|
213 |
+
|
214 |
+
return dec
|
215 |
+
|
216 |
+
|
217 |
+
class AutoencoderKL(AutoencodingEngineLegacy):
|
218 |
+
def __init__(self, **kwargs):
|
219 |
+
if "lossconfig" in kwargs:
|
220 |
+
kwargs["loss_config"] = kwargs.pop("lossconfig")
|
221 |
+
super().__init__(
|
222 |
+
regularizer_config={
|
223 |
+
"target": (
|
224 |
+
"comfy.ldm.models.autoencoder.DiagonalGaussianRegularizer"
|
225 |
+
)
|
226 |
+
},
|
227 |
+
**kwargs,
|
228 |
+
)
|
comfy/ldm/modules/attention.py
ADDED
@@ -0,0 +1,800 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from torch import nn, einsum
|
5 |
+
from einops import rearrange, repeat
|
6 |
+
from typing import Optional, Any
|
7 |
+
|
8 |
+
from .diffusionmodules.util import checkpoint, AlphaBlender, timestep_embedding
|
9 |
+
from .sub_quadratic_attention import efficient_dot_product_attention
|
10 |
+
|
11 |
+
from comfy import model_management
|
12 |
+
|
13 |
+
if model_management.xformers_enabled():
|
14 |
+
import xformers
|
15 |
+
import xformers.ops
|
16 |
+
|
17 |
+
from comfy.cli_args import args
|
18 |
+
import comfy.ops
|
19 |
+
ops = comfy.ops.disable_weight_init
|
20 |
+
|
21 |
+
# CrossAttn precision handling
|
22 |
+
if args.dont_upcast_attention:
|
23 |
+
print("disabling upcasting of attention")
|
24 |
+
_ATTN_PRECISION = "fp16"
|
25 |
+
else:
|
26 |
+
_ATTN_PRECISION = "fp32"
|
27 |
+
|
28 |
+
|
29 |
+
def exists(val):
|
30 |
+
return val is not None
|
31 |
+
|
32 |
+
|
33 |
+
def uniq(arr):
|
34 |
+
return{el: True for el in arr}.keys()
|
35 |
+
|
36 |
+
|
37 |
+
def default(val, d):
|
38 |
+
if exists(val):
|
39 |
+
return val
|
40 |
+
return d
|
41 |
+
|
42 |
+
|
43 |
+
def max_neg_value(t):
|
44 |
+
return -torch.finfo(t.dtype).max
|
45 |
+
|
46 |
+
|
47 |
+
def init_(tensor):
|
48 |
+
dim = tensor.shape[-1]
|
49 |
+
std = 1 / math.sqrt(dim)
|
50 |
+
tensor.uniform_(-std, std)
|
51 |
+
return tensor
|
52 |
+
|
53 |
+
|
54 |
+
# feedforward
|
55 |
+
class GEGLU(nn.Module):
|
56 |
+
def __init__(self, dim_in, dim_out, dtype=None, device=None, operations=ops):
|
57 |
+
super().__init__()
|
58 |
+
self.proj = operations.Linear(dim_in, dim_out * 2, dtype=dtype, device=device)
|
59 |
+
|
60 |
+
def forward(self, x):
|
61 |
+
x, gate = self.proj(x).chunk(2, dim=-1)
|
62 |
+
return x * F.gelu(gate)
|
63 |
+
|
64 |
+
|
65 |
+
class FeedForward(nn.Module):
|
66 |
+
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0., dtype=None, device=None, operations=ops):
|
67 |
+
super().__init__()
|
68 |
+
inner_dim = int(dim * mult)
|
69 |
+
dim_out = default(dim_out, dim)
|
70 |
+
project_in = nn.Sequential(
|
71 |
+
operations.Linear(dim, inner_dim, dtype=dtype, device=device),
|
72 |
+
nn.GELU()
|
73 |
+
) if not glu else GEGLU(dim, inner_dim, dtype=dtype, device=device, operations=operations)
|
74 |
+
|
75 |
+
self.net = nn.Sequential(
|
76 |
+
project_in,
|
77 |
+
nn.Dropout(dropout),
|
78 |
+
operations.Linear(inner_dim, dim_out, dtype=dtype, device=device)
|
79 |
+
)
|
80 |
+
|
81 |
+
def forward(self, x):
|
82 |
+
return self.net(x)
|
83 |
+
|
84 |
+
def Normalize(in_channels, dtype=None, device=None):
|
85 |
+
return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True, dtype=dtype, device=device)
|
86 |
+
|
87 |
+
def attention_basic(q, k, v, heads, mask=None):
|
88 |
+
b, _, dim_head = q.shape
|
89 |
+
dim_head //= heads
|
90 |
+
scale = dim_head ** -0.5
|
91 |
+
|
92 |
+
h = heads
|
93 |
+
q, k, v = map(
|
94 |
+
lambda t: t.unsqueeze(3)
|
95 |
+
.reshape(b, -1, heads, dim_head)
|
96 |
+
.permute(0, 2, 1, 3)
|
97 |
+
.reshape(b * heads, -1, dim_head)
|
98 |
+
.contiguous(),
|
99 |
+
(q, k, v),
|
100 |
+
)
|
101 |
+
|
102 |
+
# force cast to fp32 to avoid overflowing
|
103 |
+
if _ATTN_PRECISION =="fp32":
|
104 |
+
sim = einsum('b i d, b j d -> b i j', q.float(), k.float()) * scale
|
105 |
+
else:
|
106 |
+
sim = einsum('b i d, b j d -> b i j', q, k) * scale
|
107 |
+
|
108 |
+
del q, k
|
109 |
+
|
110 |
+
if exists(mask):
|
111 |
+
if mask.dtype == torch.bool:
|
112 |
+
mask = rearrange(mask, 'b ... -> b (...)') #TODO: check if this bool part matches pytorch attention
|
113 |
+
max_neg_value = -torch.finfo(sim.dtype).max
|
114 |
+
mask = repeat(mask, 'b j -> (b h) () j', h=h)
|
115 |
+
sim.masked_fill_(~mask, max_neg_value)
|
116 |
+
else:
|
117 |
+
if len(mask.shape) == 2:
|
118 |
+
bs = 1
|
119 |
+
else:
|
120 |
+
bs = mask.shape[0]
|
121 |
+
mask = mask.reshape(bs, -1, mask.shape[-2], mask.shape[-1]).expand(b, heads, -1, -1).reshape(-1, mask.shape[-2], mask.shape[-1])
|
122 |
+
sim.add_(mask)
|
123 |
+
|
124 |
+
# attention, what we cannot get enough of
|
125 |
+
sim = sim.softmax(dim=-1)
|
126 |
+
|
127 |
+
out = einsum('b i j, b j d -> b i d', sim.to(v.dtype), v)
|
128 |
+
out = (
|
129 |
+
out.unsqueeze(0)
|
130 |
+
.reshape(b, heads, -1, dim_head)
|
131 |
+
.permute(0, 2, 1, 3)
|
132 |
+
.reshape(b, -1, heads * dim_head)
|
133 |
+
)
|
134 |
+
return out
|
135 |
+
|
136 |
+
|
137 |
+
def attention_sub_quad(query, key, value, heads, mask=None):
|
138 |
+
b, _, dim_head = query.shape
|
139 |
+
dim_head //= heads
|
140 |
+
|
141 |
+
scale = dim_head ** -0.5
|
142 |
+
query = query.unsqueeze(3).reshape(b, -1, heads, dim_head).permute(0, 2, 1, 3).reshape(b * heads, -1, dim_head)
|
143 |
+
value = value.unsqueeze(3).reshape(b, -1, heads, dim_head).permute(0, 2, 1, 3).reshape(b * heads, -1, dim_head)
|
144 |
+
|
145 |
+
key = key.unsqueeze(3).reshape(b, -1, heads, dim_head).permute(0, 2, 3, 1).reshape(b * heads, dim_head, -1)
|
146 |
+
|
147 |
+
dtype = query.dtype
|
148 |
+
upcast_attention = _ATTN_PRECISION =="fp32" and query.dtype != torch.float32
|
149 |
+
if upcast_attention:
|
150 |
+
bytes_per_token = torch.finfo(torch.float32).bits//8
|
151 |
+
else:
|
152 |
+
bytes_per_token = torch.finfo(query.dtype).bits//8
|
153 |
+
batch_x_heads, q_tokens, _ = query.shape
|
154 |
+
_, _, k_tokens = key.shape
|
155 |
+
qk_matmul_size_bytes = batch_x_heads * bytes_per_token * q_tokens * k_tokens
|
156 |
+
|
157 |
+
mem_free_total, mem_free_torch = model_management.get_free_memory(query.device, True)
|
158 |
+
|
159 |
+
kv_chunk_size_min = None
|
160 |
+
kv_chunk_size = None
|
161 |
+
query_chunk_size = None
|
162 |
+
|
163 |
+
for x in [4096, 2048, 1024, 512, 256]:
|
164 |
+
count = mem_free_total / (batch_x_heads * bytes_per_token * x * 4.0)
|
165 |
+
if count >= k_tokens:
|
166 |
+
kv_chunk_size = k_tokens
|
167 |
+
query_chunk_size = x
|
168 |
+
break
|
169 |
+
|
170 |
+
if query_chunk_size is None:
|
171 |
+
query_chunk_size = 512
|
172 |
+
|
173 |
+
if mask is not None:
|
174 |
+
if len(mask.shape) == 2:
|
175 |
+
bs = 1
|
176 |
+
else:
|
177 |
+
bs = mask.shape[0]
|
178 |
+
mask = mask.reshape(bs, -1, mask.shape[-2], mask.shape[-1]).expand(b, heads, -1, -1).reshape(-1, mask.shape[-2], mask.shape[-1])
|
179 |
+
|
180 |
+
hidden_states = efficient_dot_product_attention(
|
181 |
+
query,
|
182 |
+
key,
|
183 |
+
value,
|
184 |
+
query_chunk_size=query_chunk_size,
|
185 |
+
kv_chunk_size=kv_chunk_size,
|
186 |
+
kv_chunk_size_min=kv_chunk_size_min,
|
187 |
+
use_checkpoint=False,
|
188 |
+
upcast_attention=upcast_attention,
|
189 |
+
mask=mask,
|
190 |
+
)
|
191 |
+
|
192 |
+
hidden_states = hidden_states.to(dtype)
|
193 |
+
|
194 |
+
hidden_states = hidden_states.unflatten(0, (-1, heads)).transpose(1,2).flatten(start_dim=2)
|
195 |
+
return hidden_states
|
196 |
+
|
197 |
+
def attention_split(q, k, v, heads, mask=None):
|
198 |
+
b, _, dim_head = q.shape
|
199 |
+
dim_head //= heads
|
200 |
+
scale = dim_head ** -0.5
|
201 |
+
|
202 |
+
h = heads
|
203 |
+
q, k, v = map(
|
204 |
+
lambda t: t.unsqueeze(3)
|
205 |
+
.reshape(b, -1, heads, dim_head)
|
206 |
+
.permute(0, 2, 1, 3)
|
207 |
+
.reshape(b * heads, -1, dim_head)
|
208 |
+
.contiguous(),
|
209 |
+
(q, k, v),
|
210 |
+
)
|
211 |
+
|
212 |
+
r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
|
213 |
+
|
214 |
+
mem_free_total = model_management.get_free_memory(q.device)
|
215 |
+
|
216 |
+
if _ATTN_PRECISION =="fp32":
|
217 |
+
element_size = 4
|
218 |
+
else:
|
219 |
+
element_size = q.element_size()
|
220 |
+
|
221 |
+
gb = 1024 ** 3
|
222 |
+
tensor_size = q.shape[0] * q.shape[1] * k.shape[1] * element_size
|
223 |
+
modifier = 3
|
224 |
+
mem_required = tensor_size * modifier
|
225 |
+
steps = 1
|
226 |
+
|
227 |
+
|
228 |
+
if mem_required > mem_free_total:
|
229 |
+
steps = 2**(math.ceil(math.log(mem_required / mem_free_total, 2)))
|
230 |
+
# print(f"Expected tensor size:{tensor_size/gb:0.1f}GB, cuda free:{mem_free_cuda/gb:0.1f}GB "
|
231 |
+
# f"torch free:{mem_free_torch/gb:0.1f} total:{mem_free_total/gb:0.1f} steps:{steps}")
|
232 |
+
|
233 |
+
if steps > 64:
|
234 |
+
max_res = math.floor(math.sqrt(math.sqrt(mem_free_total / 2.5)) / 8) * 64
|
235 |
+
raise RuntimeError(f'Not enough memory, use lower resolution (max approx. {max_res}x{max_res}). '
|
236 |
+
f'Need: {mem_required/64/gb:0.1f}GB free, Have:{mem_free_total/gb:0.1f}GB free')
|
237 |
+
|
238 |
+
if mask is not None:
|
239 |
+
if len(mask.shape) == 2:
|
240 |
+
bs = 1
|
241 |
+
else:
|
242 |
+
bs = mask.shape[0]
|
243 |
+
mask = mask.reshape(bs, -1, mask.shape[-2], mask.shape[-1]).expand(b, heads, -1, -1).reshape(-1, mask.shape[-2], mask.shape[-1])
|
244 |
+
|
245 |
+
# print("steps", steps, mem_required, mem_free_total, modifier, q.element_size(), tensor_size)
|
246 |
+
first_op_done = False
|
247 |
+
cleared_cache = False
|
248 |
+
while True:
|
249 |
+
try:
|
250 |
+
slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1]
|
251 |
+
for i in range(0, q.shape[1], slice_size):
|
252 |
+
end = i + slice_size
|
253 |
+
if _ATTN_PRECISION =="fp32":
|
254 |
+
with torch.autocast(enabled=False, device_type = 'cuda'):
|
255 |
+
s1 = einsum('b i d, b j d -> b i j', q[:, i:end].float(), k.float()) * scale
|
256 |
+
else:
|
257 |
+
s1 = einsum('b i d, b j d -> b i j', q[:, i:end], k) * scale
|
258 |
+
|
259 |
+
if mask is not None:
|
260 |
+
if len(mask.shape) == 2:
|
261 |
+
s1 += mask[i:end]
|
262 |
+
else:
|
263 |
+
s1 += mask[:, i:end]
|
264 |
+
|
265 |
+
s2 = s1.softmax(dim=-1).to(v.dtype)
|
266 |
+
del s1
|
267 |
+
first_op_done = True
|
268 |
+
|
269 |
+
r1[:, i:end] = einsum('b i j, b j d -> b i d', s2, v)
|
270 |
+
del s2
|
271 |
+
break
|
272 |
+
except model_management.OOM_EXCEPTION as e:
|
273 |
+
if first_op_done == False:
|
274 |
+
model_management.soft_empty_cache(True)
|
275 |
+
if cleared_cache == False:
|
276 |
+
cleared_cache = True
|
277 |
+
print("out of memory error, emptying cache and trying again")
|
278 |
+
continue
|
279 |
+
steps *= 2
|
280 |
+
if steps > 64:
|
281 |
+
raise e
|
282 |
+
print("out of memory error, increasing steps and trying again", steps)
|
283 |
+
else:
|
284 |
+
raise e
|
285 |
+
|
286 |
+
del q, k, v
|
287 |
+
|
288 |
+
r1 = (
|
289 |
+
r1.unsqueeze(0)
|
290 |
+
.reshape(b, heads, -1, dim_head)
|
291 |
+
.permute(0, 2, 1, 3)
|
292 |
+
.reshape(b, -1, heads * dim_head)
|
293 |
+
)
|
294 |
+
return r1
|
295 |
+
|
296 |
+
BROKEN_XFORMERS = False
|
297 |
+
try:
|
298 |
+
x_vers = xformers.__version__
|
299 |
+
#I think 0.0.23 is also broken (q with bs bigger than 65535 gives CUDA error)
|
300 |
+
BROKEN_XFORMERS = x_vers.startswith("0.0.21") or x_vers.startswith("0.0.22") or x_vers.startswith("0.0.23")
|
301 |
+
except:
|
302 |
+
pass
|
303 |
+
|
304 |
+
def attention_xformers(q, k, v, heads, mask=None):
|
305 |
+
b, _, dim_head = q.shape
|
306 |
+
dim_head //= heads
|
307 |
+
if BROKEN_XFORMERS:
|
308 |
+
if b * heads > 65535:
|
309 |
+
return attention_pytorch(q, k, v, heads, mask)
|
310 |
+
|
311 |
+
q, k, v = map(
|
312 |
+
lambda t: t.unsqueeze(3)
|
313 |
+
.reshape(b, -1, heads, dim_head)
|
314 |
+
.permute(0, 2, 1, 3)
|
315 |
+
.reshape(b * heads, -1, dim_head)
|
316 |
+
.contiguous(),
|
317 |
+
(q, k, v),
|
318 |
+
)
|
319 |
+
|
320 |
+
if mask is not None:
|
321 |
+
pad = 8 - q.shape[1] % 8
|
322 |
+
mask_out = torch.empty([q.shape[0], q.shape[1], q.shape[1] + pad], dtype=q.dtype, device=q.device)
|
323 |
+
mask_out[:, :, :mask.shape[-1]] = mask
|
324 |
+
mask = mask_out[:, :, :mask.shape[-1]]
|
325 |
+
|
326 |
+
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=mask)
|
327 |
+
|
328 |
+
out = (
|
329 |
+
out.unsqueeze(0)
|
330 |
+
.reshape(b, heads, -1, dim_head)
|
331 |
+
.permute(0, 2, 1, 3)
|
332 |
+
.reshape(b, -1, heads * dim_head)
|
333 |
+
)
|
334 |
+
return out
|
335 |
+
|
336 |
+
def attention_pytorch(q, k, v, heads, mask=None):
|
337 |
+
b, _, dim_head = q.shape
|
338 |
+
dim_head //= heads
|
339 |
+
q, k, v = map(
|
340 |
+
lambda t: t.view(b, -1, heads, dim_head).transpose(1, 2),
|
341 |
+
(q, k, v),
|
342 |
+
)
|
343 |
+
|
344 |
+
out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=False)
|
345 |
+
out = (
|
346 |
+
out.transpose(1, 2).reshape(b, -1, heads * dim_head)
|
347 |
+
)
|
348 |
+
return out
|
349 |
+
|
350 |
+
|
351 |
+
optimized_attention = attention_basic
|
352 |
+
|
353 |
+
if model_management.xformers_enabled():
|
354 |
+
print("Using xformers cross attention")
|
355 |
+
optimized_attention = attention_xformers
|
356 |
+
elif model_management.pytorch_attention_enabled():
|
357 |
+
print("Using pytorch cross attention")
|
358 |
+
optimized_attention = attention_pytorch
|
359 |
+
else:
|
360 |
+
if args.use_split_cross_attention:
|
361 |
+
print("Using split optimization for cross attention")
|
362 |
+
optimized_attention = attention_split
|
363 |
+
else:
|
364 |
+
print("Using sub quadratic optimization for cross attention, if you have memory or speed issues try using: --use-split-cross-attention")
|
365 |
+
optimized_attention = attention_sub_quad
|
366 |
+
|
367 |
+
optimized_attention_masked = optimized_attention
|
368 |
+
|
369 |
+
def optimized_attention_for_device(device, mask=False, small_input=False):
|
370 |
+
if small_input:
|
371 |
+
if model_management.pytorch_attention_enabled():
|
372 |
+
return attention_pytorch #TODO: need to confirm but this is probably slightly faster for small inputs in all cases
|
373 |
+
else:
|
374 |
+
return attention_basic
|
375 |
+
|
376 |
+
if device == torch.device("cpu"):
|
377 |
+
return attention_sub_quad
|
378 |
+
|
379 |
+
if mask:
|
380 |
+
return optimized_attention_masked
|
381 |
+
|
382 |
+
return optimized_attention
|
383 |
+
|
384 |
+
|
385 |
+
class CrossAttention(nn.Module):
|
386 |
+
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., dtype=None, device=None, operations=ops):
|
387 |
+
super().__init__()
|
388 |
+
inner_dim = dim_head * heads
|
389 |
+
context_dim = default(context_dim, query_dim)
|
390 |
+
|
391 |
+
self.heads = heads
|
392 |
+
self.dim_head = dim_head
|
393 |
+
|
394 |
+
self.to_q = operations.Linear(query_dim, inner_dim, bias=False, dtype=dtype, device=device)
|
395 |
+
self.to_k = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
|
396 |
+
self.to_v = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
|
397 |
+
|
398 |
+
self.to_out = nn.Sequential(operations.Linear(inner_dim, query_dim, dtype=dtype, device=device), nn.Dropout(dropout))
|
399 |
+
|
400 |
+
def forward(self, x, context=None, value=None, mask=None):
|
401 |
+
q = self.to_q(x)
|
402 |
+
context = default(context, x)
|
403 |
+
k = self.to_k(context)
|
404 |
+
if value is not None:
|
405 |
+
v = self.to_v(value)
|
406 |
+
del value
|
407 |
+
else:
|
408 |
+
v = self.to_v(context)
|
409 |
+
|
410 |
+
if mask is None:
|
411 |
+
out = optimized_attention(q, k, v, self.heads)
|
412 |
+
else:
|
413 |
+
out = optimized_attention_masked(q, k, v, self.heads, mask)
|
414 |
+
return self.to_out(out)
|
415 |
+
|
416 |
+
|
417 |
+
class BasicTransformerBlock(nn.Module):
|
418 |
+
def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True, ff_in=False, inner_dim=None,
|
419 |
+
disable_self_attn=False, disable_temporal_crossattention=False, switch_temporal_ca_to_sa=False, dtype=None, device=None, operations=ops):
|
420 |
+
super().__init__()
|
421 |
+
|
422 |
+
self.ff_in = ff_in or inner_dim is not None
|
423 |
+
if inner_dim is None:
|
424 |
+
inner_dim = dim
|
425 |
+
|
426 |
+
self.is_res = inner_dim == dim
|
427 |
+
|
428 |
+
if self.ff_in:
|
429 |
+
self.norm_in = operations.LayerNorm(dim, dtype=dtype, device=device)
|
430 |
+
self.ff_in = FeedForward(dim, dim_out=inner_dim, dropout=dropout, glu=gated_ff, dtype=dtype, device=device, operations=operations)
|
431 |
+
|
432 |
+
self.disable_self_attn = disable_self_attn
|
433 |
+
self.attn1 = CrossAttention(query_dim=inner_dim, heads=n_heads, dim_head=d_head, dropout=dropout,
|
434 |
+
context_dim=context_dim if self.disable_self_attn else None, dtype=dtype, device=device, operations=operations) # is a self-attention if not self.disable_self_attn
|
435 |
+
self.ff = FeedForward(inner_dim, dim_out=dim, dropout=dropout, glu=gated_ff, dtype=dtype, device=device, operations=operations)
|
436 |
+
|
437 |
+
if disable_temporal_crossattention:
|
438 |
+
if switch_temporal_ca_to_sa:
|
439 |
+
raise ValueError
|
440 |
+
else:
|
441 |
+
self.attn2 = None
|
442 |
+
else:
|
443 |
+
context_dim_attn2 = None
|
444 |
+
if not switch_temporal_ca_to_sa:
|
445 |
+
context_dim_attn2 = context_dim
|
446 |
+
|
447 |
+
self.attn2 = CrossAttention(query_dim=inner_dim, context_dim=context_dim_attn2,
|
448 |
+
heads=n_heads, dim_head=d_head, dropout=dropout, dtype=dtype, device=device, operations=operations) # is self-attn if context is none
|
449 |
+
self.norm2 = operations.LayerNorm(inner_dim, dtype=dtype, device=device)
|
450 |
+
|
451 |
+
self.norm1 = operations.LayerNorm(inner_dim, dtype=dtype, device=device)
|
452 |
+
self.norm3 = operations.LayerNorm(inner_dim, dtype=dtype, device=device)
|
453 |
+
self.checkpoint = checkpoint
|
454 |
+
self.n_heads = n_heads
|
455 |
+
self.d_head = d_head
|
456 |
+
self.switch_temporal_ca_to_sa = switch_temporal_ca_to_sa
|
457 |
+
|
458 |
+
def forward(self, x, context=None, transformer_options={}):
|
459 |
+
return checkpoint(self._forward, (x, context, transformer_options), self.parameters(), self.checkpoint)
|
460 |
+
|
461 |
+
def _forward(self, x, context=None, transformer_options={}):
|
462 |
+
extra_options = {}
|
463 |
+
block = transformer_options.get("block", None)
|
464 |
+
block_index = transformer_options.get("block_index", 0)
|
465 |
+
transformer_patches = {}
|
466 |
+
transformer_patches_replace = {}
|
467 |
+
|
468 |
+
for k in transformer_options:
|
469 |
+
if k == "patches":
|
470 |
+
transformer_patches = transformer_options[k]
|
471 |
+
elif k == "patches_replace":
|
472 |
+
transformer_patches_replace = transformer_options[k]
|
473 |
+
else:
|
474 |
+
extra_options[k] = transformer_options[k]
|
475 |
+
|
476 |
+
extra_options["n_heads"] = self.n_heads
|
477 |
+
extra_options["dim_head"] = self.d_head
|
478 |
+
|
479 |
+
if self.ff_in:
|
480 |
+
x_skip = x
|
481 |
+
x = self.ff_in(self.norm_in(x))
|
482 |
+
if self.is_res:
|
483 |
+
x += x_skip
|
484 |
+
|
485 |
+
n = self.norm1(x)
|
486 |
+
if self.disable_self_attn:
|
487 |
+
context_attn1 = context
|
488 |
+
else:
|
489 |
+
context_attn1 = None
|
490 |
+
value_attn1 = None
|
491 |
+
|
492 |
+
if "attn1_patch" in transformer_patches:
|
493 |
+
patch = transformer_patches["attn1_patch"]
|
494 |
+
if context_attn1 is None:
|
495 |
+
context_attn1 = n
|
496 |
+
value_attn1 = context_attn1
|
497 |
+
for p in patch:
|
498 |
+
n, context_attn1, value_attn1 = p(n, context_attn1, value_attn1, extra_options)
|
499 |
+
|
500 |
+
if block is not None:
|
501 |
+
transformer_block = (block[0], block[1], block_index)
|
502 |
+
else:
|
503 |
+
transformer_block = None
|
504 |
+
attn1_replace_patch = transformer_patches_replace.get("attn1", {})
|
505 |
+
block_attn1 = transformer_block
|
506 |
+
if block_attn1 not in attn1_replace_patch:
|
507 |
+
block_attn1 = block
|
508 |
+
|
509 |
+
if block_attn1 in attn1_replace_patch:
|
510 |
+
if context_attn1 is None:
|
511 |
+
context_attn1 = n
|
512 |
+
value_attn1 = n
|
513 |
+
n = self.attn1.to_q(n)
|
514 |
+
context_attn1 = self.attn1.to_k(context_attn1)
|
515 |
+
value_attn1 = self.attn1.to_v(value_attn1)
|
516 |
+
n = attn1_replace_patch[block_attn1](n, context_attn1, value_attn1, extra_options)
|
517 |
+
n = self.attn1.to_out(n)
|
518 |
+
else:
|
519 |
+
n = self.attn1(n, context=context_attn1, value=value_attn1)
|
520 |
+
|
521 |
+
if "attn1_output_patch" in transformer_patches:
|
522 |
+
patch = transformer_patches["attn1_output_patch"]
|
523 |
+
for p in patch:
|
524 |
+
n = p(n, extra_options)
|
525 |
+
|
526 |
+
x += n
|
527 |
+
if "middle_patch" in transformer_patches:
|
528 |
+
patch = transformer_patches["middle_patch"]
|
529 |
+
for p in patch:
|
530 |
+
x = p(x, extra_options)
|
531 |
+
|
532 |
+
if self.attn2 is not None:
|
533 |
+
n = self.norm2(x)
|
534 |
+
if self.switch_temporal_ca_to_sa:
|
535 |
+
context_attn2 = n
|
536 |
+
else:
|
537 |
+
context_attn2 = context
|
538 |
+
value_attn2 = None
|
539 |
+
if "attn2_patch" in transformer_patches:
|
540 |
+
patch = transformer_patches["attn2_patch"]
|
541 |
+
value_attn2 = context_attn2
|
542 |
+
for p in patch:
|
543 |
+
n, context_attn2, value_attn2 = p(n, context_attn2, value_attn2, extra_options)
|
544 |
+
|
545 |
+
attn2_replace_patch = transformer_patches_replace.get("attn2", {})
|
546 |
+
block_attn2 = transformer_block
|
547 |
+
if block_attn2 not in attn2_replace_patch:
|
548 |
+
block_attn2 = block
|
549 |
+
|
550 |
+
if block_attn2 in attn2_replace_patch:
|
551 |
+
if value_attn2 is None:
|
552 |
+
value_attn2 = context_attn2
|
553 |
+
n = self.attn2.to_q(n)
|
554 |
+
context_attn2 = self.attn2.to_k(context_attn2)
|
555 |
+
value_attn2 = self.attn2.to_v(value_attn2)
|
556 |
+
n = attn2_replace_patch[block_attn2](n, context_attn2, value_attn2, extra_options)
|
557 |
+
n = self.attn2.to_out(n)
|
558 |
+
else:
|
559 |
+
n = self.attn2(n, context=context_attn2, value=value_attn2)
|
560 |
+
|
561 |
+
if "attn2_output_patch" in transformer_patches:
|
562 |
+
patch = transformer_patches["attn2_output_patch"]
|
563 |
+
for p in patch:
|
564 |
+
n = p(n, extra_options)
|
565 |
+
|
566 |
+
x += n
|
567 |
+
if self.is_res:
|
568 |
+
x_skip = x
|
569 |
+
x = self.ff(self.norm3(x))
|
570 |
+
if self.is_res:
|
571 |
+
x += x_skip
|
572 |
+
|
573 |
+
return x
|
574 |
+
|
575 |
+
|
576 |
+
class SpatialTransformer(nn.Module):
|
577 |
+
"""
|
578 |
+
Transformer block for image-like data.
|
579 |
+
First, project the input (aka embedding)
|
580 |
+
and reshape to b, t, d.
|
581 |
+
Then apply standard transformer action.
|
582 |
+
Finally, reshape to image
|
583 |
+
NEW: use_linear for more efficiency instead of the 1x1 convs
|
584 |
+
"""
|
585 |
+
def __init__(self, in_channels, n_heads, d_head,
|
586 |
+
depth=1, dropout=0., context_dim=None,
|
587 |
+
disable_self_attn=False, use_linear=False,
|
588 |
+
use_checkpoint=True, dtype=None, device=None, operations=ops):
|
589 |
+
super().__init__()
|
590 |
+
if exists(context_dim) and not isinstance(context_dim, list):
|
591 |
+
context_dim = [context_dim] * depth
|
592 |
+
self.in_channels = in_channels
|
593 |
+
inner_dim = n_heads * d_head
|
594 |
+
self.norm = operations.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True, dtype=dtype, device=device)
|
595 |
+
if not use_linear:
|
596 |
+
self.proj_in = operations.Conv2d(in_channels,
|
597 |
+
inner_dim,
|
598 |
+
kernel_size=1,
|
599 |
+
stride=1,
|
600 |
+
padding=0, dtype=dtype, device=device)
|
601 |
+
else:
|
602 |
+
self.proj_in = operations.Linear(in_channels, inner_dim, dtype=dtype, device=device)
|
603 |
+
|
604 |
+
self.transformer_blocks = nn.ModuleList(
|
605 |
+
[BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim[d],
|
606 |
+
disable_self_attn=disable_self_attn, checkpoint=use_checkpoint, dtype=dtype, device=device, operations=operations)
|
607 |
+
for d in range(depth)]
|
608 |
+
)
|
609 |
+
if not use_linear:
|
610 |
+
self.proj_out = operations.Conv2d(inner_dim,in_channels,
|
611 |
+
kernel_size=1,
|
612 |
+
stride=1,
|
613 |
+
padding=0, dtype=dtype, device=device)
|
614 |
+
else:
|
615 |
+
self.proj_out = operations.Linear(in_channels, inner_dim, dtype=dtype, device=device)
|
616 |
+
self.use_linear = use_linear
|
617 |
+
|
618 |
+
def forward(self, x, context=None, transformer_options={}):
|
619 |
+
# note: if no context is given, cross-attention defaults to self-attention
|
620 |
+
if not isinstance(context, list):
|
621 |
+
context = [context] * len(self.transformer_blocks)
|
622 |
+
b, c, h, w = x.shape
|
623 |
+
x_in = x
|
624 |
+
x = self.norm(x)
|
625 |
+
if not self.use_linear:
|
626 |
+
x = self.proj_in(x)
|
627 |
+
x = rearrange(x, 'b c h w -> b (h w) c').contiguous()
|
628 |
+
if self.use_linear:
|
629 |
+
x = self.proj_in(x)
|
630 |
+
for i, block in enumerate(self.transformer_blocks):
|
631 |
+
transformer_options["block_index"] = i
|
632 |
+
x = block(x, context=context[i], transformer_options=transformer_options)
|
633 |
+
if self.use_linear:
|
634 |
+
x = self.proj_out(x)
|
635 |
+
x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous()
|
636 |
+
if not self.use_linear:
|
637 |
+
x = self.proj_out(x)
|
638 |
+
return x + x_in
|
639 |
+
|
640 |
+
|
641 |
+
class SpatialVideoTransformer(SpatialTransformer):
|
642 |
+
def __init__(
|
643 |
+
self,
|
644 |
+
in_channels,
|
645 |
+
n_heads,
|
646 |
+
d_head,
|
647 |
+
depth=1,
|
648 |
+
dropout=0.0,
|
649 |
+
use_linear=False,
|
650 |
+
context_dim=None,
|
651 |
+
use_spatial_context=False,
|
652 |
+
timesteps=None,
|
653 |
+
merge_strategy: str = "fixed",
|
654 |
+
merge_factor: float = 0.5,
|
655 |
+
time_context_dim=None,
|
656 |
+
ff_in=False,
|
657 |
+
checkpoint=False,
|
658 |
+
time_depth=1,
|
659 |
+
disable_self_attn=False,
|
660 |
+
disable_temporal_crossattention=False,
|
661 |
+
max_time_embed_period: int = 10000,
|
662 |
+
dtype=None, device=None, operations=ops
|
663 |
+
):
|
664 |
+
super().__init__(
|
665 |
+
in_channels,
|
666 |
+
n_heads,
|
667 |
+
d_head,
|
668 |
+
depth=depth,
|
669 |
+
dropout=dropout,
|
670 |
+
use_checkpoint=checkpoint,
|
671 |
+
context_dim=context_dim,
|
672 |
+
use_linear=use_linear,
|
673 |
+
disable_self_attn=disable_self_attn,
|
674 |
+
dtype=dtype, device=device, operations=operations
|
675 |
+
)
|
676 |
+
self.time_depth = time_depth
|
677 |
+
self.depth = depth
|
678 |
+
self.max_time_embed_period = max_time_embed_period
|
679 |
+
|
680 |
+
time_mix_d_head = d_head
|
681 |
+
n_time_mix_heads = n_heads
|
682 |
+
|
683 |
+
time_mix_inner_dim = int(time_mix_d_head * n_time_mix_heads)
|
684 |
+
|
685 |
+
inner_dim = n_heads * d_head
|
686 |
+
if use_spatial_context:
|
687 |
+
time_context_dim = context_dim
|
688 |
+
|
689 |
+
self.time_stack = nn.ModuleList(
|
690 |
+
[
|
691 |
+
BasicTransformerBlock(
|
692 |
+
inner_dim,
|
693 |
+
n_time_mix_heads,
|
694 |
+
time_mix_d_head,
|
695 |
+
dropout=dropout,
|
696 |
+
context_dim=time_context_dim,
|
697 |
+
# timesteps=timesteps,
|
698 |
+
checkpoint=checkpoint,
|
699 |
+
ff_in=ff_in,
|
700 |
+
inner_dim=time_mix_inner_dim,
|
701 |
+
disable_self_attn=disable_self_attn,
|
702 |
+
disable_temporal_crossattention=disable_temporal_crossattention,
|
703 |
+
dtype=dtype, device=device, operations=operations
|
704 |
+
)
|
705 |
+
for _ in range(self.depth)
|
706 |
+
]
|
707 |
+
)
|
708 |
+
|
709 |
+
assert len(self.time_stack) == len(self.transformer_blocks)
|
710 |
+
|
711 |
+
self.use_spatial_context = use_spatial_context
|
712 |
+
self.in_channels = in_channels
|
713 |
+
|
714 |
+
time_embed_dim = self.in_channels * 4
|
715 |
+
self.time_pos_embed = nn.Sequential(
|
716 |
+
operations.Linear(self.in_channels, time_embed_dim, dtype=dtype, device=device),
|
717 |
+
nn.SiLU(),
|
718 |
+
operations.Linear(time_embed_dim, self.in_channels, dtype=dtype, device=device),
|
719 |
+
)
|
720 |
+
|
721 |
+
self.time_mixer = AlphaBlender(
|
722 |
+
alpha=merge_factor, merge_strategy=merge_strategy
|
723 |
+
)
|
724 |
+
|
725 |
+
def forward(
|
726 |
+
self,
|
727 |
+
x: torch.Tensor,
|
728 |
+
context: Optional[torch.Tensor] = None,
|
729 |
+
time_context: Optional[torch.Tensor] = None,
|
730 |
+
timesteps: Optional[int] = None,
|
731 |
+
image_only_indicator: Optional[torch.Tensor] = None,
|
732 |
+
transformer_options={}
|
733 |
+
) -> torch.Tensor:
|
734 |
+
_, _, h, w = x.shape
|
735 |
+
x_in = x
|
736 |
+
spatial_context = None
|
737 |
+
if exists(context):
|
738 |
+
spatial_context = context
|
739 |
+
|
740 |
+
if self.use_spatial_context:
|
741 |
+
assert (
|
742 |
+
context.ndim == 3
|
743 |
+
), f"n dims of spatial context should be 3 but are {context.ndim}"
|
744 |
+
|
745 |
+
if time_context is None:
|
746 |
+
time_context = context
|
747 |
+
time_context_first_timestep = time_context[::timesteps]
|
748 |
+
time_context = repeat(
|
749 |
+
time_context_first_timestep, "b ... -> (b n) ...", n=h * w
|
750 |
+
)
|
751 |
+
elif time_context is not None and not self.use_spatial_context:
|
752 |
+
time_context = repeat(time_context, "b ... -> (b n) ...", n=h * w)
|
753 |
+
if time_context.ndim == 2:
|
754 |
+
time_context = rearrange(time_context, "b c -> b 1 c")
|
755 |
+
|
756 |
+
x = self.norm(x)
|
757 |
+
if not self.use_linear:
|
758 |
+
x = self.proj_in(x)
|
759 |
+
x = rearrange(x, "b c h w -> b (h w) c")
|
760 |
+
if self.use_linear:
|
761 |
+
x = self.proj_in(x)
|
762 |
+
|
763 |
+
num_frames = torch.arange(timesteps, device=x.device)
|
764 |
+
num_frames = repeat(num_frames, "t -> b t", b=x.shape[0] // timesteps)
|
765 |
+
num_frames = rearrange(num_frames, "b t -> (b t)")
|
766 |
+
t_emb = timestep_embedding(num_frames, self.in_channels, repeat_only=False, max_period=self.max_time_embed_period).to(x.dtype)
|
767 |
+
emb = self.time_pos_embed(t_emb)
|
768 |
+
emb = emb[:, None, :]
|
769 |
+
|
770 |
+
for it_, (block, mix_block) in enumerate(
|
771 |
+
zip(self.transformer_blocks, self.time_stack)
|
772 |
+
):
|
773 |
+
transformer_options["block_index"] = it_
|
774 |
+
x = block(
|
775 |
+
x,
|
776 |
+
context=spatial_context,
|
777 |
+
transformer_options=transformer_options,
|
778 |
+
)
|
779 |
+
|
780 |
+
x_mix = x
|
781 |
+
x_mix = x_mix + emb
|
782 |
+
|
783 |
+
B, S, C = x_mix.shape
|
784 |
+
x_mix = rearrange(x_mix, "(b t) s c -> (b s) t c", t=timesteps)
|
785 |
+
x_mix = mix_block(x_mix, context=time_context) #TODO: transformer_options
|
786 |
+
x_mix = rearrange(
|
787 |
+
x_mix, "(b s) t c -> (b t) s c", s=S, b=B // timesteps, c=C, t=timesteps
|
788 |
+
)
|
789 |
+
|
790 |
+
x = self.time_mixer(x_spatial=x, x_temporal=x_mix, image_only_indicator=image_only_indicator)
|
791 |
+
|
792 |
+
if self.use_linear:
|
793 |
+
x = self.proj_out(x)
|
794 |
+
x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w)
|
795 |
+
if not self.use_linear:
|
796 |
+
x = self.proj_out(x)
|
797 |
+
out = x + x_in
|
798 |
+
return out
|
799 |
+
|
800 |
+
|
comfy/ldm/modules/diffusionmodules/__init__.py
ADDED
File without changes
|
comfy/ldm/modules/diffusionmodules/model.py
ADDED
@@ -0,0 +1,650 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# pytorch_diffusion + derived encoder decoder
|
2 |
+
import math
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import numpy as np
|
6 |
+
from einops import rearrange
|
7 |
+
from typing import Optional, Any
|
8 |
+
|
9 |
+
from comfy import model_management
|
10 |
+
import comfy.ops
|
11 |
+
ops = comfy.ops.disable_weight_init
|
12 |
+
|
13 |
+
if model_management.xformers_enabled_vae():
|
14 |
+
import xformers
|
15 |
+
import xformers.ops
|
16 |
+
|
17 |
+
def get_timestep_embedding(timesteps, embedding_dim):
|
18 |
+
"""
|
19 |
+
This matches the implementation in Denoising Diffusion Probabilistic Models:
|
20 |
+
From Fairseq.
|
21 |
+
Build sinusoidal embeddings.
|
22 |
+
This matches the implementation in tensor2tensor, but differs slightly
|
23 |
+
from the description in Section 3.5 of "Attention Is All You Need".
|
24 |
+
"""
|
25 |
+
assert len(timesteps.shape) == 1
|
26 |
+
|
27 |
+
half_dim = embedding_dim // 2
|
28 |
+
emb = math.log(10000) / (half_dim - 1)
|
29 |
+
emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb)
|
30 |
+
emb = emb.to(device=timesteps.device)
|
31 |
+
emb = timesteps.float()[:, None] * emb[None, :]
|
32 |
+
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
33 |
+
if embedding_dim % 2 == 1: # zero pad
|
34 |
+
emb = torch.nn.functional.pad(emb, (0,1,0,0))
|
35 |
+
return emb
|
36 |
+
|
37 |
+
|
38 |
+
def nonlinearity(x):
|
39 |
+
# swish
|
40 |
+
return x*torch.sigmoid(x)
|
41 |
+
|
42 |
+
|
43 |
+
def Normalize(in_channels, num_groups=32):
|
44 |
+
return ops.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True)
|
45 |
+
|
46 |
+
|
47 |
+
class Upsample(nn.Module):
|
48 |
+
def __init__(self, in_channels, with_conv):
|
49 |
+
super().__init__()
|
50 |
+
self.with_conv = with_conv
|
51 |
+
if self.with_conv:
|
52 |
+
self.conv = ops.Conv2d(in_channels,
|
53 |
+
in_channels,
|
54 |
+
kernel_size=3,
|
55 |
+
stride=1,
|
56 |
+
padding=1)
|
57 |
+
|
58 |
+
def forward(self, x):
|
59 |
+
try:
|
60 |
+
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
|
61 |
+
except: #operation not implemented for bf16
|
62 |
+
b, c, h, w = x.shape
|
63 |
+
out = torch.empty((b, c, h*2, w*2), dtype=x.dtype, layout=x.layout, device=x.device)
|
64 |
+
split = 8
|
65 |
+
l = out.shape[1] // split
|
66 |
+
for i in range(0, out.shape[1], l):
|
67 |
+
out[:,i:i+l] = torch.nn.functional.interpolate(x[:,i:i+l].to(torch.float32), scale_factor=2.0, mode="nearest").to(x.dtype)
|
68 |
+
del x
|
69 |
+
x = out
|
70 |
+
|
71 |
+
if self.with_conv:
|
72 |
+
x = self.conv(x)
|
73 |
+
return x
|
74 |
+
|
75 |
+
|
76 |
+
class Downsample(nn.Module):
|
77 |
+
def __init__(self, in_channels, with_conv):
|
78 |
+
super().__init__()
|
79 |
+
self.with_conv = with_conv
|
80 |
+
if self.with_conv:
|
81 |
+
# no asymmetric padding in torch conv, must do it ourselves
|
82 |
+
self.conv = ops.Conv2d(in_channels,
|
83 |
+
in_channels,
|
84 |
+
kernel_size=3,
|
85 |
+
stride=2,
|
86 |
+
padding=0)
|
87 |
+
|
88 |
+
def forward(self, x):
|
89 |
+
if self.with_conv:
|
90 |
+
pad = (0,1,0,1)
|
91 |
+
x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
|
92 |
+
x = self.conv(x)
|
93 |
+
else:
|
94 |
+
x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
|
95 |
+
return x
|
96 |
+
|
97 |
+
|
98 |
+
class ResnetBlock(nn.Module):
|
99 |
+
def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False,
|
100 |
+
dropout, temb_channels=512):
|
101 |
+
super().__init__()
|
102 |
+
self.in_channels = in_channels
|
103 |
+
out_channels = in_channels if out_channels is None else out_channels
|
104 |
+
self.out_channels = out_channels
|
105 |
+
self.use_conv_shortcut = conv_shortcut
|
106 |
+
|
107 |
+
self.swish = torch.nn.SiLU(inplace=True)
|
108 |
+
self.norm1 = Normalize(in_channels)
|
109 |
+
self.conv1 = ops.Conv2d(in_channels,
|
110 |
+
out_channels,
|
111 |
+
kernel_size=3,
|
112 |
+
stride=1,
|
113 |
+
padding=1)
|
114 |
+
if temb_channels > 0:
|
115 |
+
self.temb_proj = ops.Linear(temb_channels,
|
116 |
+
out_channels)
|
117 |
+
self.norm2 = Normalize(out_channels)
|
118 |
+
self.dropout = torch.nn.Dropout(dropout, inplace=True)
|
119 |
+
self.conv2 = ops.Conv2d(out_channels,
|
120 |
+
out_channels,
|
121 |
+
kernel_size=3,
|
122 |
+
stride=1,
|
123 |
+
padding=1)
|
124 |
+
if self.in_channels != self.out_channels:
|
125 |
+
if self.use_conv_shortcut:
|
126 |
+
self.conv_shortcut = ops.Conv2d(in_channels,
|
127 |
+
out_channels,
|
128 |
+
kernel_size=3,
|
129 |
+
stride=1,
|
130 |
+
padding=1)
|
131 |
+
else:
|
132 |
+
self.nin_shortcut = ops.Conv2d(in_channels,
|
133 |
+
out_channels,
|
134 |
+
kernel_size=1,
|
135 |
+
stride=1,
|
136 |
+
padding=0)
|
137 |
+
|
138 |
+
def forward(self, x, temb):
|
139 |
+
h = x
|
140 |
+
h = self.norm1(h)
|
141 |
+
h = self.swish(h)
|
142 |
+
h = self.conv1(h)
|
143 |
+
|
144 |
+
if temb is not None:
|
145 |
+
h = h + self.temb_proj(self.swish(temb))[:,:,None,None]
|
146 |
+
|
147 |
+
h = self.norm2(h)
|
148 |
+
h = self.swish(h)
|
149 |
+
h = self.dropout(h)
|
150 |
+
h = self.conv2(h)
|
151 |
+
|
152 |
+
if self.in_channels != self.out_channels:
|
153 |
+
if self.use_conv_shortcut:
|
154 |
+
x = self.conv_shortcut(x)
|
155 |
+
else:
|
156 |
+
x = self.nin_shortcut(x)
|
157 |
+
|
158 |
+
return x+h
|
159 |
+
|
160 |
+
def slice_attention(q, k, v):
|
161 |
+
r1 = torch.zeros_like(k, device=q.device)
|
162 |
+
scale = (int(q.shape[-1])**(-0.5))
|
163 |
+
|
164 |
+
mem_free_total = model_management.get_free_memory(q.device)
|
165 |
+
|
166 |
+
gb = 1024 ** 3
|
167 |
+
tensor_size = q.shape[0] * q.shape[1] * k.shape[2] * q.element_size()
|
168 |
+
modifier = 3 if q.element_size() == 2 else 2.5
|
169 |
+
mem_required = tensor_size * modifier
|
170 |
+
steps = 1
|
171 |
+
|
172 |
+
if mem_required > mem_free_total:
|
173 |
+
steps = 2**(math.ceil(math.log(mem_required / mem_free_total, 2)))
|
174 |
+
|
175 |
+
while True:
|
176 |
+
try:
|
177 |
+
slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1]
|
178 |
+
for i in range(0, q.shape[1], slice_size):
|
179 |
+
end = i + slice_size
|
180 |
+
s1 = torch.bmm(q[:, i:end], k) * scale
|
181 |
+
|
182 |
+
s2 = torch.nn.functional.softmax(s1, dim=2).permute(0,2,1)
|
183 |
+
del s1
|
184 |
+
|
185 |
+
r1[:, :, i:end] = torch.bmm(v, s2)
|
186 |
+
del s2
|
187 |
+
break
|
188 |
+
except model_management.OOM_EXCEPTION as e:
|
189 |
+
model_management.soft_empty_cache(True)
|
190 |
+
steps *= 2
|
191 |
+
if steps > 128:
|
192 |
+
raise e
|
193 |
+
print("out of memory error, increasing steps and trying again", steps)
|
194 |
+
|
195 |
+
return r1
|
196 |
+
|
197 |
+
def normal_attention(q, k, v):
|
198 |
+
# compute attention
|
199 |
+
b,c,h,w = q.shape
|
200 |
+
|
201 |
+
q = q.reshape(b,c,h*w)
|
202 |
+
q = q.permute(0,2,1) # b,hw,c
|
203 |
+
k = k.reshape(b,c,h*w) # b,c,hw
|
204 |
+
v = v.reshape(b,c,h*w)
|
205 |
+
|
206 |
+
r1 = slice_attention(q, k, v)
|
207 |
+
h_ = r1.reshape(b,c,h,w)
|
208 |
+
del r1
|
209 |
+
return h_
|
210 |
+
|
211 |
+
def xformers_attention(q, k, v):
|
212 |
+
# compute attention
|
213 |
+
B, C, H, W = q.shape
|
214 |
+
q, k, v = map(
|
215 |
+
lambda t: t.view(B, C, -1).transpose(1, 2).contiguous(),
|
216 |
+
(q, k, v),
|
217 |
+
)
|
218 |
+
|
219 |
+
try:
|
220 |
+
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None)
|
221 |
+
out = out.transpose(1, 2).reshape(B, C, H, W)
|
222 |
+
except NotImplementedError as e:
|
223 |
+
out = slice_attention(q.view(B, -1, C), k.view(B, -1, C).transpose(1, 2), v.view(B, -1, C).transpose(1, 2)).reshape(B, C, H, W)
|
224 |
+
return out
|
225 |
+
|
226 |
+
def pytorch_attention(q, k, v):
|
227 |
+
# compute attention
|
228 |
+
B, C, H, W = q.shape
|
229 |
+
q, k, v = map(
|
230 |
+
lambda t: t.view(B, 1, C, -1).transpose(2, 3).contiguous(),
|
231 |
+
(q, k, v),
|
232 |
+
)
|
233 |
+
|
234 |
+
try:
|
235 |
+
out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=0.0, is_causal=False)
|
236 |
+
out = out.transpose(2, 3).reshape(B, C, H, W)
|
237 |
+
except model_management.OOM_EXCEPTION as e:
|
238 |
+
print("scaled_dot_product_attention OOMed: switched to slice attention")
|
239 |
+
out = slice_attention(q.view(B, -1, C), k.view(B, -1, C).transpose(1, 2), v.view(B, -1, C).transpose(1, 2)).reshape(B, C, H, W)
|
240 |
+
return out
|
241 |
+
|
242 |
+
|
243 |
+
class AttnBlock(nn.Module):
|
244 |
+
def __init__(self, in_channels):
|
245 |
+
super().__init__()
|
246 |
+
self.in_channels = in_channels
|
247 |
+
|
248 |
+
self.norm = Normalize(in_channels)
|
249 |
+
self.q = ops.Conv2d(in_channels,
|
250 |
+
in_channels,
|
251 |
+
kernel_size=1,
|
252 |
+
stride=1,
|
253 |
+
padding=0)
|
254 |
+
self.k = ops.Conv2d(in_channels,
|
255 |
+
in_channels,
|
256 |
+
kernel_size=1,
|
257 |
+
stride=1,
|
258 |
+
padding=0)
|
259 |
+
self.v = ops.Conv2d(in_channels,
|
260 |
+
in_channels,
|
261 |
+
kernel_size=1,
|
262 |
+
stride=1,
|
263 |
+
padding=0)
|
264 |
+
self.proj_out = ops.Conv2d(in_channels,
|
265 |
+
in_channels,
|
266 |
+
kernel_size=1,
|
267 |
+
stride=1,
|
268 |
+
padding=0)
|
269 |
+
|
270 |
+
if model_management.xformers_enabled_vae():
|
271 |
+
print("Using xformers attention in VAE")
|
272 |
+
self.optimized_attention = xformers_attention
|
273 |
+
elif model_management.pytorch_attention_enabled():
|
274 |
+
print("Using pytorch attention in VAE")
|
275 |
+
self.optimized_attention = pytorch_attention
|
276 |
+
else:
|
277 |
+
print("Using split attention in VAE")
|
278 |
+
self.optimized_attention = normal_attention
|
279 |
+
|
280 |
+
def forward(self, x):
|
281 |
+
h_ = x
|
282 |
+
h_ = self.norm(h_)
|
283 |
+
q = self.q(h_)
|
284 |
+
k = self.k(h_)
|
285 |
+
v = self.v(h_)
|
286 |
+
|
287 |
+
h_ = self.optimized_attention(q, k, v)
|
288 |
+
|
289 |
+
h_ = self.proj_out(h_)
|
290 |
+
|
291 |
+
return x+h_
|
292 |
+
|
293 |
+
|
294 |
+
def make_attn(in_channels, attn_type="vanilla", attn_kwargs=None):
|
295 |
+
return AttnBlock(in_channels)
|
296 |
+
|
297 |
+
|
298 |
+
class Model(nn.Module):
|
299 |
+
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
|
300 |
+
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
|
301 |
+
resolution, use_timestep=True, use_linear_attn=False, attn_type="vanilla"):
|
302 |
+
super().__init__()
|
303 |
+
if use_linear_attn: attn_type = "linear"
|
304 |
+
self.ch = ch
|
305 |
+
self.temb_ch = self.ch*4
|
306 |
+
self.num_resolutions = len(ch_mult)
|
307 |
+
self.num_res_blocks = num_res_blocks
|
308 |
+
self.resolution = resolution
|
309 |
+
self.in_channels = in_channels
|
310 |
+
|
311 |
+
self.use_timestep = use_timestep
|
312 |
+
if self.use_timestep:
|
313 |
+
# timestep embedding
|
314 |
+
self.temb = nn.Module()
|
315 |
+
self.temb.dense = nn.ModuleList([
|
316 |
+
ops.Linear(self.ch,
|
317 |
+
self.temb_ch),
|
318 |
+
ops.Linear(self.temb_ch,
|
319 |
+
self.temb_ch),
|
320 |
+
])
|
321 |
+
|
322 |
+
# downsampling
|
323 |
+
self.conv_in = ops.Conv2d(in_channels,
|
324 |
+
self.ch,
|
325 |
+
kernel_size=3,
|
326 |
+
stride=1,
|
327 |
+
padding=1)
|
328 |
+
|
329 |
+
curr_res = resolution
|
330 |
+
in_ch_mult = (1,)+tuple(ch_mult)
|
331 |
+
self.down = nn.ModuleList()
|
332 |
+
for i_level in range(self.num_resolutions):
|
333 |
+
block = nn.ModuleList()
|
334 |
+
attn = nn.ModuleList()
|
335 |
+
block_in = ch*in_ch_mult[i_level]
|
336 |
+
block_out = ch*ch_mult[i_level]
|
337 |
+
for i_block in range(self.num_res_blocks):
|
338 |
+
block.append(ResnetBlock(in_channels=block_in,
|
339 |
+
out_channels=block_out,
|
340 |
+
temb_channels=self.temb_ch,
|
341 |
+
dropout=dropout))
|
342 |
+
block_in = block_out
|
343 |
+
if curr_res in attn_resolutions:
|
344 |
+
attn.append(make_attn(block_in, attn_type=attn_type))
|
345 |
+
down = nn.Module()
|
346 |
+
down.block = block
|
347 |
+
down.attn = attn
|
348 |
+
if i_level != self.num_resolutions-1:
|
349 |
+
down.downsample = Downsample(block_in, resamp_with_conv)
|
350 |
+
curr_res = curr_res // 2
|
351 |
+
self.down.append(down)
|
352 |
+
|
353 |
+
# middle
|
354 |
+
self.mid = nn.Module()
|
355 |
+
self.mid.block_1 = ResnetBlock(in_channels=block_in,
|
356 |
+
out_channels=block_in,
|
357 |
+
temb_channels=self.temb_ch,
|
358 |
+
dropout=dropout)
|
359 |
+
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
|
360 |
+
self.mid.block_2 = ResnetBlock(in_channels=block_in,
|
361 |
+
out_channels=block_in,
|
362 |
+
temb_channels=self.temb_ch,
|
363 |
+
dropout=dropout)
|
364 |
+
|
365 |
+
# upsampling
|
366 |
+
self.up = nn.ModuleList()
|
367 |
+
for i_level in reversed(range(self.num_resolutions)):
|
368 |
+
block = nn.ModuleList()
|
369 |
+
attn = nn.ModuleList()
|
370 |
+
block_out = ch*ch_mult[i_level]
|
371 |
+
skip_in = ch*ch_mult[i_level]
|
372 |
+
for i_block in range(self.num_res_blocks+1):
|
373 |
+
if i_block == self.num_res_blocks:
|
374 |
+
skip_in = ch*in_ch_mult[i_level]
|
375 |
+
block.append(ResnetBlock(in_channels=block_in+skip_in,
|
376 |
+
out_channels=block_out,
|
377 |
+
temb_channels=self.temb_ch,
|
378 |
+
dropout=dropout))
|
379 |
+
block_in = block_out
|
380 |
+
if curr_res in attn_resolutions:
|
381 |
+
attn.append(make_attn(block_in, attn_type=attn_type))
|
382 |
+
up = nn.Module()
|
383 |
+
up.block = block
|
384 |
+
up.attn = attn
|
385 |
+
if i_level != 0:
|
386 |
+
up.upsample = Upsample(block_in, resamp_with_conv)
|
387 |
+
curr_res = curr_res * 2
|
388 |
+
self.up.insert(0, up) # prepend to get consistent order
|
389 |
+
|
390 |
+
# end
|
391 |
+
self.norm_out = Normalize(block_in)
|
392 |
+
self.conv_out = ops.Conv2d(block_in,
|
393 |
+
out_ch,
|
394 |
+
kernel_size=3,
|
395 |
+
stride=1,
|
396 |
+
padding=1)
|
397 |
+
|
398 |
+
def forward(self, x, t=None, context=None):
|
399 |
+
#assert x.shape[2] == x.shape[3] == self.resolution
|
400 |
+
if context is not None:
|
401 |
+
# assume aligned context, cat along channel axis
|
402 |
+
x = torch.cat((x, context), dim=1)
|
403 |
+
if self.use_timestep:
|
404 |
+
# timestep embedding
|
405 |
+
assert t is not None
|
406 |
+
temb = get_timestep_embedding(t, self.ch)
|
407 |
+
temb = self.temb.dense[0](temb)
|
408 |
+
temb = nonlinearity(temb)
|
409 |
+
temb = self.temb.dense[1](temb)
|
410 |
+
else:
|
411 |
+
temb = None
|
412 |
+
|
413 |
+
# downsampling
|
414 |
+
hs = [self.conv_in(x)]
|
415 |
+
for i_level in range(self.num_resolutions):
|
416 |
+
for i_block in range(self.num_res_blocks):
|
417 |
+
h = self.down[i_level].block[i_block](hs[-1], temb)
|
418 |
+
if len(self.down[i_level].attn) > 0:
|
419 |
+
h = self.down[i_level].attn[i_block](h)
|
420 |
+
hs.append(h)
|
421 |
+
if i_level != self.num_resolutions-1:
|
422 |
+
hs.append(self.down[i_level].downsample(hs[-1]))
|
423 |
+
|
424 |
+
# middle
|
425 |
+
h = hs[-1]
|
426 |
+
h = self.mid.block_1(h, temb)
|
427 |
+
h = self.mid.attn_1(h)
|
428 |
+
h = self.mid.block_2(h, temb)
|
429 |
+
|
430 |
+
# upsampling
|
431 |
+
for i_level in reversed(range(self.num_resolutions)):
|
432 |
+
for i_block in range(self.num_res_blocks+1):
|
433 |
+
h = self.up[i_level].block[i_block](
|
434 |
+
torch.cat([h, hs.pop()], dim=1), temb)
|
435 |
+
if len(self.up[i_level].attn) > 0:
|
436 |
+
h = self.up[i_level].attn[i_block](h)
|
437 |
+
if i_level != 0:
|
438 |
+
h = self.up[i_level].upsample(h)
|
439 |
+
|
440 |
+
# end
|
441 |
+
h = self.norm_out(h)
|
442 |
+
h = nonlinearity(h)
|
443 |
+
h = self.conv_out(h)
|
444 |
+
return h
|
445 |
+
|
446 |
+
def get_last_layer(self):
|
447 |
+
return self.conv_out.weight
|
448 |
+
|
449 |
+
|
450 |
+
class Encoder(nn.Module):
|
451 |
+
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
|
452 |
+
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
|
453 |
+
resolution, z_channels, double_z=True, use_linear_attn=False, attn_type="vanilla",
|
454 |
+
**ignore_kwargs):
|
455 |
+
super().__init__()
|
456 |
+
if use_linear_attn: attn_type = "linear"
|
457 |
+
self.ch = ch
|
458 |
+
self.temb_ch = 0
|
459 |
+
self.num_resolutions = len(ch_mult)
|
460 |
+
self.num_res_blocks = num_res_blocks
|
461 |
+
self.resolution = resolution
|
462 |
+
self.in_channels = in_channels
|
463 |
+
|
464 |
+
# downsampling
|
465 |
+
self.conv_in = ops.Conv2d(in_channels,
|
466 |
+
self.ch,
|
467 |
+
kernel_size=3,
|
468 |
+
stride=1,
|
469 |
+
padding=1)
|
470 |
+
|
471 |
+
curr_res = resolution
|
472 |
+
in_ch_mult = (1,)+tuple(ch_mult)
|
473 |
+
self.in_ch_mult = in_ch_mult
|
474 |
+
self.down = nn.ModuleList()
|
475 |
+
for i_level in range(self.num_resolutions):
|
476 |
+
block = nn.ModuleList()
|
477 |
+
attn = nn.ModuleList()
|
478 |
+
block_in = ch*in_ch_mult[i_level]
|
479 |
+
block_out = ch*ch_mult[i_level]
|
480 |
+
for i_block in range(self.num_res_blocks):
|
481 |
+
block.append(ResnetBlock(in_channels=block_in,
|
482 |
+
out_channels=block_out,
|
483 |
+
temb_channels=self.temb_ch,
|
484 |
+
dropout=dropout))
|
485 |
+
block_in = block_out
|
486 |
+
if curr_res in attn_resolutions:
|
487 |
+
attn.append(make_attn(block_in, attn_type=attn_type))
|
488 |
+
down = nn.Module()
|
489 |
+
down.block = block
|
490 |
+
down.attn = attn
|
491 |
+
if i_level != self.num_resolutions-1:
|
492 |
+
down.downsample = Downsample(block_in, resamp_with_conv)
|
493 |
+
curr_res = curr_res // 2
|
494 |
+
self.down.append(down)
|
495 |
+
|
496 |
+
# middle
|
497 |
+
self.mid = nn.Module()
|
498 |
+
self.mid.block_1 = ResnetBlock(in_channels=block_in,
|
499 |
+
out_channels=block_in,
|
500 |
+
temb_channels=self.temb_ch,
|
501 |
+
dropout=dropout)
|
502 |
+
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
|
503 |
+
self.mid.block_2 = ResnetBlock(in_channels=block_in,
|
504 |
+
out_channels=block_in,
|
505 |
+
temb_channels=self.temb_ch,
|
506 |
+
dropout=dropout)
|
507 |
+
|
508 |
+
# end
|
509 |
+
self.norm_out = Normalize(block_in)
|
510 |
+
self.conv_out = ops.Conv2d(block_in,
|
511 |
+
2*z_channels if double_z else z_channels,
|
512 |
+
kernel_size=3,
|
513 |
+
stride=1,
|
514 |
+
padding=1)
|
515 |
+
|
516 |
+
def forward(self, x):
|
517 |
+
# timestep embedding
|
518 |
+
temb = None
|
519 |
+
# downsampling
|
520 |
+
h = self.conv_in(x)
|
521 |
+
for i_level in range(self.num_resolutions):
|
522 |
+
for i_block in range(self.num_res_blocks):
|
523 |
+
h = self.down[i_level].block[i_block](h, temb)
|
524 |
+
if len(self.down[i_level].attn) > 0:
|
525 |
+
h = self.down[i_level].attn[i_block](h)
|
526 |
+
if i_level != self.num_resolutions-1:
|
527 |
+
h = self.down[i_level].downsample(h)
|
528 |
+
|
529 |
+
# middle
|
530 |
+
h = self.mid.block_1(h, temb)
|
531 |
+
h = self.mid.attn_1(h)
|
532 |
+
h = self.mid.block_2(h, temb)
|
533 |
+
|
534 |
+
# end
|
535 |
+
h = self.norm_out(h)
|
536 |
+
h = nonlinearity(h)
|
537 |
+
h = self.conv_out(h)
|
538 |
+
return h
|
539 |
+
|
540 |
+
|
541 |
+
class Decoder(nn.Module):
|
542 |
+
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
|
543 |
+
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
|
544 |
+
resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False,
|
545 |
+
conv_out_op=ops.Conv2d,
|
546 |
+
resnet_op=ResnetBlock,
|
547 |
+
attn_op=AttnBlock,
|
548 |
+
**ignorekwargs):
|
549 |
+
super().__init__()
|
550 |
+
if use_linear_attn: attn_type = "linear"
|
551 |
+
self.ch = ch
|
552 |
+
self.temb_ch = 0
|
553 |
+
self.num_resolutions = len(ch_mult)
|
554 |
+
self.num_res_blocks = num_res_blocks
|
555 |
+
self.resolution = resolution
|
556 |
+
self.in_channels = in_channels
|
557 |
+
self.give_pre_end = give_pre_end
|
558 |
+
self.tanh_out = tanh_out
|
559 |
+
|
560 |
+
# compute in_ch_mult, block_in and curr_res at lowest res
|
561 |
+
in_ch_mult = (1,)+tuple(ch_mult)
|
562 |
+
block_in = ch*ch_mult[self.num_resolutions-1]
|
563 |
+
curr_res = resolution // 2**(self.num_resolutions-1)
|
564 |
+
self.z_shape = (1,z_channels,curr_res,curr_res)
|
565 |
+
print("Working with z of shape {} = {} dimensions.".format(
|
566 |
+
self.z_shape, np.prod(self.z_shape)))
|
567 |
+
|
568 |
+
# z to block_in
|
569 |
+
self.conv_in = ops.Conv2d(z_channels,
|
570 |
+
block_in,
|
571 |
+
kernel_size=3,
|
572 |
+
stride=1,
|
573 |
+
padding=1)
|
574 |
+
|
575 |
+
# middle
|
576 |
+
self.mid = nn.Module()
|
577 |
+
self.mid.block_1 = resnet_op(in_channels=block_in,
|
578 |
+
out_channels=block_in,
|
579 |
+
temb_channels=self.temb_ch,
|
580 |
+
dropout=dropout)
|
581 |
+
self.mid.attn_1 = attn_op(block_in)
|
582 |
+
self.mid.block_2 = resnet_op(in_channels=block_in,
|
583 |
+
out_channels=block_in,
|
584 |
+
temb_channels=self.temb_ch,
|
585 |
+
dropout=dropout)
|
586 |
+
|
587 |
+
# upsampling
|
588 |
+
self.up = nn.ModuleList()
|
589 |
+
for i_level in reversed(range(self.num_resolutions)):
|
590 |
+
block = nn.ModuleList()
|
591 |
+
attn = nn.ModuleList()
|
592 |
+
block_out = ch*ch_mult[i_level]
|
593 |
+
for i_block in range(self.num_res_blocks+1):
|
594 |
+
block.append(resnet_op(in_channels=block_in,
|
595 |
+
out_channels=block_out,
|
596 |
+
temb_channels=self.temb_ch,
|
597 |
+
dropout=dropout))
|
598 |
+
block_in = block_out
|
599 |
+
if curr_res in attn_resolutions:
|
600 |
+
attn.append(attn_op(block_in))
|
601 |
+
up = nn.Module()
|
602 |
+
up.block = block
|
603 |
+
up.attn = attn
|
604 |
+
if i_level != 0:
|
605 |
+
up.upsample = Upsample(block_in, resamp_with_conv)
|
606 |
+
curr_res = curr_res * 2
|
607 |
+
self.up.insert(0, up) # prepend to get consistent order
|
608 |
+
|
609 |
+
# end
|
610 |
+
self.norm_out = Normalize(block_in)
|
611 |
+
self.conv_out = conv_out_op(block_in,
|
612 |
+
out_ch,
|
613 |
+
kernel_size=3,
|
614 |
+
stride=1,
|
615 |
+
padding=1)
|
616 |
+
|
617 |
+
def forward(self, z, **kwargs):
|
618 |
+
#assert z.shape[1:] == self.z_shape[1:]
|
619 |
+
self.last_z_shape = z.shape
|
620 |
+
|
621 |
+
# timestep embedding
|
622 |
+
temb = None
|
623 |
+
|
624 |
+
# z to block_in
|
625 |
+
h = self.conv_in(z)
|
626 |
+
|
627 |
+
# middle
|
628 |
+
h = self.mid.block_1(h, temb, **kwargs)
|
629 |
+
h = self.mid.attn_1(h, **kwargs)
|
630 |
+
h = self.mid.block_2(h, temb, **kwargs)
|
631 |
+
|
632 |
+
# upsampling
|
633 |
+
for i_level in reversed(range(self.num_resolutions)):
|
634 |
+
for i_block in range(self.num_res_blocks+1):
|
635 |
+
h = self.up[i_level].block[i_block](h, temb, **kwargs)
|
636 |
+
if len(self.up[i_level].attn) > 0:
|
637 |
+
h = self.up[i_level].attn[i_block](h, **kwargs)
|
638 |
+
if i_level != 0:
|
639 |
+
h = self.up[i_level].upsample(h)
|
640 |
+
|
641 |
+
# end
|
642 |
+
if self.give_pre_end:
|
643 |
+
return h
|
644 |
+
|
645 |
+
h = self.norm_out(h)
|
646 |
+
h = nonlinearity(h)
|
647 |
+
h = self.conv_out(h, **kwargs)
|
648 |
+
if self.tanh_out:
|
649 |
+
h = torch.tanh(h)
|
650 |
+
return h
|
comfy/ldm/modules/diffusionmodules/openaimodel.py
ADDED
@@ -0,0 +1,889 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from abc import abstractmethod
|
2 |
+
|
3 |
+
import torch as th
|
4 |
+
import torch.nn as nn
|
5 |
+
import torch.nn.functional as F
|
6 |
+
from einops import rearrange
|
7 |
+
|
8 |
+
from .util import (
|
9 |
+
checkpoint,
|
10 |
+
avg_pool_nd,
|
11 |
+
zero_module,
|
12 |
+
timestep_embedding,
|
13 |
+
AlphaBlender,
|
14 |
+
)
|
15 |
+
from ..attention import SpatialTransformer, SpatialVideoTransformer, default
|
16 |
+
from comfy.ldm.util import exists
|
17 |
+
import comfy.ops
|
18 |
+
ops = comfy.ops.disable_weight_init
|
19 |
+
|
20 |
+
class TimestepBlock(nn.Module):
|
21 |
+
"""
|
22 |
+
Any module where forward() takes timestep embeddings as a second argument.
|
23 |
+
"""
|
24 |
+
|
25 |
+
@abstractmethod
|
26 |
+
def forward(self, x, emb):
|
27 |
+
"""
|
28 |
+
Apply the module to `x` given `emb` timestep embeddings.
|
29 |
+
"""
|
30 |
+
|
31 |
+
#This is needed because accelerate makes a copy of transformer_options which breaks "transformer_index"
|
32 |
+
def forward_timestep_embed(ts, x, emb, context=None, transformer_options={}, output_shape=None, time_context=None, num_video_frames=None, image_only_indicator=None):
|
33 |
+
for layer in ts:
|
34 |
+
if isinstance(layer, VideoResBlock):
|
35 |
+
x = layer(x, emb, num_video_frames, image_only_indicator)
|
36 |
+
elif isinstance(layer, TimestepBlock):
|
37 |
+
x = layer(x, emb)
|
38 |
+
elif isinstance(layer, SpatialVideoTransformer):
|
39 |
+
x = layer(x, context, time_context, num_video_frames, image_only_indicator, transformer_options)
|
40 |
+
if "transformer_index" in transformer_options:
|
41 |
+
transformer_options["transformer_index"] += 1
|
42 |
+
elif isinstance(layer, SpatialTransformer):
|
43 |
+
x = layer(x, context, transformer_options)
|
44 |
+
if "transformer_index" in transformer_options:
|
45 |
+
transformer_options["transformer_index"] += 1
|
46 |
+
elif isinstance(layer, Upsample):
|
47 |
+
x = layer(x, output_shape=output_shape)
|
48 |
+
else:
|
49 |
+
x = layer(x)
|
50 |
+
return x
|
51 |
+
|
52 |
+
class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
|
53 |
+
"""
|
54 |
+
A sequential module that passes timestep embeddings to the children that
|
55 |
+
support it as an extra input.
|
56 |
+
"""
|
57 |
+
|
58 |
+
def forward(self, *args, **kwargs):
|
59 |
+
return forward_timestep_embed(self, *args, **kwargs)
|
60 |
+
|
61 |
+
class Upsample(nn.Module):
|
62 |
+
"""
|
63 |
+
An upsampling layer with an optional convolution.
|
64 |
+
:param channels: channels in the inputs and outputs.
|
65 |
+
:param use_conv: a bool determining if a convolution is applied.
|
66 |
+
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
67 |
+
upsampling occurs in the inner-two dimensions.
|
68 |
+
"""
|
69 |
+
|
70 |
+
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1, dtype=None, device=None, operations=ops):
|
71 |
+
super().__init__()
|
72 |
+
self.channels = channels
|
73 |
+
self.out_channels = out_channels or channels
|
74 |
+
self.use_conv = use_conv
|
75 |
+
self.dims = dims
|
76 |
+
if use_conv:
|
77 |
+
self.conv = operations.conv_nd(dims, self.channels, self.out_channels, 3, padding=padding, dtype=dtype, device=device)
|
78 |
+
|
79 |
+
def forward(self, x, output_shape=None):
|
80 |
+
assert x.shape[1] == self.channels
|
81 |
+
if self.dims == 3:
|
82 |
+
shape = [x.shape[2], x.shape[3] * 2, x.shape[4] * 2]
|
83 |
+
if output_shape is not None:
|
84 |
+
shape[1] = output_shape[3]
|
85 |
+
shape[2] = output_shape[4]
|
86 |
+
else:
|
87 |
+
shape = [x.shape[2] * 2, x.shape[3] * 2]
|
88 |
+
if output_shape is not None:
|
89 |
+
shape[0] = output_shape[2]
|
90 |
+
shape[1] = output_shape[3]
|
91 |
+
|
92 |
+
x = F.interpolate(x, size=shape, mode="nearest")
|
93 |
+
if self.use_conv:
|
94 |
+
x = self.conv(x)
|
95 |
+
return x
|
96 |
+
|
97 |
+
class Downsample(nn.Module):
|
98 |
+
"""
|
99 |
+
A downsampling layer with an optional convolution.
|
100 |
+
:param channels: channels in the inputs and outputs.
|
101 |
+
:param use_conv: a bool determining if a convolution is applied.
|
102 |
+
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
103 |
+
downsampling occurs in the inner-two dimensions.
|
104 |
+
"""
|
105 |
+
|
106 |
+
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1, dtype=None, device=None, operations=ops):
|
107 |
+
super().__init__()
|
108 |
+
self.channels = channels
|
109 |
+
self.out_channels = out_channels or channels
|
110 |
+
self.use_conv = use_conv
|
111 |
+
self.dims = dims
|
112 |
+
stride = 2 if dims != 3 else (1, 2, 2)
|
113 |
+
if use_conv:
|
114 |
+
self.op = operations.conv_nd(
|
115 |
+
dims, self.channels, self.out_channels, 3, stride=stride, padding=padding, dtype=dtype, device=device
|
116 |
+
)
|
117 |
+
else:
|
118 |
+
assert self.channels == self.out_channels
|
119 |
+
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
|
120 |
+
|
121 |
+
def forward(self, x):
|
122 |
+
assert x.shape[1] == self.channels
|
123 |
+
return self.op(x)
|
124 |
+
|
125 |
+
|
126 |
+
class ResBlock(TimestepBlock):
|
127 |
+
"""
|
128 |
+
A residual block that can optionally change the number of channels.
|
129 |
+
:param channels: the number of input channels.
|
130 |
+
:param emb_channels: the number of timestep embedding channels.
|
131 |
+
:param dropout: the rate of dropout.
|
132 |
+
:param out_channels: if specified, the number of out channels.
|
133 |
+
:param use_conv: if True and out_channels is specified, use a spatial
|
134 |
+
convolution instead of a smaller 1x1 convolution to change the
|
135 |
+
channels in the skip connection.
|
136 |
+
:param dims: determines if the signal is 1D, 2D, or 3D.
|
137 |
+
:param use_checkpoint: if True, use gradient checkpointing on this module.
|
138 |
+
:param up: if True, use this block for upsampling.
|
139 |
+
:param down: if True, use this block for downsampling.
|
140 |
+
"""
|
141 |
+
|
142 |
+
def __init__(
|
143 |
+
self,
|
144 |
+
channels,
|
145 |
+
emb_channels,
|
146 |
+
dropout,
|
147 |
+
out_channels=None,
|
148 |
+
use_conv=False,
|
149 |
+
use_scale_shift_norm=False,
|
150 |
+
dims=2,
|
151 |
+
use_checkpoint=False,
|
152 |
+
up=False,
|
153 |
+
down=False,
|
154 |
+
kernel_size=3,
|
155 |
+
exchange_temb_dims=False,
|
156 |
+
skip_t_emb=False,
|
157 |
+
dtype=None,
|
158 |
+
device=None,
|
159 |
+
operations=ops
|
160 |
+
):
|
161 |
+
super().__init__()
|
162 |
+
self.channels = channels
|
163 |
+
self.emb_channels = emb_channels
|
164 |
+
self.dropout = dropout
|
165 |
+
self.out_channels = out_channels or channels
|
166 |
+
self.use_conv = use_conv
|
167 |
+
self.use_checkpoint = use_checkpoint
|
168 |
+
self.use_scale_shift_norm = use_scale_shift_norm
|
169 |
+
self.exchange_temb_dims = exchange_temb_dims
|
170 |
+
|
171 |
+
if isinstance(kernel_size, list):
|
172 |
+
padding = [k // 2 for k in kernel_size]
|
173 |
+
else:
|
174 |
+
padding = kernel_size // 2
|
175 |
+
|
176 |
+
self.in_layers = nn.Sequential(
|
177 |
+
operations.GroupNorm(32, channels, dtype=dtype, device=device),
|
178 |
+
nn.SiLU(),
|
179 |
+
operations.conv_nd(dims, channels, self.out_channels, kernel_size, padding=padding, dtype=dtype, device=device),
|
180 |
+
)
|
181 |
+
|
182 |
+
self.updown = up or down
|
183 |
+
|
184 |
+
if up:
|
185 |
+
self.h_upd = Upsample(channels, False, dims, dtype=dtype, device=device)
|
186 |
+
self.x_upd = Upsample(channels, False, dims, dtype=dtype, device=device)
|
187 |
+
elif down:
|
188 |
+
self.h_upd = Downsample(channels, False, dims, dtype=dtype, device=device)
|
189 |
+
self.x_upd = Downsample(channels, False, dims, dtype=dtype, device=device)
|
190 |
+
else:
|
191 |
+
self.h_upd = self.x_upd = nn.Identity()
|
192 |
+
|
193 |
+
self.skip_t_emb = skip_t_emb
|
194 |
+
if self.skip_t_emb:
|
195 |
+
self.emb_layers = None
|
196 |
+
self.exchange_temb_dims = False
|
197 |
+
else:
|
198 |
+
self.emb_layers = nn.Sequential(
|
199 |
+
nn.SiLU(),
|
200 |
+
operations.Linear(
|
201 |
+
emb_channels,
|
202 |
+
2 * self.out_channels if use_scale_shift_norm else self.out_channels, dtype=dtype, device=device
|
203 |
+
),
|
204 |
+
)
|
205 |
+
self.out_layers = nn.Sequential(
|
206 |
+
operations.GroupNorm(32, self.out_channels, dtype=dtype, device=device),
|
207 |
+
nn.SiLU(),
|
208 |
+
nn.Dropout(p=dropout),
|
209 |
+
operations.conv_nd(dims, self.out_channels, self.out_channels, kernel_size, padding=padding, dtype=dtype, device=device)
|
210 |
+
,
|
211 |
+
)
|
212 |
+
|
213 |
+
if self.out_channels == channels:
|
214 |
+
self.skip_connection = nn.Identity()
|
215 |
+
elif use_conv:
|
216 |
+
self.skip_connection = operations.conv_nd(
|
217 |
+
dims, channels, self.out_channels, kernel_size, padding=padding, dtype=dtype, device=device
|
218 |
+
)
|
219 |
+
else:
|
220 |
+
self.skip_connection = operations.conv_nd(dims, channels, self.out_channels, 1, dtype=dtype, device=device)
|
221 |
+
|
222 |
+
def forward(self, x, emb):
|
223 |
+
"""
|
224 |
+
Apply the block to a Tensor, conditioned on a timestep embedding.
|
225 |
+
:param x: an [N x C x ...] Tensor of features.
|
226 |
+
:param emb: an [N x emb_channels] Tensor of timestep embeddings.
|
227 |
+
:return: an [N x C x ...] Tensor of outputs.
|
228 |
+
"""
|
229 |
+
return checkpoint(
|
230 |
+
self._forward, (x, emb), self.parameters(), self.use_checkpoint
|
231 |
+
)
|
232 |
+
|
233 |
+
|
234 |
+
def _forward(self, x, emb):
|
235 |
+
if self.updown:
|
236 |
+
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
|
237 |
+
h = in_rest(x)
|
238 |
+
h = self.h_upd(h)
|
239 |
+
x = self.x_upd(x)
|
240 |
+
h = in_conv(h)
|
241 |
+
else:
|
242 |
+
h = self.in_layers(x)
|
243 |
+
|
244 |
+
emb_out = None
|
245 |
+
if not self.skip_t_emb:
|
246 |
+
emb_out = self.emb_layers(emb).type(h.dtype)
|
247 |
+
while len(emb_out.shape) < len(h.shape):
|
248 |
+
emb_out = emb_out[..., None]
|
249 |
+
if self.use_scale_shift_norm:
|
250 |
+
out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
|
251 |
+
h = out_norm(h)
|
252 |
+
if emb_out is not None:
|
253 |
+
scale, shift = th.chunk(emb_out, 2, dim=1)
|
254 |
+
h *= (1 + scale)
|
255 |
+
h += shift
|
256 |
+
h = out_rest(h)
|
257 |
+
else:
|
258 |
+
if emb_out is not None:
|
259 |
+
if self.exchange_temb_dims:
|
260 |
+
emb_out = rearrange(emb_out, "b t c ... -> b c t ...")
|
261 |
+
h = h + emb_out
|
262 |
+
h = self.out_layers(h)
|
263 |
+
return self.skip_connection(x) + h
|
264 |
+
|
265 |
+
|
266 |
+
class VideoResBlock(ResBlock):
|
267 |
+
def __init__(
|
268 |
+
self,
|
269 |
+
channels: int,
|
270 |
+
emb_channels: int,
|
271 |
+
dropout: float,
|
272 |
+
video_kernel_size=3,
|
273 |
+
merge_strategy: str = "fixed",
|
274 |
+
merge_factor: float = 0.5,
|
275 |
+
out_channels=None,
|
276 |
+
use_conv: bool = False,
|
277 |
+
use_scale_shift_norm: bool = False,
|
278 |
+
dims: int = 2,
|
279 |
+
use_checkpoint: bool = False,
|
280 |
+
up: bool = False,
|
281 |
+
down: bool = False,
|
282 |
+
dtype=None,
|
283 |
+
device=None,
|
284 |
+
operations=ops
|
285 |
+
):
|
286 |
+
super().__init__(
|
287 |
+
channels,
|
288 |
+
emb_channels,
|
289 |
+
dropout,
|
290 |
+
out_channels=out_channels,
|
291 |
+
use_conv=use_conv,
|
292 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
293 |
+
dims=dims,
|
294 |
+
use_checkpoint=use_checkpoint,
|
295 |
+
up=up,
|
296 |
+
down=down,
|
297 |
+
dtype=dtype,
|
298 |
+
device=device,
|
299 |
+
operations=operations
|
300 |
+
)
|
301 |
+
|
302 |
+
self.time_stack = ResBlock(
|
303 |
+
default(out_channels, channels),
|
304 |
+
emb_channels,
|
305 |
+
dropout=dropout,
|
306 |
+
dims=3,
|
307 |
+
out_channels=default(out_channels, channels),
|
308 |
+
use_scale_shift_norm=False,
|
309 |
+
use_conv=False,
|
310 |
+
up=False,
|
311 |
+
down=False,
|
312 |
+
kernel_size=video_kernel_size,
|
313 |
+
use_checkpoint=use_checkpoint,
|
314 |
+
exchange_temb_dims=True,
|
315 |
+
dtype=dtype,
|
316 |
+
device=device,
|
317 |
+
operations=operations
|
318 |
+
)
|
319 |
+
self.time_mixer = AlphaBlender(
|
320 |
+
alpha=merge_factor,
|
321 |
+
merge_strategy=merge_strategy,
|
322 |
+
rearrange_pattern="b t -> b 1 t 1 1",
|
323 |
+
)
|
324 |
+
|
325 |
+
def forward(
|
326 |
+
self,
|
327 |
+
x: th.Tensor,
|
328 |
+
emb: th.Tensor,
|
329 |
+
num_video_frames: int,
|
330 |
+
image_only_indicator = None,
|
331 |
+
) -> th.Tensor:
|
332 |
+
x = super().forward(x, emb)
|
333 |
+
|
334 |
+
x_mix = rearrange(x, "(b t) c h w -> b c t h w", t=num_video_frames)
|
335 |
+
x = rearrange(x, "(b t) c h w -> b c t h w", t=num_video_frames)
|
336 |
+
|
337 |
+
x = self.time_stack(
|
338 |
+
x, rearrange(emb, "(b t) ... -> b t ...", t=num_video_frames)
|
339 |
+
)
|
340 |
+
x = self.time_mixer(
|
341 |
+
x_spatial=x_mix, x_temporal=x, image_only_indicator=image_only_indicator
|
342 |
+
)
|
343 |
+
x = rearrange(x, "b c t h w -> (b t) c h w")
|
344 |
+
return x
|
345 |
+
|
346 |
+
|
347 |
+
class Timestep(nn.Module):
|
348 |
+
def __init__(self, dim):
|
349 |
+
super().__init__()
|
350 |
+
self.dim = dim
|
351 |
+
|
352 |
+
def forward(self, t):
|
353 |
+
return timestep_embedding(t, self.dim)
|
354 |
+
|
355 |
+
def apply_control(h, control, name):
|
356 |
+
if control is not None and name in control and len(control[name]) > 0:
|
357 |
+
ctrl = control[name].pop()
|
358 |
+
if ctrl is not None:
|
359 |
+
try:
|
360 |
+
h += ctrl
|
361 |
+
except:
|
362 |
+
print("warning control could not be applied", h.shape, ctrl.shape)
|
363 |
+
return h
|
364 |
+
|
365 |
+
class UNetModel(nn.Module):
|
366 |
+
"""
|
367 |
+
The full UNet model with attention and timestep embedding.
|
368 |
+
:param in_channels: channels in the input Tensor.
|
369 |
+
:param model_channels: base channel count for the model.
|
370 |
+
:param out_channels: channels in the output Tensor.
|
371 |
+
:param num_res_blocks: number of residual blocks per downsample.
|
372 |
+
:param dropout: the dropout probability.
|
373 |
+
:param channel_mult: channel multiplier for each level of the UNet.
|
374 |
+
:param conv_resample: if True, use learned convolutions for upsampling and
|
375 |
+
downsampling.
|
376 |
+
:param dims: determines if the signal is 1D, 2D, or 3D.
|
377 |
+
:param num_classes: if specified (as an int), then this model will be
|
378 |
+
class-conditional with `num_classes` classes.
|
379 |
+
:param use_checkpoint: use gradient checkpointing to reduce memory usage.
|
380 |
+
:param num_heads: the number of attention heads in each attention layer.
|
381 |
+
:param num_heads_channels: if specified, ignore num_heads and instead use
|
382 |
+
a fixed channel width per attention head.
|
383 |
+
:param num_heads_upsample: works with num_heads to set a different number
|
384 |
+
of heads for upsampling. Deprecated.
|
385 |
+
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
|
386 |
+
:param resblock_updown: use residual blocks for up/downsampling.
|
387 |
+
:param use_new_attention_order: use a different attention pattern for potentially
|
388 |
+
increased efficiency.
|
389 |
+
"""
|
390 |
+
|
391 |
+
def __init__(
|
392 |
+
self,
|
393 |
+
image_size,
|
394 |
+
in_channels,
|
395 |
+
model_channels,
|
396 |
+
out_channels,
|
397 |
+
num_res_blocks,
|
398 |
+
dropout=0,
|
399 |
+
channel_mult=(1, 2, 4, 8),
|
400 |
+
conv_resample=True,
|
401 |
+
dims=2,
|
402 |
+
num_classes=None,
|
403 |
+
use_checkpoint=False,
|
404 |
+
dtype=th.float32,
|
405 |
+
num_heads=-1,
|
406 |
+
num_head_channels=-1,
|
407 |
+
num_heads_upsample=-1,
|
408 |
+
use_scale_shift_norm=False,
|
409 |
+
resblock_updown=False,
|
410 |
+
use_new_attention_order=False,
|
411 |
+
use_spatial_transformer=False, # custom transformer support
|
412 |
+
transformer_depth=1, # custom transformer support
|
413 |
+
context_dim=None, # custom transformer support
|
414 |
+
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
|
415 |
+
legacy=True,
|
416 |
+
disable_self_attentions=None,
|
417 |
+
num_attention_blocks=None,
|
418 |
+
disable_middle_self_attn=False,
|
419 |
+
use_linear_in_transformer=False,
|
420 |
+
adm_in_channels=None,
|
421 |
+
transformer_depth_middle=None,
|
422 |
+
transformer_depth_output=None,
|
423 |
+
use_temporal_resblock=False,
|
424 |
+
use_temporal_attention=False,
|
425 |
+
time_context_dim=None,
|
426 |
+
extra_ff_mix_layer=False,
|
427 |
+
use_spatial_context=False,
|
428 |
+
merge_strategy=None,
|
429 |
+
merge_factor=0.0,
|
430 |
+
video_kernel_size=None,
|
431 |
+
disable_temporal_crossattention=False,
|
432 |
+
max_ddpm_temb_period=10000,
|
433 |
+
device=None,
|
434 |
+
operations=ops,
|
435 |
+
):
|
436 |
+
super().__init__()
|
437 |
+
|
438 |
+
if context_dim is not None:
|
439 |
+
assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
|
440 |
+
# from omegaconf.listconfig import ListConfig
|
441 |
+
# if type(context_dim) == ListConfig:
|
442 |
+
# context_dim = list(context_dim)
|
443 |
+
|
444 |
+
if num_heads_upsample == -1:
|
445 |
+
num_heads_upsample = num_heads
|
446 |
+
|
447 |
+
if num_heads == -1:
|
448 |
+
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
|
449 |
+
|
450 |
+
if num_head_channels == -1:
|
451 |
+
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
|
452 |
+
|
453 |
+
self.in_channels = in_channels
|
454 |
+
self.model_channels = model_channels
|
455 |
+
self.out_channels = out_channels
|
456 |
+
|
457 |
+
if isinstance(num_res_blocks, int):
|
458 |
+
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
|
459 |
+
else:
|
460 |
+
if len(num_res_blocks) != len(channel_mult):
|
461 |
+
raise ValueError("provide num_res_blocks either as an int (globally constant) or "
|
462 |
+
"as a list/tuple (per-level) with the same length as channel_mult")
|
463 |
+
self.num_res_blocks = num_res_blocks
|
464 |
+
|
465 |
+
if disable_self_attentions is not None:
|
466 |
+
# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
|
467 |
+
assert len(disable_self_attentions) == len(channel_mult)
|
468 |
+
if num_attention_blocks is not None:
|
469 |
+
assert len(num_attention_blocks) == len(self.num_res_blocks)
|
470 |
+
|
471 |
+
transformer_depth = transformer_depth[:]
|
472 |
+
transformer_depth_output = transformer_depth_output[:]
|
473 |
+
|
474 |
+
self.dropout = dropout
|
475 |
+
self.channel_mult = channel_mult
|
476 |
+
self.conv_resample = conv_resample
|
477 |
+
self.num_classes = num_classes
|
478 |
+
self.use_checkpoint = use_checkpoint
|
479 |
+
self.dtype = dtype
|
480 |
+
self.num_heads = num_heads
|
481 |
+
self.num_head_channels = num_head_channels
|
482 |
+
self.num_heads_upsample = num_heads_upsample
|
483 |
+
self.use_temporal_resblocks = use_temporal_resblock
|
484 |
+
self.predict_codebook_ids = n_embed is not None
|
485 |
+
|
486 |
+
self.default_num_video_frames = None
|
487 |
+
|
488 |
+
time_embed_dim = model_channels * 4
|
489 |
+
self.time_embed = nn.Sequential(
|
490 |
+
operations.Linear(model_channels, time_embed_dim, dtype=self.dtype, device=device),
|
491 |
+
nn.SiLU(),
|
492 |
+
operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device),
|
493 |
+
)
|
494 |
+
|
495 |
+
if self.num_classes is not None:
|
496 |
+
if isinstance(self.num_classes, int):
|
497 |
+
self.label_emb = nn.Embedding(num_classes, time_embed_dim, dtype=self.dtype, device=device)
|
498 |
+
elif self.num_classes == "continuous":
|
499 |
+
print("setting up linear c_adm embedding layer")
|
500 |
+
self.label_emb = nn.Linear(1, time_embed_dim)
|
501 |
+
elif self.num_classes == "sequential":
|
502 |
+
assert adm_in_channels is not None
|
503 |
+
self.label_emb = nn.Sequential(
|
504 |
+
nn.Sequential(
|
505 |
+
operations.Linear(adm_in_channels, time_embed_dim, dtype=self.dtype, device=device),
|
506 |
+
nn.SiLU(),
|
507 |
+
operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device),
|
508 |
+
)
|
509 |
+
)
|
510 |
+
else:
|
511 |
+
raise ValueError()
|
512 |
+
|
513 |
+
self.input_blocks = nn.ModuleList(
|
514 |
+
[
|
515 |
+
TimestepEmbedSequential(
|
516 |
+
operations.conv_nd(dims, in_channels, model_channels, 3, padding=1, dtype=self.dtype, device=device)
|
517 |
+
)
|
518 |
+
]
|
519 |
+
)
|
520 |
+
self._feature_size = model_channels
|
521 |
+
input_block_chans = [model_channels]
|
522 |
+
ch = model_channels
|
523 |
+
ds = 1
|
524 |
+
|
525 |
+
def get_attention_layer(
|
526 |
+
ch,
|
527 |
+
num_heads,
|
528 |
+
dim_head,
|
529 |
+
depth=1,
|
530 |
+
context_dim=None,
|
531 |
+
use_checkpoint=False,
|
532 |
+
disable_self_attn=False,
|
533 |
+
):
|
534 |
+
if use_temporal_attention:
|
535 |
+
return SpatialVideoTransformer(
|
536 |
+
ch,
|
537 |
+
num_heads,
|
538 |
+
dim_head,
|
539 |
+
depth=depth,
|
540 |
+
context_dim=context_dim,
|
541 |
+
time_context_dim=time_context_dim,
|
542 |
+
dropout=dropout,
|
543 |
+
ff_in=extra_ff_mix_layer,
|
544 |
+
use_spatial_context=use_spatial_context,
|
545 |
+
merge_strategy=merge_strategy,
|
546 |
+
merge_factor=merge_factor,
|
547 |
+
checkpoint=use_checkpoint,
|
548 |
+
use_linear=use_linear_in_transformer,
|
549 |
+
disable_self_attn=disable_self_attn,
|
550 |
+
disable_temporal_crossattention=disable_temporal_crossattention,
|
551 |
+
max_time_embed_period=max_ddpm_temb_period,
|
552 |
+
dtype=self.dtype, device=device, operations=operations
|
553 |
+
)
|
554 |
+
else:
|
555 |
+
return SpatialTransformer(
|
556 |
+
ch, num_heads, dim_head, depth=depth, context_dim=context_dim,
|
557 |
+
disable_self_attn=disable_self_attn, use_linear=use_linear_in_transformer,
|
558 |
+
use_checkpoint=use_checkpoint, dtype=self.dtype, device=device, operations=operations
|
559 |
+
)
|
560 |
+
|
561 |
+
def get_resblock(
|
562 |
+
merge_factor,
|
563 |
+
merge_strategy,
|
564 |
+
video_kernel_size,
|
565 |
+
ch,
|
566 |
+
time_embed_dim,
|
567 |
+
dropout,
|
568 |
+
out_channels,
|
569 |
+
dims,
|
570 |
+
use_checkpoint,
|
571 |
+
use_scale_shift_norm,
|
572 |
+
down=False,
|
573 |
+
up=False,
|
574 |
+
dtype=None,
|
575 |
+
device=None,
|
576 |
+
operations=ops
|
577 |
+
):
|
578 |
+
if self.use_temporal_resblocks:
|
579 |
+
return VideoResBlock(
|
580 |
+
merge_factor=merge_factor,
|
581 |
+
merge_strategy=merge_strategy,
|
582 |
+
video_kernel_size=video_kernel_size,
|
583 |
+
channels=ch,
|
584 |
+
emb_channels=time_embed_dim,
|
585 |
+
dropout=dropout,
|
586 |
+
out_channels=out_channels,
|
587 |
+
dims=dims,
|
588 |
+
use_checkpoint=use_checkpoint,
|
589 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
590 |
+
down=down,
|
591 |
+
up=up,
|
592 |
+
dtype=dtype,
|
593 |
+
device=device,
|
594 |
+
operations=operations
|
595 |
+
)
|
596 |
+
else:
|
597 |
+
return ResBlock(
|
598 |
+
channels=ch,
|
599 |
+
emb_channels=time_embed_dim,
|
600 |
+
dropout=dropout,
|
601 |
+
out_channels=out_channels,
|
602 |
+
use_checkpoint=use_checkpoint,
|
603 |
+
dims=dims,
|
604 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
605 |
+
down=down,
|
606 |
+
up=up,
|
607 |
+
dtype=dtype,
|
608 |
+
device=device,
|
609 |
+
operations=operations
|
610 |
+
)
|
611 |
+
|
612 |
+
for level, mult in enumerate(channel_mult):
|
613 |
+
for nr in range(self.num_res_blocks[level]):
|
614 |
+
layers = [
|
615 |
+
get_resblock(
|
616 |
+
merge_factor=merge_factor,
|
617 |
+
merge_strategy=merge_strategy,
|
618 |
+
video_kernel_size=video_kernel_size,
|
619 |
+
ch=ch,
|
620 |
+
time_embed_dim=time_embed_dim,
|
621 |
+
dropout=dropout,
|
622 |
+
out_channels=mult * model_channels,
|
623 |
+
dims=dims,
|
624 |
+
use_checkpoint=use_checkpoint,
|
625 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
626 |
+
dtype=self.dtype,
|
627 |
+
device=device,
|
628 |
+
operations=operations,
|
629 |
+
)
|
630 |
+
]
|
631 |
+
ch = mult * model_channels
|
632 |
+
num_transformers = transformer_depth.pop(0)
|
633 |
+
if num_transformers > 0:
|
634 |
+
if num_head_channels == -1:
|
635 |
+
dim_head = ch // num_heads
|
636 |
+
else:
|
637 |
+
num_heads = ch // num_head_channels
|
638 |
+
dim_head = num_head_channels
|
639 |
+
if legacy:
|
640 |
+
#num_heads = 1
|
641 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
642 |
+
if exists(disable_self_attentions):
|
643 |
+
disabled_sa = disable_self_attentions[level]
|
644 |
+
else:
|
645 |
+
disabled_sa = False
|
646 |
+
|
647 |
+
if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
|
648 |
+
layers.append(get_attention_layer(
|
649 |
+
ch, num_heads, dim_head, depth=num_transformers, context_dim=context_dim,
|
650 |
+
disable_self_attn=disabled_sa, use_checkpoint=use_checkpoint)
|
651 |
+
)
|
652 |
+
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
653 |
+
self._feature_size += ch
|
654 |
+
input_block_chans.append(ch)
|
655 |
+
if level != len(channel_mult) - 1:
|
656 |
+
out_ch = ch
|
657 |
+
self.input_blocks.append(
|
658 |
+
TimestepEmbedSequential(
|
659 |
+
get_resblock(
|
660 |
+
merge_factor=merge_factor,
|
661 |
+
merge_strategy=merge_strategy,
|
662 |
+
video_kernel_size=video_kernel_size,
|
663 |
+
ch=ch,
|
664 |
+
time_embed_dim=time_embed_dim,
|
665 |
+
dropout=dropout,
|
666 |
+
out_channels=out_ch,
|
667 |
+
dims=dims,
|
668 |
+
use_checkpoint=use_checkpoint,
|
669 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
670 |
+
down=True,
|
671 |
+
dtype=self.dtype,
|
672 |
+
device=device,
|
673 |
+
operations=operations
|
674 |
+
)
|
675 |
+
if resblock_updown
|
676 |
+
else Downsample(
|
677 |
+
ch, conv_resample, dims=dims, out_channels=out_ch, dtype=self.dtype, device=device, operations=operations
|
678 |
+
)
|
679 |
+
)
|
680 |
+
)
|
681 |
+
ch = out_ch
|
682 |
+
input_block_chans.append(ch)
|
683 |
+
ds *= 2
|
684 |
+
self._feature_size += ch
|
685 |
+
|
686 |
+
if num_head_channels == -1:
|
687 |
+
dim_head = ch // num_heads
|
688 |
+
else:
|
689 |
+
num_heads = ch // num_head_channels
|
690 |
+
dim_head = num_head_channels
|
691 |
+
if legacy:
|
692 |
+
#num_heads = 1
|
693 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
694 |
+
mid_block = [
|
695 |
+
get_resblock(
|
696 |
+
merge_factor=merge_factor,
|
697 |
+
merge_strategy=merge_strategy,
|
698 |
+
video_kernel_size=video_kernel_size,
|
699 |
+
ch=ch,
|
700 |
+
time_embed_dim=time_embed_dim,
|
701 |
+
dropout=dropout,
|
702 |
+
out_channels=None,
|
703 |
+
dims=dims,
|
704 |
+
use_checkpoint=use_checkpoint,
|
705 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
706 |
+
dtype=self.dtype,
|
707 |
+
device=device,
|
708 |
+
operations=operations
|
709 |
+
)]
|
710 |
+
|
711 |
+
self.middle_block = None
|
712 |
+
if transformer_depth_middle >= -1:
|
713 |
+
if transformer_depth_middle >= 0:
|
714 |
+
mid_block += [get_attention_layer( # always uses a self-attn
|
715 |
+
ch, num_heads, dim_head, depth=transformer_depth_middle, context_dim=context_dim,
|
716 |
+
disable_self_attn=disable_middle_self_attn, use_checkpoint=use_checkpoint
|
717 |
+
),
|
718 |
+
get_resblock(
|
719 |
+
merge_factor=merge_factor,
|
720 |
+
merge_strategy=merge_strategy,
|
721 |
+
video_kernel_size=video_kernel_size,
|
722 |
+
ch=ch,
|
723 |
+
time_embed_dim=time_embed_dim,
|
724 |
+
dropout=dropout,
|
725 |
+
out_channels=None,
|
726 |
+
dims=dims,
|
727 |
+
use_checkpoint=use_checkpoint,
|
728 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
729 |
+
dtype=self.dtype,
|
730 |
+
device=device,
|
731 |
+
operations=operations
|
732 |
+
)]
|
733 |
+
self.middle_block = TimestepEmbedSequential(*mid_block)
|
734 |
+
self._feature_size += ch
|
735 |
+
|
736 |
+
self.output_blocks = nn.ModuleList([])
|
737 |
+
for level, mult in list(enumerate(channel_mult))[::-1]:
|
738 |
+
for i in range(self.num_res_blocks[level] + 1):
|
739 |
+
ich = input_block_chans.pop()
|
740 |
+
layers = [
|
741 |
+
get_resblock(
|
742 |
+
merge_factor=merge_factor,
|
743 |
+
merge_strategy=merge_strategy,
|
744 |
+
video_kernel_size=video_kernel_size,
|
745 |
+
ch=ch + ich,
|
746 |
+
time_embed_dim=time_embed_dim,
|
747 |
+
dropout=dropout,
|
748 |
+
out_channels=model_channels * mult,
|
749 |
+
dims=dims,
|
750 |
+
use_checkpoint=use_checkpoint,
|
751 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
752 |
+
dtype=self.dtype,
|
753 |
+
device=device,
|
754 |
+
operations=operations
|
755 |
+
)
|
756 |
+
]
|
757 |
+
ch = model_channels * mult
|
758 |
+
num_transformers = transformer_depth_output.pop()
|
759 |
+
if num_transformers > 0:
|
760 |
+
if num_head_channels == -1:
|
761 |
+
dim_head = ch // num_heads
|
762 |
+
else:
|
763 |
+
num_heads = ch // num_head_channels
|
764 |
+
dim_head = num_head_channels
|
765 |
+
if legacy:
|
766 |
+
#num_heads = 1
|
767 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
768 |
+
if exists(disable_self_attentions):
|
769 |
+
disabled_sa = disable_self_attentions[level]
|
770 |
+
else:
|
771 |
+
disabled_sa = False
|
772 |
+
|
773 |
+
if not exists(num_attention_blocks) or i < num_attention_blocks[level]:
|
774 |
+
layers.append(
|
775 |
+
get_attention_layer(
|
776 |
+
ch, num_heads, dim_head, depth=num_transformers, context_dim=context_dim,
|
777 |
+
disable_self_attn=disabled_sa, use_checkpoint=use_checkpoint
|
778 |
+
)
|
779 |
+
)
|
780 |
+
if level and i == self.num_res_blocks[level]:
|
781 |
+
out_ch = ch
|
782 |
+
layers.append(
|
783 |
+
get_resblock(
|
784 |
+
merge_factor=merge_factor,
|
785 |
+
merge_strategy=merge_strategy,
|
786 |
+
video_kernel_size=video_kernel_size,
|
787 |
+
ch=ch,
|
788 |
+
time_embed_dim=time_embed_dim,
|
789 |
+
dropout=dropout,
|
790 |
+
out_channels=out_ch,
|
791 |
+
dims=dims,
|
792 |
+
use_checkpoint=use_checkpoint,
|
793 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
794 |
+
up=True,
|
795 |
+
dtype=self.dtype,
|
796 |
+
device=device,
|
797 |
+
operations=operations
|
798 |
+
)
|
799 |
+
if resblock_updown
|
800 |
+
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch, dtype=self.dtype, device=device, operations=operations)
|
801 |
+
)
|
802 |
+
ds //= 2
|
803 |
+
self.output_blocks.append(TimestepEmbedSequential(*layers))
|
804 |
+
self._feature_size += ch
|
805 |
+
|
806 |
+
self.out = nn.Sequential(
|
807 |
+
operations.GroupNorm(32, ch, dtype=self.dtype, device=device),
|
808 |
+
nn.SiLU(),
|
809 |
+
zero_module(operations.conv_nd(dims, model_channels, out_channels, 3, padding=1, dtype=self.dtype, device=device)),
|
810 |
+
)
|
811 |
+
if self.predict_codebook_ids:
|
812 |
+
self.id_predictor = nn.Sequential(
|
813 |
+
operations.GroupNorm(32, ch, dtype=self.dtype, device=device),
|
814 |
+
operations.conv_nd(dims, model_channels, n_embed, 1, dtype=self.dtype, device=device),
|
815 |
+
#nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits
|
816 |
+
)
|
817 |
+
|
818 |
+
def forward(self, x, timesteps=None, context=None, y=None, control=None, transformer_options={}, **kwargs):
|
819 |
+
"""
|
820 |
+
Apply the model to an input batch.
|
821 |
+
:param x: an [N x C x ...] Tensor of inputs.
|
822 |
+
:param timesteps: a 1-D batch of timesteps.
|
823 |
+
:param context: conditioning plugged in via crossattn
|
824 |
+
:param y: an [N] Tensor of labels, if class-conditional.
|
825 |
+
:return: an [N x C x ...] Tensor of outputs.
|
826 |
+
"""
|
827 |
+
transformer_options["original_shape"] = list(x.shape)
|
828 |
+
transformer_options["transformer_index"] = 0
|
829 |
+
transformer_patches = transformer_options.get("patches", {})
|
830 |
+
|
831 |
+
num_video_frames = kwargs.get("num_video_frames", self.default_num_video_frames)
|
832 |
+
image_only_indicator = kwargs.get("image_only_indicator", None)
|
833 |
+
time_context = kwargs.get("time_context", None)
|
834 |
+
|
835 |
+
assert (y is not None) == (
|
836 |
+
self.num_classes is not None
|
837 |
+
), "must specify y if and only if the model is class-conditional"
|
838 |
+
hs = []
|
839 |
+
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(x.dtype)
|
840 |
+
emb = self.time_embed(t_emb)
|
841 |
+
|
842 |
+
if self.num_classes is not None:
|
843 |
+
assert y.shape[0] == x.shape[0]
|
844 |
+
emb = emb + self.label_emb(y)
|
845 |
+
|
846 |
+
h = x
|
847 |
+
for id, module in enumerate(self.input_blocks):
|
848 |
+
transformer_options["block"] = ("input", id)
|
849 |
+
h = forward_timestep_embed(module, h, emb, context, transformer_options, time_context=time_context, num_video_frames=num_video_frames, image_only_indicator=image_only_indicator)
|
850 |
+
h = apply_control(h, control, 'input')
|
851 |
+
if "input_block_patch" in transformer_patches:
|
852 |
+
patch = transformer_patches["input_block_patch"]
|
853 |
+
for p in patch:
|
854 |
+
h = p(h, transformer_options)
|
855 |
+
|
856 |
+
hs.append(h)
|
857 |
+
if "input_block_patch_after_skip" in transformer_patches:
|
858 |
+
patch = transformer_patches["input_block_patch_after_skip"]
|
859 |
+
for p in patch:
|
860 |
+
h = p(h, transformer_options)
|
861 |
+
|
862 |
+
transformer_options["block"] = ("middle", 0)
|
863 |
+
if self.middle_block is not None:
|
864 |
+
h = forward_timestep_embed(self.middle_block, h, emb, context, transformer_options, time_context=time_context, num_video_frames=num_video_frames, image_only_indicator=image_only_indicator)
|
865 |
+
h = apply_control(h, control, 'middle')
|
866 |
+
|
867 |
+
|
868 |
+
for id, module in enumerate(self.output_blocks):
|
869 |
+
transformer_options["block"] = ("output", id)
|
870 |
+
hsp = hs.pop()
|
871 |
+
hsp = apply_control(hsp, control, 'output')
|
872 |
+
|
873 |
+
if "output_block_patch" in transformer_patches:
|
874 |
+
patch = transformer_patches["output_block_patch"]
|
875 |
+
for p in patch:
|
876 |
+
h, hsp = p(h, hsp, transformer_options)
|
877 |
+
|
878 |
+
h = th.cat([h, hsp], dim=1)
|
879 |
+
del hsp
|
880 |
+
if len(hs) > 0:
|
881 |
+
output_shape = hs[-1].shape
|
882 |
+
else:
|
883 |
+
output_shape = None
|
884 |
+
h = forward_timestep_embed(module, h, emb, context, transformer_options, output_shape, time_context=time_context, num_video_frames=num_video_frames, image_only_indicator=image_only_indicator)
|
885 |
+
h = h.type(x.dtype)
|
886 |
+
if self.predict_codebook_ids:
|
887 |
+
return self.id_predictor(h)
|
888 |
+
else:
|
889 |
+
return self.out(h)
|
comfy/ldm/modules/diffusionmodules/upscaling.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import numpy as np
|
4 |
+
from functools import partial
|
5 |
+
|
6 |
+
from .util import extract_into_tensor, make_beta_schedule
|
7 |
+
from comfy.ldm.util import default
|
8 |
+
|
9 |
+
|
10 |
+
class AbstractLowScaleModel(nn.Module):
|
11 |
+
# for concatenating a downsampled image to the latent representation
|
12 |
+
def __init__(self, noise_schedule_config=None):
|
13 |
+
super(AbstractLowScaleModel, self).__init__()
|
14 |
+
if noise_schedule_config is not None:
|
15 |
+
self.register_schedule(**noise_schedule_config)
|
16 |
+
|
17 |
+
def register_schedule(self, beta_schedule="linear", timesteps=1000,
|
18 |
+
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
19 |
+
betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end,
|
20 |
+
cosine_s=cosine_s)
|
21 |
+
alphas = 1. - betas
|
22 |
+
alphas_cumprod = np.cumprod(alphas, axis=0)
|
23 |
+
alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
|
24 |
+
|
25 |
+
timesteps, = betas.shape
|
26 |
+
self.num_timesteps = int(timesteps)
|
27 |
+
self.linear_start = linear_start
|
28 |
+
self.linear_end = linear_end
|
29 |
+
assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep'
|
30 |
+
|
31 |
+
to_torch = partial(torch.tensor, dtype=torch.float32)
|
32 |
+
|
33 |
+
self.register_buffer('betas', to_torch(betas))
|
34 |
+
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
|
35 |
+
self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
|
36 |
+
|
37 |
+
# calculations for diffusion q(x_t | x_{t-1}) and others
|
38 |
+
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
|
39 |
+
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
|
40 |
+
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
|
41 |
+
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
|
42 |
+
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
|
43 |
+
|
44 |
+
def q_sample(self, x_start, t, noise=None, seed=None):
|
45 |
+
if noise is None:
|
46 |
+
if seed is None:
|
47 |
+
noise = torch.randn_like(x_start)
|
48 |
+
else:
|
49 |
+
noise = torch.randn(x_start.size(), dtype=x_start.dtype, layout=x_start.layout, generator=torch.manual_seed(seed)).to(x_start.device)
|
50 |
+
return (extract_into_tensor(self.sqrt_alphas_cumprod.to(x_start.device), t, x_start.shape) * x_start +
|
51 |
+
extract_into_tensor(self.sqrt_one_minus_alphas_cumprod.to(x_start.device), t, x_start.shape) * noise)
|
52 |
+
|
53 |
+
def forward(self, x):
|
54 |
+
return x, None
|
55 |
+
|
56 |
+
def decode(self, x):
|
57 |
+
return x
|
58 |
+
|
59 |
+
|
60 |
+
class SimpleImageConcat(AbstractLowScaleModel):
|
61 |
+
# no noise level conditioning
|
62 |
+
def __init__(self):
|
63 |
+
super(SimpleImageConcat, self).__init__(noise_schedule_config=None)
|
64 |
+
self.max_noise_level = 0
|
65 |
+
|
66 |
+
def forward(self, x):
|
67 |
+
# fix to constant noise level
|
68 |
+
return x, torch.zeros(x.shape[0], device=x.device).long()
|
69 |
+
|
70 |
+
|
71 |
+
class ImageConcatWithNoiseAugmentation(AbstractLowScaleModel):
|
72 |
+
def __init__(self, noise_schedule_config, max_noise_level=1000, to_cuda=False):
|
73 |
+
super().__init__(noise_schedule_config=noise_schedule_config)
|
74 |
+
self.max_noise_level = max_noise_level
|
75 |
+
|
76 |
+
def forward(self, x, noise_level=None, seed=None):
|
77 |
+
if noise_level is None:
|
78 |
+
noise_level = torch.randint(0, self.max_noise_level, (x.shape[0],), device=x.device).long()
|
79 |
+
else:
|
80 |
+
assert isinstance(noise_level, torch.Tensor)
|
81 |
+
z = self.q_sample(x, noise_level, seed=seed)
|
82 |
+
return z, noise_level
|
83 |
+
|
84 |
+
|
85 |
+
|
comfy/ldm/modules/diffusionmodules/util.py
ADDED
@@ -0,0 +1,306 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# adopted from
|
2 |
+
# https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py
|
3 |
+
# and
|
4 |
+
# https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
|
5 |
+
# and
|
6 |
+
# https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py
|
7 |
+
#
|
8 |
+
# thanks!
|
9 |
+
|
10 |
+
|
11 |
+
import os
|
12 |
+
import math
|
13 |
+
import torch
|
14 |
+
import torch.nn as nn
|
15 |
+
import numpy as np
|
16 |
+
from einops import repeat, rearrange
|
17 |
+
|
18 |
+
from comfy.ldm.util import instantiate_from_config
|
19 |
+
|
20 |
+
class AlphaBlender(nn.Module):
|
21 |
+
strategies = ["learned", "fixed", "learned_with_images"]
|
22 |
+
|
23 |
+
def __init__(
|
24 |
+
self,
|
25 |
+
alpha: float,
|
26 |
+
merge_strategy: str = "learned_with_images",
|
27 |
+
rearrange_pattern: str = "b t -> (b t) 1 1",
|
28 |
+
):
|
29 |
+
super().__init__()
|
30 |
+
self.merge_strategy = merge_strategy
|
31 |
+
self.rearrange_pattern = rearrange_pattern
|
32 |
+
|
33 |
+
assert (
|
34 |
+
merge_strategy in self.strategies
|
35 |
+
), f"merge_strategy needs to be in {self.strategies}"
|
36 |
+
|
37 |
+
if self.merge_strategy == "fixed":
|
38 |
+
self.register_buffer("mix_factor", torch.Tensor([alpha]))
|
39 |
+
elif (
|
40 |
+
self.merge_strategy == "learned"
|
41 |
+
or self.merge_strategy == "learned_with_images"
|
42 |
+
):
|
43 |
+
self.register_parameter(
|
44 |
+
"mix_factor", torch.nn.Parameter(torch.Tensor([alpha]))
|
45 |
+
)
|
46 |
+
else:
|
47 |
+
raise ValueError(f"unknown merge strategy {self.merge_strategy}")
|
48 |
+
|
49 |
+
def get_alpha(self, image_only_indicator: torch.Tensor, device) -> torch.Tensor:
|
50 |
+
# skip_time_mix = rearrange(repeat(skip_time_mix, 'b -> (b t) () () ()', t=t), '(b t) 1 ... -> b 1 t ...', t=t)
|
51 |
+
if self.merge_strategy == "fixed":
|
52 |
+
# make shape compatible
|
53 |
+
# alpha = repeat(self.mix_factor, '1 -> b () t () ()', t=t, b=bs)
|
54 |
+
alpha = self.mix_factor.to(device)
|
55 |
+
elif self.merge_strategy == "learned":
|
56 |
+
alpha = torch.sigmoid(self.mix_factor.to(device))
|
57 |
+
# make shape compatible
|
58 |
+
# alpha = repeat(alpha, '1 -> s () ()', s = t * bs)
|
59 |
+
elif self.merge_strategy == "learned_with_images":
|
60 |
+
if image_only_indicator is None:
|
61 |
+
alpha = rearrange(torch.sigmoid(self.mix_factor.to(device)), "... -> ... 1")
|
62 |
+
else:
|
63 |
+
alpha = torch.where(
|
64 |
+
image_only_indicator.bool(),
|
65 |
+
torch.ones(1, 1, device=image_only_indicator.device),
|
66 |
+
rearrange(torch.sigmoid(self.mix_factor.to(image_only_indicator.device)), "... -> ... 1"),
|
67 |
+
)
|
68 |
+
alpha = rearrange(alpha, self.rearrange_pattern)
|
69 |
+
# make shape compatible
|
70 |
+
# alpha = repeat(alpha, '1 -> s () ()', s = t * bs)
|
71 |
+
else:
|
72 |
+
raise NotImplementedError()
|
73 |
+
return alpha
|
74 |
+
|
75 |
+
def forward(
|
76 |
+
self,
|
77 |
+
x_spatial,
|
78 |
+
x_temporal,
|
79 |
+
image_only_indicator=None,
|
80 |
+
) -> torch.Tensor:
|
81 |
+
alpha = self.get_alpha(image_only_indicator, x_spatial.device)
|
82 |
+
x = (
|
83 |
+
alpha.to(x_spatial.dtype) * x_spatial
|
84 |
+
+ (1.0 - alpha).to(x_spatial.dtype) * x_temporal
|
85 |
+
)
|
86 |
+
return x
|
87 |
+
|
88 |
+
|
89 |
+
def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
90 |
+
if schedule == "linear":
|
91 |
+
betas = (
|
92 |
+
torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2
|
93 |
+
)
|
94 |
+
|
95 |
+
elif schedule == "cosine":
|
96 |
+
timesteps = (
|
97 |
+
torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s
|
98 |
+
)
|
99 |
+
alphas = timesteps / (1 + cosine_s) * np.pi / 2
|
100 |
+
alphas = torch.cos(alphas).pow(2)
|
101 |
+
alphas = alphas / alphas[0]
|
102 |
+
betas = 1 - alphas[1:] / alphas[:-1]
|
103 |
+
betas = torch.clamp(betas, min=0, max=0.999)
|
104 |
+
|
105 |
+
elif schedule == "squaredcos_cap_v2": # used for karlo prior
|
106 |
+
# return early
|
107 |
+
return betas_for_alpha_bar(
|
108 |
+
n_timestep,
|
109 |
+
lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2,
|
110 |
+
)
|
111 |
+
|
112 |
+
elif schedule == "sqrt_linear":
|
113 |
+
betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64)
|
114 |
+
elif schedule == "sqrt":
|
115 |
+
betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) ** 0.5
|
116 |
+
else:
|
117 |
+
raise ValueError(f"schedule '{schedule}' unknown.")
|
118 |
+
return betas
|
119 |
+
|
120 |
+
|
121 |
+
def make_ddim_timesteps(ddim_discr_method, num_ddim_timesteps, num_ddpm_timesteps, verbose=True):
|
122 |
+
if ddim_discr_method == 'uniform':
|
123 |
+
c = num_ddpm_timesteps // num_ddim_timesteps
|
124 |
+
ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c)))
|
125 |
+
elif ddim_discr_method == 'quad':
|
126 |
+
ddim_timesteps = ((np.linspace(0, np.sqrt(num_ddpm_timesteps * .8), num_ddim_timesteps)) ** 2).astype(int)
|
127 |
+
else:
|
128 |
+
raise NotImplementedError(f'There is no ddim discretization method called "{ddim_discr_method}"')
|
129 |
+
|
130 |
+
# assert ddim_timesteps.shape[0] == num_ddim_timesteps
|
131 |
+
# add one to get the final alpha values right (the ones from first scale to data during sampling)
|
132 |
+
steps_out = ddim_timesteps + 1
|
133 |
+
if verbose:
|
134 |
+
print(f'Selected timesteps for ddim sampler: {steps_out}')
|
135 |
+
return steps_out
|
136 |
+
|
137 |
+
|
138 |
+
def make_ddim_sampling_parameters(alphacums, ddim_timesteps, eta, verbose=True):
|
139 |
+
# select alphas for computing the variance schedule
|
140 |
+
alphas = alphacums[ddim_timesteps]
|
141 |
+
alphas_prev = np.asarray([alphacums[0]] + alphacums[ddim_timesteps[:-1]].tolist())
|
142 |
+
|
143 |
+
# according the the formula provided in https://arxiv.org/abs/2010.02502
|
144 |
+
sigmas = eta * np.sqrt((1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev))
|
145 |
+
if verbose:
|
146 |
+
print(f'Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}')
|
147 |
+
print(f'For the chosen value of eta, which is {eta}, '
|
148 |
+
f'this results in the following sigma_t schedule for ddim sampler {sigmas}')
|
149 |
+
return sigmas, alphas, alphas_prev
|
150 |
+
|
151 |
+
|
152 |
+
def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
|
153 |
+
"""
|
154 |
+
Create a beta schedule that discretizes the given alpha_t_bar function,
|
155 |
+
which defines the cumulative product of (1-beta) over time from t = [0,1].
|
156 |
+
:param num_diffusion_timesteps: the number of betas to produce.
|
157 |
+
:param alpha_bar: a lambda that takes an argument t from 0 to 1 and
|
158 |
+
produces the cumulative product of (1-beta) up to that
|
159 |
+
part of the diffusion process.
|
160 |
+
:param max_beta: the maximum beta to use; use values lower than 1 to
|
161 |
+
prevent singularities.
|
162 |
+
"""
|
163 |
+
betas = []
|
164 |
+
for i in range(num_diffusion_timesteps):
|
165 |
+
t1 = i / num_diffusion_timesteps
|
166 |
+
t2 = (i + 1) / num_diffusion_timesteps
|
167 |
+
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
|
168 |
+
return np.array(betas)
|
169 |
+
|
170 |
+
|
171 |
+
def extract_into_tensor(a, t, x_shape):
|
172 |
+
b, *_ = t.shape
|
173 |
+
out = a.gather(-1, t)
|
174 |
+
return out.reshape(b, *((1,) * (len(x_shape) - 1)))
|
175 |
+
|
176 |
+
|
177 |
+
def checkpoint(func, inputs, params, flag):
|
178 |
+
"""
|
179 |
+
Evaluate a function without caching intermediate activations, allowing for
|
180 |
+
reduced memory at the expense of extra compute in the backward pass.
|
181 |
+
:param func: the function to evaluate.
|
182 |
+
:param inputs: the argument sequence to pass to `func`.
|
183 |
+
:param params: a sequence of parameters `func` depends on but does not
|
184 |
+
explicitly take as arguments.
|
185 |
+
:param flag: if False, disable gradient checkpointing.
|
186 |
+
"""
|
187 |
+
if flag:
|
188 |
+
args = tuple(inputs) + tuple(params)
|
189 |
+
return CheckpointFunction.apply(func, len(inputs), *args)
|
190 |
+
else:
|
191 |
+
return func(*inputs)
|
192 |
+
|
193 |
+
|
194 |
+
class CheckpointFunction(torch.autograd.Function):
|
195 |
+
@staticmethod
|
196 |
+
def forward(ctx, run_function, length, *args):
|
197 |
+
ctx.run_function = run_function
|
198 |
+
ctx.input_tensors = list(args[:length])
|
199 |
+
ctx.input_params = list(args[length:])
|
200 |
+
ctx.gpu_autocast_kwargs = {"enabled": torch.is_autocast_enabled(),
|
201 |
+
"dtype": torch.get_autocast_gpu_dtype(),
|
202 |
+
"cache_enabled": torch.is_autocast_cache_enabled()}
|
203 |
+
with torch.no_grad():
|
204 |
+
output_tensors = ctx.run_function(*ctx.input_tensors)
|
205 |
+
return output_tensors
|
206 |
+
|
207 |
+
@staticmethod
|
208 |
+
def backward(ctx, *output_grads):
|
209 |
+
ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors]
|
210 |
+
with torch.enable_grad(), \
|
211 |
+
torch.cuda.amp.autocast(**ctx.gpu_autocast_kwargs):
|
212 |
+
# Fixes a bug where the first op in run_function modifies the
|
213 |
+
# Tensor storage in place, which is not allowed for detach()'d
|
214 |
+
# Tensors.
|
215 |
+
shallow_copies = [x.view_as(x) for x in ctx.input_tensors]
|
216 |
+
output_tensors = ctx.run_function(*shallow_copies)
|
217 |
+
input_grads = torch.autograd.grad(
|
218 |
+
output_tensors,
|
219 |
+
ctx.input_tensors + ctx.input_params,
|
220 |
+
output_grads,
|
221 |
+
allow_unused=True,
|
222 |
+
)
|
223 |
+
del ctx.input_tensors
|
224 |
+
del ctx.input_params
|
225 |
+
del output_tensors
|
226 |
+
return (None, None) + input_grads
|
227 |
+
|
228 |
+
|
229 |
+
def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
|
230 |
+
"""
|
231 |
+
Create sinusoidal timestep embeddings.
|
232 |
+
:param timesteps: a 1-D Tensor of N indices, one per batch element.
|
233 |
+
These may be fractional.
|
234 |
+
:param dim: the dimension of the output.
|
235 |
+
:param max_period: controls the minimum frequency of the embeddings.
|
236 |
+
:return: an [N x dim] Tensor of positional embeddings.
|
237 |
+
"""
|
238 |
+
if not repeat_only:
|
239 |
+
half = dim // 2
|
240 |
+
freqs = torch.exp(
|
241 |
+
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32, device=timesteps.device) / half
|
242 |
+
)
|
243 |
+
args = timesteps[:, None].float() * freqs[None]
|
244 |
+
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
245 |
+
if dim % 2:
|
246 |
+
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
247 |
+
else:
|
248 |
+
embedding = repeat(timesteps, 'b -> b d', d=dim)
|
249 |
+
return embedding
|
250 |
+
|
251 |
+
|
252 |
+
def zero_module(module):
|
253 |
+
"""
|
254 |
+
Zero out the parameters of a module and return it.
|
255 |
+
"""
|
256 |
+
for p in module.parameters():
|
257 |
+
p.detach().zero_()
|
258 |
+
return module
|
259 |
+
|
260 |
+
|
261 |
+
def scale_module(module, scale):
|
262 |
+
"""
|
263 |
+
Scale the parameters of a module and return it.
|
264 |
+
"""
|
265 |
+
for p in module.parameters():
|
266 |
+
p.detach().mul_(scale)
|
267 |
+
return module
|
268 |
+
|
269 |
+
|
270 |
+
def mean_flat(tensor):
|
271 |
+
"""
|
272 |
+
Take the mean over all non-batch dimensions.
|
273 |
+
"""
|
274 |
+
return tensor.mean(dim=list(range(1, len(tensor.shape))))
|
275 |
+
|
276 |
+
|
277 |
+
def avg_pool_nd(dims, *args, **kwargs):
|
278 |
+
"""
|
279 |
+
Create a 1D, 2D, or 3D average pooling module.
|
280 |
+
"""
|
281 |
+
if dims == 1:
|
282 |
+
return nn.AvgPool1d(*args, **kwargs)
|
283 |
+
elif dims == 2:
|
284 |
+
return nn.AvgPool2d(*args, **kwargs)
|
285 |
+
elif dims == 3:
|
286 |
+
return nn.AvgPool3d(*args, **kwargs)
|
287 |
+
raise ValueError(f"unsupported dimensions: {dims}")
|
288 |
+
|
289 |
+
|
290 |
+
class HybridConditioner(nn.Module):
|
291 |
+
|
292 |
+
def __init__(self, c_concat_config, c_crossattn_config):
|
293 |
+
super().__init__()
|
294 |
+
self.concat_conditioner = instantiate_from_config(c_concat_config)
|
295 |
+
self.crossattn_conditioner = instantiate_from_config(c_crossattn_config)
|
296 |
+
|
297 |
+
def forward(self, c_concat, c_crossattn):
|
298 |
+
c_concat = self.concat_conditioner(c_concat)
|
299 |
+
c_crossattn = self.crossattn_conditioner(c_crossattn)
|
300 |
+
return {'c_concat': [c_concat], 'c_crossattn': [c_crossattn]}
|
301 |
+
|
302 |
+
|
303 |
+
def noise_like(shape, device, repeat=False):
|
304 |
+
repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
|
305 |
+
noise = lambda: torch.randn(shape, device=device)
|
306 |
+
return repeat_noise() if repeat else noise()
|
comfy/ldm/modules/distributions/__init__.py
ADDED
File without changes
|
comfy/ldm/modules/distributions/distributions.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
|
5 |
+
class AbstractDistribution:
|
6 |
+
def sample(self):
|
7 |
+
raise NotImplementedError()
|
8 |
+
|
9 |
+
def mode(self):
|
10 |
+
raise NotImplementedError()
|
11 |
+
|
12 |
+
|
13 |
+
class DiracDistribution(AbstractDistribution):
|
14 |
+
def __init__(self, value):
|
15 |
+
self.value = value
|
16 |
+
|
17 |
+
def sample(self):
|
18 |
+
return self.value
|
19 |
+
|
20 |
+
def mode(self):
|
21 |
+
return self.value
|
22 |
+
|
23 |
+
|
24 |
+
class DiagonalGaussianDistribution(object):
|
25 |
+
def __init__(self, parameters, deterministic=False):
|
26 |
+
self.parameters = parameters
|
27 |
+
self.mean, self.logvar = torch.chunk(parameters, 2, dim=1)
|
28 |
+
self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
|
29 |
+
self.deterministic = deterministic
|
30 |
+
self.std = torch.exp(0.5 * self.logvar)
|
31 |
+
self.var = torch.exp(self.logvar)
|
32 |
+
if self.deterministic:
|
33 |
+
self.var = self.std = torch.zeros_like(self.mean).to(device=self.parameters.device)
|
34 |
+
|
35 |
+
def sample(self):
|
36 |
+
x = self.mean + self.std * torch.randn(self.mean.shape).to(device=self.parameters.device)
|
37 |
+
return x
|
38 |
+
|
39 |
+
def kl(self, other=None):
|
40 |
+
if self.deterministic:
|
41 |
+
return torch.Tensor([0.])
|
42 |
+
else:
|
43 |
+
if other is None:
|
44 |
+
return 0.5 * torch.sum(torch.pow(self.mean, 2)
|
45 |
+
+ self.var - 1.0 - self.logvar,
|
46 |
+
dim=[1, 2, 3])
|
47 |
+
else:
|
48 |
+
return 0.5 * torch.sum(
|
49 |
+
torch.pow(self.mean - other.mean, 2) / other.var
|
50 |
+
+ self.var / other.var - 1.0 - self.logvar + other.logvar,
|
51 |
+
dim=[1, 2, 3])
|
52 |
+
|
53 |
+
def nll(self, sample, dims=[1,2,3]):
|
54 |
+
if self.deterministic:
|
55 |
+
return torch.Tensor([0.])
|
56 |
+
logtwopi = np.log(2.0 * np.pi)
|
57 |
+
return 0.5 * torch.sum(
|
58 |
+
logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
|
59 |
+
dim=dims)
|
60 |
+
|
61 |
+
def mode(self):
|
62 |
+
return self.mean
|
63 |
+
|
64 |
+
|
65 |
+
def normal_kl(mean1, logvar1, mean2, logvar2):
|
66 |
+
"""
|
67 |
+
source: https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/losses.py#L12
|
68 |
+
Compute the KL divergence between two gaussians.
|
69 |
+
Shapes are automatically broadcasted, so batches can be compared to
|
70 |
+
scalars, among other use cases.
|
71 |
+
"""
|
72 |
+
tensor = None
|
73 |
+
for obj in (mean1, logvar1, mean2, logvar2):
|
74 |
+
if isinstance(obj, torch.Tensor):
|
75 |
+
tensor = obj
|
76 |
+
break
|
77 |
+
assert tensor is not None, "at least one argument must be a Tensor"
|
78 |
+
|
79 |
+
# Force variances to be Tensors. Broadcasting helps convert scalars to
|
80 |
+
# Tensors, but it does not work for torch.exp().
|
81 |
+
logvar1, logvar2 = [
|
82 |
+
x if isinstance(x, torch.Tensor) else torch.tensor(x).to(tensor)
|
83 |
+
for x in (logvar1, logvar2)
|
84 |
+
]
|
85 |
+
|
86 |
+
return 0.5 * (
|
87 |
+
-1.0
|
88 |
+
+ logvar2
|
89 |
+
- logvar1
|
90 |
+
+ torch.exp(logvar1 - logvar2)
|
91 |
+
+ ((mean1 - mean2) ** 2) * torch.exp(-logvar2)
|
92 |
+
)
|
comfy/ldm/modules/ema.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
|
4 |
+
|
5 |
+
class LitEma(nn.Module):
|
6 |
+
def __init__(self, model, decay=0.9999, use_num_upates=True):
|
7 |
+
super().__init__()
|
8 |
+
if decay < 0.0 or decay > 1.0:
|
9 |
+
raise ValueError('Decay must be between 0 and 1')
|
10 |
+
|
11 |
+
self.m_name2s_name = {}
|
12 |
+
self.register_buffer('decay', torch.tensor(decay, dtype=torch.float32))
|
13 |
+
self.register_buffer('num_updates', torch.tensor(0, dtype=torch.int) if use_num_upates
|
14 |
+
else torch.tensor(-1, dtype=torch.int))
|
15 |
+
|
16 |
+
for name, p in model.named_parameters():
|
17 |
+
if p.requires_grad:
|
18 |
+
# remove as '.'-character is not allowed in buffers
|
19 |
+
s_name = name.replace('.', '')
|
20 |
+
self.m_name2s_name.update({name: s_name})
|
21 |
+
self.register_buffer(s_name, p.clone().detach().data)
|
22 |
+
|
23 |
+
self.collected_params = []
|
24 |
+
|
25 |
+
def reset_num_updates(self):
|
26 |
+
del self.num_updates
|
27 |
+
self.register_buffer('num_updates', torch.tensor(0, dtype=torch.int))
|
28 |
+
|
29 |
+
def forward(self, model):
|
30 |
+
decay = self.decay
|
31 |
+
|
32 |
+
if self.num_updates >= 0:
|
33 |
+
self.num_updates += 1
|
34 |
+
decay = min(self.decay, (1 + self.num_updates) / (10 + self.num_updates))
|
35 |
+
|
36 |
+
one_minus_decay = 1.0 - decay
|
37 |
+
|
38 |
+
with torch.no_grad():
|
39 |
+
m_param = dict(model.named_parameters())
|
40 |
+
shadow_params = dict(self.named_buffers())
|
41 |
+
|
42 |
+
for key in m_param:
|
43 |
+
if m_param[key].requires_grad:
|
44 |
+
sname = self.m_name2s_name[key]
|
45 |
+
shadow_params[sname] = shadow_params[sname].type_as(m_param[key])
|
46 |
+
shadow_params[sname].sub_(one_minus_decay * (shadow_params[sname] - m_param[key]))
|
47 |
+
else:
|
48 |
+
assert not key in self.m_name2s_name
|
49 |
+
|
50 |
+
def copy_to(self, model):
|
51 |
+
m_param = dict(model.named_parameters())
|
52 |
+
shadow_params = dict(self.named_buffers())
|
53 |
+
for key in m_param:
|
54 |
+
if m_param[key].requires_grad:
|
55 |
+
m_param[key].data.copy_(shadow_params[self.m_name2s_name[key]].data)
|
56 |
+
else:
|
57 |
+
assert not key in self.m_name2s_name
|
58 |
+
|
59 |
+
def store(self, parameters):
|
60 |
+
"""
|
61 |
+
Save the current parameters for restoring later.
|
62 |
+
Args:
|
63 |
+
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
|
64 |
+
temporarily stored.
|
65 |
+
"""
|
66 |
+
self.collected_params = [param.clone() for param in parameters]
|
67 |
+
|
68 |
+
def restore(self, parameters):
|
69 |
+
"""
|
70 |
+
Restore the parameters stored with the `store` method.
|
71 |
+
Useful to validate the model with EMA parameters without affecting the
|
72 |
+
original optimization process. Store the parameters before the
|
73 |
+
`copy_to` method. After validation (or model saving), use this to
|
74 |
+
restore the former parameters.
|
75 |
+
Args:
|
76 |
+
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
|
77 |
+
updated with the stored parameters.
|
78 |
+
"""
|
79 |
+
for c_param, param in zip(self.collected_params, parameters):
|
80 |
+
param.data.copy_(c_param.data)
|
comfy/ldm/modules/encoders/__init__.py
ADDED
File without changes
|
comfy/ldm/modules/encoders/noise_aug_modules.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ..diffusionmodules.upscaling import ImageConcatWithNoiseAugmentation
|
2 |
+
from ..diffusionmodules.openaimodel import Timestep
|
3 |
+
import torch
|
4 |
+
|
5 |
+
class CLIPEmbeddingNoiseAugmentation(ImageConcatWithNoiseAugmentation):
|
6 |
+
def __init__(self, *args, clip_stats_path=None, timestep_dim=256, **kwargs):
|
7 |
+
super().__init__(*args, **kwargs)
|
8 |
+
if clip_stats_path is None:
|
9 |
+
clip_mean, clip_std = torch.zeros(timestep_dim), torch.ones(timestep_dim)
|
10 |
+
else:
|
11 |
+
clip_mean, clip_std = torch.load(clip_stats_path, map_location="cpu")
|
12 |
+
self.register_buffer("data_mean", clip_mean[None, :], persistent=False)
|
13 |
+
self.register_buffer("data_std", clip_std[None, :], persistent=False)
|
14 |
+
self.time_embed = Timestep(timestep_dim)
|
15 |
+
|
16 |
+
def scale(self, x):
|
17 |
+
# re-normalize to centered mean and unit variance
|
18 |
+
x = (x - self.data_mean.to(x.device)) * 1. / self.data_std.to(x.device)
|
19 |
+
return x
|
20 |
+
|
21 |
+
def unscale(self, x):
|
22 |
+
# back to original data stats
|
23 |
+
x = (x * self.data_std.to(x.device)) + self.data_mean.to(x.device)
|
24 |
+
return x
|
25 |
+
|
26 |
+
def forward(self, x, noise_level=None, seed=None):
|
27 |
+
if noise_level is None:
|
28 |
+
noise_level = torch.randint(0, self.max_noise_level, (x.shape[0],), device=x.device).long()
|
29 |
+
else:
|
30 |
+
assert isinstance(noise_level, torch.Tensor)
|
31 |
+
x = self.scale(x)
|
32 |
+
z = self.q_sample(x, noise_level, seed=seed)
|
33 |
+
z = self.unscale(z)
|
34 |
+
noise_level = self.time_embed(noise_level)
|
35 |
+
return z, noise_level
|
comfy/ldm/modules/sub_quadratic_attention.py
ADDED
@@ -0,0 +1,273 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# original source:
|
2 |
+
# https://github.com/AminRezaei0x443/memory-efficient-attention/blob/1bc0d9e6ac5f82ea43a375135c4e1d3896ee1694/memory_efficient_attention/attention_torch.py
|
3 |
+
# license:
|
4 |
+
# MIT
|
5 |
+
# credit:
|
6 |
+
# Amin Rezaei (original author)
|
7 |
+
# Alex Birch (optimized algorithm for 3D tensors, at the expense of removing bias, masking and callbacks)
|
8 |
+
# implementation of:
|
9 |
+
# Self-attention Does Not Need O(n2) Memory":
|
10 |
+
# https://arxiv.org/abs/2112.05682v2
|
11 |
+
|
12 |
+
from functools import partial
|
13 |
+
import torch
|
14 |
+
from torch import Tensor
|
15 |
+
from torch.utils.checkpoint import checkpoint
|
16 |
+
import math
|
17 |
+
|
18 |
+
try:
|
19 |
+
from typing import Optional, NamedTuple, List, Protocol
|
20 |
+
except ImportError:
|
21 |
+
from typing import Optional, NamedTuple, List
|
22 |
+
from typing_extensions import Protocol
|
23 |
+
|
24 |
+
from torch import Tensor
|
25 |
+
from typing import List
|
26 |
+
|
27 |
+
from comfy import model_management
|
28 |
+
|
29 |
+
def dynamic_slice(
|
30 |
+
x: Tensor,
|
31 |
+
starts: List[int],
|
32 |
+
sizes: List[int],
|
33 |
+
) -> Tensor:
|
34 |
+
slicing = [slice(start, start + size) for start, size in zip(starts, sizes)]
|
35 |
+
return x[slicing]
|
36 |
+
|
37 |
+
class AttnChunk(NamedTuple):
|
38 |
+
exp_values: Tensor
|
39 |
+
exp_weights_sum: Tensor
|
40 |
+
max_score: Tensor
|
41 |
+
|
42 |
+
class SummarizeChunk(Protocol):
|
43 |
+
@staticmethod
|
44 |
+
def __call__(
|
45 |
+
query: Tensor,
|
46 |
+
key_t: Tensor,
|
47 |
+
value: Tensor,
|
48 |
+
) -> AttnChunk: ...
|
49 |
+
|
50 |
+
class ComputeQueryChunkAttn(Protocol):
|
51 |
+
@staticmethod
|
52 |
+
def __call__(
|
53 |
+
query: Tensor,
|
54 |
+
key_t: Tensor,
|
55 |
+
value: Tensor,
|
56 |
+
) -> Tensor: ...
|
57 |
+
|
58 |
+
def _summarize_chunk(
|
59 |
+
query: Tensor,
|
60 |
+
key_t: Tensor,
|
61 |
+
value: Tensor,
|
62 |
+
scale: float,
|
63 |
+
upcast_attention: bool,
|
64 |
+
mask,
|
65 |
+
) -> AttnChunk:
|
66 |
+
if upcast_attention:
|
67 |
+
with torch.autocast(enabled=False, device_type = 'cuda'):
|
68 |
+
query = query.float()
|
69 |
+
key_t = key_t.float()
|
70 |
+
attn_weights = torch.baddbmm(
|
71 |
+
torch.empty(1, 1, 1, device=query.device, dtype=query.dtype),
|
72 |
+
query,
|
73 |
+
key_t,
|
74 |
+
alpha=scale,
|
75 |
+
beta=0,
|
76 |
+
)
|
77 |
+
else:
|
78 |
+
attn_weights = torch.baddbmm(
|
79 |
+
torch.empty(1, 1, 1, device=query.device, dtype=query.dtype),
|
80 |
+
query,
|
81 |
+
key_t,
|
82 |
+
alpha=scale,
|
83 |
+
beta=0,
|
84 |
+
)
|
85 |
+
max_score, _ = torch.max(attn_weights, -1, keepdim=True)
|
86 |
+
max_score = max_score.detach()
|
87 |
+
attn_weights -= max_score
|
88 |
+
if mask is not None:
|
89 |
+
attn_weights += mask
|
90 |
+
torch.exp(attn_weights, out=attn_weights)
|
91 |
+
exp_weights = attn_weights.to(value.dtype)
|
92 |
+
exp_values = torch.bmm(exp_weights, value)
|
93 |
+
max_score = max_score.squeeze(-1)
|
94 |
+
return AttnChunk(exp_values, exp_weights.sum(dim=-1), max_score)
|
95 |
+
|
96 |
+
def _query_chunk_attention(
|
97 |
+
query: Tensor,
|
98 |
+
key_t: Tensor,
|
99 |
+
value: Tensor,
|
100 |
+
summarize_chunk: SummarizeChunk,
|
101 |
+
kv_chunk_size: int,
|
102 |
+
mask,
|
103 |
+
) -> Tensor:
|
104 |
+
batch_x_heads, k_channels_per_head, k_tokens = key_t.shape
|
105 |
+
_, _, v_channels_per_head = value.shape
|
106 |
+
|
107 |
+
def chunk_scanner(chunk_idx: int, mask) -> AttnChunk:
|
108 |
+
key_chunk = dynamic_slice(
|
109 |
+
key_t,
|
110 |
+
(0, 0, chunk_idx),
|
111 |
+
(batch_x_heads, k_channels_per_head, kv_chunk_size)
|
112 |
+
)
|
113 |
+
value_chunk = dynamic_slice(
|
114 |
+
value,
|
115 |
+
(0, chunk_idx, 0),
|
116 |
+
(batch_x_heads, kv_chunk_size, v_channels_per_head)
|
117 |
+
)
|
118 |
+
if mask is not None:
|
119 |
+
mask = mask[:,:,chunk_idx:chunk_idx + kv_chunk_size]
|
120 |
+
|
121 |
+
return summarize_chunk(query, key_chunk, value_chunk, mask=mask)
|
122 |
+
|
123 |
+
chunks: List[AttnChunk] = [
|
124 |
+
chunk_scanner(chunk, mask) for chunk in torch.arange(0, k_tokens, kv_chunk_size)
|
125 |
+
]
|
126 |
+
acc_chunk = AttnChunk(*map(torch.stack, zip(*chunks)))
|
127 |
+
chunk_values, chunk_weights, chunk_max = acc_chunk
|
128 |
+
|
129 |
+
global_max, _ = torch.max(chunk_max, 0, keepdim=True)
|
130 |
+
max_diffs = torch.exp(chunk_max - global_max)
|
131 |
+
chunk_values *= torch.unsqueeze(max_diffs, -1)
|
132 |
+
chunk_weights *= max_diffs
|
133 |
+
|
134 |
+
all_values = chunk_values.sum(dim=0)
|
135 |
+
all_weights = torch.unsqueeze(chunk_weights, -1).sum(dim=0)
|
136 |
+
return all_values / all_weights
|
137 |
+
|
138 |
+
# TODO: refactor CrossAttention#get_attention_scores to share code with this
|
139 |
+
def _get_attention_scores_no_kv_chunking(
|
140 |
+
query: Tensor,
|
141 |
+
key_t: Tensor,
|
142 |
+
value: Tensor,
|
143 |
+
scale: float,
|
144 |
+
upcast_attention: bool,
|
145 |
+
mask,
|
146 |
+
) -> Tensor:
|
147 |
+
if upcast_attention:
|
148 |
+
with torch.autocast(enabled=False, device_type = 'cuda'):
|
149 |
+
query = query.float()
|
150 |
+
key_t = key_t.float()
|
151 |
+
attn_scores = torch.baddbmm(
|
152 |
+
torch.empty(1, 1, 1, device=query.device, dtype=query.dtype),
|
153 |
+
query,
|
154 |
+
key_t,
|
155 |
+
alpha=scale,
|
156 |
+
beta=0,
|
157 |
+
)
|
158 |
+
else:
|
159 |
+
attn_scores = torch.baddbmm(
|
160 |
+
torch.empty(1, 1, 1, device=query.device, dtype=query.dtype),
|
161 |
+
query,
|
162 |
+
key_t,
|
163 |
+
alpha=scale,
|
164 |
+
beta=0,
|
165 |
+
)
|
166 |
+
|
167 |
+
if mask is not None:
|
168 |
+
attn_scores += mask
|
169 |
+
try:
|
170 |
+
attn_probs = attn_scores.softmax(dim=-1)
|
171 |
+
del attn_scores
|
172 |
+
except model_management.OOM_EXCEPTION:
|
173 |
+
print("ran out of memory while running softmax in _get_attention_scores_no_kv_chunking, trying slower in place softmax instead")
|
174 |
+
attn_scores -= attn_scores.max(dim=-1, keepdim=True).values
|
175 |
+
torch.exp(attn_scores, out=attn_scores)
|
176 |
+
summed = torch.sum(attn_scores, dim=-1, keepdim=True)
|
177 |
+
attn_scores /= summed
|
178 |
+
attn_probs = attn_scores
|
179 |
+
|
180 |
+
hidden_states_slice = torch.bmm(attn_probs.to(value.dtype), value)
|
181 |
+
return hidden_states_slice
|
182 |
+
|
183 |
+
class ScannedChunk(NamedTuple):
|
184 |
+
chunk_idx: int
|
185 |
+
attn_chunk: AttnChunk
|
186 |
+
|
187 |
+
def efficient_dot_product_attention(
|
188 |
+
query: Tensor,
|
189 |
+
key_t: Tensor,
|
190 |
+
value: Tensor,
|
191 |
+
query_chunk_size=1024,
|
192 |
+
kv_chunk_size: Optional[int] = None,
|
193 |
+
kv_chunk_size_min: Optional[int] = None,
|
194 |
+
use_checkpoint=True,
|
195 |
+
upcast_attention=False,
|
196 |
+
mask = None,
|
197 |
+
):
|
198 |
+
"""Computes efficient dot-product attention given query, transposed key, and value.
|
199 |
+
This is efficient version of attention presented in
|
200 |
+
https://arxiv.org/abs/2112.05682v2 which comes with O(sqrt(n)) memory requirements.
|
201 |
+
Args:
|
202 |
+
query: queries for calculating attention with shape of
|
203 |
+
`[batch * num_heads, tokens, channels_per_head]`.
|
204 |
+
key_t: keys for calculating attention with shape of
|
205 |
+
`[batch * num_heads, channels_per_head, tokens]`.
|
206 |
+
value: values to be used in attention with shape of
|
207 |
+
`[batch * num_heads, tokens, channels_per_head]`.
|
208 |
+
query_chunk_size: int: query chunks size
|
209 |
+
kv_chunk_size: Optional[int]: key/value chunks size. if None: defaults to sqrt(key_tokens)
|
210 |
+
kv_chunk_size_min: Optional[int]: key/value minimum chunk size. only considered when kv_chunk_size is None. changes `sqrt(key_tokens)` into `max(sqrt(key_tokens), kv_chunk_size_min)`, to ensure our chunk sizes don't get too small (smaller chunks = more chunks = less concurrent work done).
|
211 |
+
use_checkpoint: bool: whether to use checkpointing (recommended True for training, False for inference)
|
212 |
+
Returns:
|
213 |
+
Output of shape `[batch * num_heads, query_tokens, channels_per_head]`.
|
214 |
+
"""
|
215 |
+
batch_x_heads, q_tokens, q_channels_per_head = query.shape
|
216 |
+
_, _, k_tokens = key_t.shape
|
217 |
+
scale = q_channels_per_head ** -0.5
|
218 |
+
|
219 |
+
kv_chunk_size = min(kv_chunk_size or int(math.sqrt(k_tokens)), k_tokens)
|
220 |
+
if kv_chunk_size_min is not None:
|
221 |
+
kv_chunk_size = max(kv_chunk_size, kv_chunk_size_min)
|
222 |
+
|
223 |
+
if mask is not None and len(mask.shape) == 2:
|
224 |
+
mask = mask.unsqueeze(0)
|
225 |
+
|
226 |
+
def get_query_chunk(chunk_idx: int) -> Tensor:
|
227 |
+
return dynamic_slice(
|
228 |
+
query,
|
229 |
+
(0, chunk_idx, 0),
|
230 |
+
(batch_x_heads, min(query_chunk_size, q_tokens), q_channels_per_head)
|
231 |
+
)
|
232 |
+
|
233 |
+
def get_mask_chunk(chunk_idx: int) -> Tensor:
|
234 |
+
if mask is None:
|
235 |
+
return None
|
236 |
+
chunk = min(query_chunk_size, q_tokens)
|
237 |
+
return mask[:,chunk_idx:chunk_idx + chunk]
|
238 |
+
|
239 |
+
summarize_chunk: SummarizeChunk = partial(_summarize_chunk, scale=scale, upcast_attention=upcast_attention)
|
240 |
+
summarize_chunk: SummarizeChunk = partial(checkpoint, summarize_chunk) if use_checkpoint else summarize_chunk
|
241 |
+
compute_query_chunk_attn: ComputeQueryChunkAttn = partial(
|
242 |
+
_get_attention_scores_no_kv_chunking,
|
243 |
+
scale=scale,
|
244 |
+
upcast_attention=upcast_attention
|
245 |
+
) if k_tokens <= kv_chunk_size else (
|
246 |
+
# fast-path for when there's just 1 key-value chunk per query chunk (this is just sliced attention btw)
|
247 |
+
partial(
|
248 |
+
_query_chunk_attention,
|
249 |
+
kv_chunk_size=kv_chunk_size,
|
250 |
+
summarize_chunk=summarize_chunk,
|
251 |
+
)
|
252 |
+
)
|
253 |
+
|
254 |
+
if q_tokens <= query_chunk_size:
|
255 |
+
# fast-path for when there's just 1 query chunk
|
256 |
+
return compute_query_chunk_attn(
|
257 |
+
query=query,
|
258 |
+
key_t=key_t,
|
259 |
+
value=value,
|
260 |
+
mask=mask,
|
261 |
+
)
|
262 |
+
|
263 |
+
# TODO: maybe we should use torch.empty_like(query) to allocate storage in-advance,
|
264 |
+
# and pass slices to be mutated, instead of torch.cat()ing the returned slices
|
265 |
+
res = torch.cat([
|
266 |
+
compute_query_chunk_attn(
|
267 |
+
query=get_query_chunk(i * query_chunk_size),
|
268 |
+
key_t=key_t,
|
269 |
+
value=value,
|
270 |
+
mask=get_mask_chunk(i * query_chunk_size)
|
271 |
+
) for i in range(math.ceil(q_tokens / query_chunk_size))
|
272 |
+
], dim=1)
|
273 |
+
return res
|
comfy/ldm/modules/temporal_ae.py
ADDED
@@ -0,0 +1,245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import functools
|
2 |
+
from typing import Callable, Iterable, Union
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from einops import rearrange, repeat
|
6 |
+
|
7 |
+
import comfy.ops
|
8 |
+
ops = comfy.ops.disable_weight_init
|
9 |
+
|
10 |
+
from .diffusionmodules.model import (
|
11 |
+
AttnBlock,
|
12 |
+
Decoder,
|
13 |
+
ResnetBlock,
|
14 |
+
)
|
15 |
+
from .diffusionmodules.openaimodel import ResBlock, timestep_embedding
|
16 |
+
from .attention import BasicTransformerBlock
|
17 |
+
|
18 |
+
def partialclass(cls, *args, **kwargs):
|
19 |
+
class NewCls(cls):
|
20 |
+
__init__ = functools.partialmethod(cls.__init__, *args, **kwargs)
|
21 |
+
|
22 |
+
return NewCls
|
23 |
+
|
24 |
+
|
25 |
+
class VideoResBlock(ResnetBlock):
|
26 |
+
def __init__(
|
27 |
+
self,
|
28 |
+
out_channels,
|
29 |
+
*args,
|
30 |
+
dropout=0.0,
|
31 |
+
video_kernel_size=3,
|
32 |
+
alpha=0.0,
|
33 |
+
merge_strategy="learned",
|
34 |
+
**kwargs,
|
35 |
+
):
|
36 |
+
super().__init__(out_channels=out_channels, dropout=dropout, *args, **kwargs)
|
37 |
+
if video_kernel_size is None:
|
38 |
+
video_kernel_size = [3, 1, 1]
|
39 |
+
self.time_stack = ResBlock(
|
40 |
+
channels=out_channels,
|
41 |
+
emb_channels=0,
|
42 |
+
dropout=dropout,
|
43 |
+
dims=3,
|
44 |
+
use_scale_shift_norm=False,
|
45 |
+
use_conv=False,
|
46 |
+
up=False,
|
47 |
+
down=False,
|
48 |
+
kernel_size=video_kernel_size,
|
49 |
+
use_checkpoint=False,
|
50 |
+
skip_t_emb=True,
|
51 |
+
)
|
52 |
+
|
53 |
+
self.merge_strategy = merge_strategy
|
54 |
+
if self.merge_strategy == "fixed":
|
55 |
+
self.register_buffer("mix_factor", torch.Tensor([alpha]))
|
56 |
+
elif self.merge_strategy == "learned":
|
57 |
+
self.register_parameter(
|
58 |
+
"mix_factor", torch.nn.Parameter(torch.Tensor([alpha]))
|
59 |
+
)
|
60 |
+
else:
|
61 |
+
raise ValueError(f"unknown merge strategy {self.merge_strategy}")
|
62 |
+
|
63 |
+
def get_alpha(self, bs):
|
64 |
+
if self.merge_strategy == "fixed":
|
65 |
+
return self.mix_factor
|
66 |
+
elif self.merge_strategy == "learned":
|
67 |
+
return torch.sigmoid(self.mix_factor)
|
68 |
+
else:
|
69 |
+
raise NotImplementedError()
|
70 |
+
|
71 |
+
def forward(self, x, temb, skip_video=False, timesteps=None):
|
72 |
+
b, c, h, w = x.shape
|
73 |
+
if timesteps is None:
|
74 |
+
timesteps = b
|
75 |
+
|
76 |
+
x = super().forward(x, temb)
|
77 |
+
|
78 |
+
if not skip_video:
|
79 |
+
x_mix = rearrange(x, "(b t) c h w -> b c t h w", t=timesteps)
|
80 |
+
|
81 |
+
x = rearrange(x, "(b t) c h w -> b c t h w", t=timesteps)
|
82 |
+
|
83 |
+
x = self.time_stack(x, temb)
|
84 |
+
|
85 |
+
alpha = self.get_alpha(bs=b // timesteps).to(x.device)
|
86 |
+
x = alpha * x + (1.0 - alpha) * x_mix
|
87 |
+
|
88 |
+
x = rearrange(x, "b c t h w -> (b t) c h w")
|
89 |
+
return x
|
90 |
+
|
91 |
+
|
92 |
+
class AE3DConv(ops.Conv2d):
|
93 |
+
def __init__(self, in_channels, out_channels, video_kernel_size=3, *args, **kwargs):
|
94 |
+
super().__init__(in_channels, out_channels, *args, **kwargs)
|
95 |
+
if isinstance(video_kernel_size, Iterable):
|
96 |
+
padding = [int(k // 2) for k in video_kernel_size]
|
97 |
+
else:
|
98 |
+
padding = int(video_kernel_size // 2)
|
99 |
+
|
100 |
+
self.time_mix_conv = ops.Conv3d(
|
101 |
+
in_channels=out_channels,
|
102 |
+
out_channels=out_channels,
|
103 |
+
kernel_size=video_kernel_size,
|
104 |
+
padding=padding,
|
105 |
+
)
|
106 |
+
|
107 |
+
def forward(self, input, timesteps=None, skip_video=False):
|
108 |
+
if timesteps is None:
|
109 |
+
timesteps = input.shape[0]
|
110 |
+
x = super().forward(input)
|
111 |
+
if skip_video:
|
112 |
+
return x
|
113 |
+
x = rearrange(x, "(b t) c h w -> b c t h w", t=timesteps)
|
114 |
+
x = self.time_mix_conv(x)
|
115 |
+
return rearrange(x, "b c t h w -> (b t) c h w")
|
116 |
+
|
117 |
+
|
118 |
+
class AttnVideoBlock(AttnBlock):
|
119 |
+
def __init__(
|
120 |
+
self, in_channels: int, alpha: float = 0, merge_strategy: str = "learned"
|
121 |
+
):
|
122 |
+
super().__init__(in_channels)
|
123 |
+
# no context, single headed, as in base class
|
124 |
+
self.time_mix_block = BasicTransformerBlock(
|
125 |
+
dim=in_channels,
|
126 |
+
n_heads=1,
|
127 |
+
d_head=in_channels,
|
128 |
+
checkpoint=False,
|
129 |
+
ff_in=True,
|
130 |
+
)
|
131 |
+
|
132 |
+
time_embed_dim = self.in_channels * 4
|
133 |
+
self.video_time_embed = torch.nn.Sequential(
|
134 |
+
ops.Linear(self.in_channels, time_embed_dim),
|
135 |
+
torch.nn.SiLU(),
|
136 |
+
ops.Linear(time_embed_dim, self.in_channels),
|
137 |
+
)
|
138 |
+
|
139 |
+
self.merge_strategy = merge_strategy
|
140 |
+
if self.merge_strategy == "fixed":
|
141 |
+
self.register_buffer("mix_factor", torch.Tensor([alpha]))
|
142 |
+
elif self.merge_strategy == "learned":
|
143 |
+
self.register_parameter(
|
144 |
+
"mix_factor", torch.nn.Parameter(torch.Tensor([alpha]))
|
145 |
+
)
|
146 |
+
else:
|
147 |
+
raise ValueError(f"unknown merge strategy {self.merge_strategy}")
|
148 |
+
|
149 |
+
def forward(self, x, timesteps=None, skip_time_block=False):
|
150 |
+
if skip_time_block:
|
151 |
+
return super().forward(x)
|
152 |
+
|
153 |
+
if timesteps is None:
|
154 |
+
timesteps = x.shape[0]
|
155 |
+
|
156 |
+
x_in = x
|
157 |
+
x = self.attention(x)
|
158 |
+
h, w = x.shape[2:]
|
159 |
+
x = rearrange(x, "b c h w -> b (h w) c")
|
160 |
+
|
161 |
+
x_mix = x
|
162 |
+
num_frames = torch.arange(timesteps, device=x.device)
|
163 |
+
num_frames = repeat(num_frames, "t -> b t", b=x.shape[0] // timesteps)
|
164 |
+
num_frames = rearrange(num_frames, "b t -> (b t)")
|
165 |
+
t_emb = timestep_embedding(num_frames, self.in_channels, repeat_only=False)
|
166 |
+
emb = self.video_time_embed(t_emb) # b, n_channels
|
167 |
+
emb = emb[:, None, :]
|
168 |
+
x_mix = x_mix + emb
|
169 |
+
|
170 |
+
alpha = self.get_alpha().to(x.device)
|
171 |
+
x_mix = self.time_mix_block(x_mix, timesteps=timesteps)
|
172 |
+
x = alpha * x + (1.0 - alpha) * x_mix # alpha merge
|
173 |
+
|
174 |
+
x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w)
|
175 |
+
x = self.proj_out(x)
|
176 |
+
|
177 |
+
return x_in + x
|
178 |
+
|
179 |
+
def get_alpha(
|
180 |
+
self,
|
181 |
+
):
|
182 |
+
if self.merge_strategy == "fixed":
|
183 |
+
return self.mix_factor
|
184 |
+
elif self.merge_strategy == "learned":
|
185 |
+
return torch.sigmoid(self.mix_factor)
|
186 |
+
else:
|
187 |
+
raise NotImplementedError(f"unknown merge strategy {self.merge_strategy}")
|
188 |
+
|
189 |
+
|
190 |
+
|
191 |
+
def make_time_attn(
|
192 |
+
in_channels,
|
193 |
+
attn_type="vanilla",
|
194 |
+
attn_kwargs=None,
|
195 |
+
alpha: float = 0,
|
196 |
+
merge_strategy: str = "learned",
|
197 |
+
):
|
198 |
+
return partialclass(
|
199 |
+
AttnVideoBlock, in_channels, alpha=alpha, merge_strategy=merge_strategy
|
200 |
+
)
|
201 |
+
|
202 |
+
|
203 |
+
class Conv2DWrapper(torch.nn.Conv2d):
|
204 |
+
def forward(self, input: torch.Tensor, **kwargs) -> torch.Tensor:
|
205 |
+
return super().forward(input)
|
206 |
+
|
207 |
+
|
208 |
+
class VideoDecoder(Decoder):
|
209 |
+
available_time_modes = ["all", "conv-only", "attn-only"]
|
210 |
+
|
211 |
+
def __init__(
|
212 |
+
self,
|
213 |
+
*args,
|
214 |
+
video_kernel_size: Union[int, list] = 3,
|
215 |
+
alpha: float = 0.0,
|
216 |
+
merge_strategy: str = "learned",
|
217 |
+
time_mode: str = "conv-only",
|
218 |
+
**kwargs,
|
219 |
+
):
|
220 |
+
self.video_kernel_size = video_kernel_size
|
221 |
+
self.alpha = alpha
|
222 |
+
self.merge_strategy = merge_strategy
|
223 |
+
self.time_mode = time_mode
|
224 |
+
assert (
|
225 |
+
self.time_mode in self.available_time_modes
|
226 |
+
), f"time_mode parameter has to be in {self.available_time_modes}"
|
227 |
+
|
228 |
+
if self.time_mode != "attn-only":
|
229 |
+
kwargs["conv_out_op"] = partialclass(AE3DConv, video_kernel_size=self.video_kernel_size)
|
230 |
+
if self.time_mode not in ["conv-only", "only-last-conv"]:
|
231 |
+
kwargs["attn_op"] = partialclass(make_time_attn, alpha=self.alpha, merge_strategy=self.merge_strategy)
|
232 |
+
if self.time_mode not in ["attn-only", "only-last-conv"]:
|
233 |
+
kwargs["resnet_op"] = partialclass(VideoResBlock, video_kernel_size=self.video_kernel_size, alpha=self.alpha, merge_strategy=self.merge_strategy)
|
234 |
+
|
235 |
+
super().__init__(*args, **kwargs)
|
236 |
+
|
237 |
+
def get_last_layer(self, skip_time_mix=False, **kwargs):
|
238 |
+
if self.time_mode == "attn-only":
|
239 |
+
raise NotImplementedError("TODO")
|
240 |
+
else:
|
241 |
+
return (
|
242 |
+
self.conv_out.time_mix_conv.weight
|
243 |
+
if not skip_time_mix
|
244 |
+
else self.conv_out.weight
|
245 |
+
)
|
comfy/ldm/util.py
ADDED
@@ -0,0 +1,197 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import importlib
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch import optim
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
from inspect import isfunction
|
8 |
+
from PIL import Image, ImageDraw, ImageFont
|
9 |
+
|
10 |
+
|
11 |
+
def log_txt_as_img(wh, xc, size=10):
|
12 |
+
# wh a tuple of (width, height)
|
13 |
+
# xc a list of captions to plot
|
14 |
+
b = len(xc)
|
15 |
+
txts = list()
|
16 |
+
for bi in range(b):
|
17 |
+
txt = Image.new("RGB", wh, color="white")
|
18 |
+
draw = ImageDraw.Draw(txt)
|
19 |
+
font = ImageFont.truetype('data/DejaVuSans.ttf', size=size)
|
20 |
+
nc = int(40 * (wh[0] / 256))
|
21 |
+
lines = "\n".join(xc[bi][start:start + nc] for start in range(0, len(xc[bi]), nc))
|
22 |
+
|
23 |
+
try:
|
24 |
+
draw.text((0, 0), lines, fill="black", font=font)
|
25 |
+
except UnicodeEncodeError:
|
26 |
+
print("Cant encode string for logging. Skipping.")
|
27 |
+
|
28 |
+
txt = np.array(txt).transpose(2, 0, 1) / 127.5 - 1.0
|
29 |
+
txts.append(txt)
|
30 |
+
txts = np.stack(txts)
|
31 |
+
txts = torch.tensor(txts)
|
32 |
+
return txts
|
33 |
+
|
34 |
+
|
35 |
+
def ismap(x):
|
36 |
+
if not isinstance(x, torch.Tensor):
|
37 |
+
return False
|
38 |
+
return (len(x.shape) == 4) and (x.shape[1] > 3)
|
39 |
+
|
40 |
+
|
41 |
+
def isimage(x):
|
42 |
+
if not isinstance(x,torch.Tensor):
|
43 |
+
return False
|
44 |
+
return (len(x.shape) == 4) and (x.shape[1] == 3 or x.shape[1] == 1)
|
45 |
+
|
46 |
+
|
47 |
+
def exists(x):
|
48 |
+
return x is not None
|
49 |
+
|
50 |
+
|
51 |
+
def default(val, d):
|
52 |
+
if exists(val):
|
53 |
+
return val
|
54 |
+
return d() if isfunction(d) else d
|
55 |
+
|
56 |
+
|
57 |
+
def mean_flat(tensor):
|
58 |
+
"""
|
59 |
+
https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/nn.py#L86
|
60 |
+
Take the mean over all non-batch dimensions.
|
61 |
+
"""
|
62 |
+
return tensor.mean(dim=list(range(1, len(tensor.shape))))
|
63 |
+
|
64 |
+
|
65 |
+
def count_params(model, verbose=False):
|
66 |
+
total_params = sum(p.numel() for p in model.parameters())
|
67 |
+
if verbose:
|
68 |
+
print(f"{model.__class__.__name__} has {total_params*1.e-6:.2f} M params.")
|
69 |
+
return total_params
|
70 |
+
|
71 |
+
|
72 |
+
def instantiate_from_config(config):
|
73 |
+
if not "target" in config:
|
74 |
+
if config == '__is_first_stage__':
|
75 |
+
return None
|
76 |
+
elif config == "__is_unconditional__":
|
77 |
+
return None
|
78 |
+
raise KeyError("Expected key `target` to instantiate.")
|
79 |
+
return get_obj_from_str(config["target"])(**config.get("params", dict()))
|
80 |
+
|
81 |
+
|
82 |
+
def get_obj_from_str(string, reload=False):
|
83 |
+
module, cls = string.rsplit(".", 1)
|
84 |
+
if reload:
|
85 |
+
module_imp = importlib.import_module(module)
|
86 |
+
importlib.reload(module_imp)
|
87 |
+
return getattr(importlib.import_module(module, package=None), cls)
|
88 |
+
|
89 |
+
|
90 |
+
class AdamWwithEMAandWings(optim.Optimizer):
|
91 |
+
# credit to https://gist.github.com/crowsonkb/65f7265353f403714fce3b2595e0b298
|
92 |
+
def __init__(self, params, lr=1.e-3, betas=(0.9, 0.999), eps=1.e-8, # TODO: check hyperparameters before using
|
93 |
+
weight_decay=1.e-2, amsgrad=False, ema_decay=0.9999, # ema decay to match previous code
|
94 |
+
ema_power=1., param_names=()):
|
95 |
+
"""AdamW that saves EMA versions of the parameters."""
|
96 |
+
if not 0.0 <= lr:
|
97 |
+
raise ValueError("Invalid learning rate: {}".format(lr))
|
98 |
+
if not 0.0 <= eps:
|
99 |
+
raise ValueError("Invalid epsilon value: {}".format(eps))
|
100 |
+
if not 0.0 <= betas[0] < 1.0:
|
101 |
+
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
|
102 |
+
if not 0.0 <= betas[1] < 1.0:
|
103 |
+
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
|
104 |
+
if not 0.0 <= weight_decay:
|
105 |
+
raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
|
106 |
+
if not 0.0 <= ema_decay <= 1.0:
|
107 |
+
raise ValueError("Invalid ema_decay value: {}".format(ema_decay))
|
108 |
+
defaults = dict(lr=lr, betas=betas, eps=eps,
|
109 |
+
weight_decay=weight_decay, amsgrad=amsgrad, ema_decay=ema_decay,
|
110 |
+
ema_power=ema_power, param_names=param_names)
|
111 |
+
super().__init__(params, defaults)
|
112 |
+
|
113 |
+
def __setstate__(self, state):
|
114 |
+
super().__setstate__(state)
|
115 |
+
for group in self.param_groups:
|
116 |
+
group.setdefault('amsgrad', False)
|
117 |
+
|
118 |
+
@torch.no_grad()
|
119 |
+
def step(self, closure=None):
|
120 |
+
"""Performs a single optimization step.
|
121 |
+
Args:
|
122 |
+
closure (callable, optional): A closure that reevaluates the model
|
123 |
+
and returns the loss.
|
124 |
+
"""
|
125 |
+
loss = None
|
126 |
+
if closure is not None:
|
127 |
+
with torch.enable_grad():
|
128 |
+
loss = closure()
|
129 |
+
|
130 |
+
for group in self.param_groups:
|
131 |
+
params_with_grad = []
|
132 |
+
grads = []
|
133 |
+
exp_avgs = []
|
134 |
+
exp_avg_sqs = []
|
135 |
+
ema_params_with_grad = []
|
136 |
+
state_sums = []
|
137 |
+
max_exp_avg_sqs = []
|
138 |
+
state_steps = []
|
139 |
+
amsgrad = group['amsgrad']
|
140 |
+
beta1, beta2 = group['betas']
|
141 |
+
ema_decay = group['ema_decay']
|
142 |
+
ema_power = group['ema_power']
|
143 |
+
|
144 |
+
for p in group['params']:
|
145 |
+
if p.grad is None:
|
146 |
+
continue
|
147 |
+
params_with_grad.append(p)
|
148 |
+
if p.grad.is_sparse:
|
149 |
+
raise RuntimeError('AdamW does not support sparse gradients')
|
150 |
+
grads.append(p.grad)
|
151 |
+
|
152 |
+
state = self.state[p]
|
153 |
+
|
154 |
+
# State initialization
|
155 |
+
if len(state) == 0:
|
156 |
+
state['step'] = 0
|
157 |
+
# Exponential moving average of gradient values
|
158 |
+
state['exp_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format)
|
159 |
+
# Exponential moving average of squared gradient values
|
160 |
+
state['exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format)
|
161 |
+
if amsgrad:
|
162 |
+
# Maintains max of all exp. moving avg. of sq. grad. values
|
163 |
+
state['max_exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format)
|
164 |
+
# Exponential moving average of parameter values
|
165 |
+
state['param_exp_avg'] = p.detach().float().clone()
|
166 |
+
|
167 |
+
exp_avgs.append(state['exp_avg'])
|
168 |
+
exp_avg_sqs.append(state['exp_avg_sq'])
|
169 |
+
ema_params_with_grad.append(state['param_exp_avg'])
|
170 |
+
|
171 |
+
if amsgrad:
|
172 |
+
max_exp_avg_sqs.append(state['max_exp_avg_sq'])
|
173 |
+
|
174 |
+
# update the steps for each param group update
|
175 |
+
state['step'] += 1
|
176 |
+
# record the step after step update
|
177 |
+
state_steps.append(state['step'])
|
178 |
+
|
179 |
+
optim._functional.adamw(params_with_grad,
|
180 |
+
grads,
|
181 |
+
exp_avgs,
|
182 |
+
exp_avg_sqs,
|
183 |
+
max_exp_avg_sqs,
|
184 |
+
state_steps,
|
185 |
+
amsgrad=amsgrad,
|
186 |
+
beta1=beta1,
|
187 |
+
beta2=beta2,
|
188 |
+
lr=group['lr'],
|
189 |
+
weight_decay=group['weight_decay'],
|
190 |
+
eps=group['eps'],
|
191 |
+
maximize=False)
|
192 |
+
|
193 |
+
cur_ema_decay = min(ema_decay, 1 - state['step'] ** -ema_power)
|
194 |
+
for param, ema_param in zip(params_with_grad, ema_params_with_grad):
|
195 |
+
ema_param.mul_(cur_ema_decay).add_(param.float(), alpha=1 - cur_ema_decay)
|
196 |
+
|
197 |
+
return loss
|
comfy/lora.py
ADDED
@@ -0,0 +1,234 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import comfy.utils
|
2 |
+
|
3 |
+
LORA_CLIP_MAP = {
|
4 |
+
"mlp.fc1": "mlp_fc1",
|
5 |
+
"mlp.fc2": "mlp_fc2",
|
6 |
+
"self_attn.k_proj": "self_attn_k_proj",
|
7 |
+
"self_attn.q_proj": "self_attn_q_proj",
|
8 |
+
"self_attn.v_proj": "self_attn_v_proj",
|
9 |
+
"self_attn.out_proj": "self_attn_out_proj",
|
10 |
+
}
|
11 |
+
|
12 |
+
|
13 |
+
def load_lora(lora, to_load):
|
14 |
+
patch_dict = {}
|
15 |
+
loaded_keys = set()
|
16 |
+
for x in to_load:
|
17 |
+
alpha_name = "{}.alpha".format(x)
|
18 |
+
alpha = None
|
19 |
+
if alpha_name in lora.keys():
|
20 |
+
alpha = lora[alpha_name].item()
|
21 |
+
loaded_keys.add(alpha_name)
|
22 |
+
|
23 |
+
regular_lora = "{}.lora_up.weight".format(x)
|
24 |
+
diffusers_lora = "{}_lora.up.weight".format(x)
|
25 |
+
transformers_lora = "{}.lora_linear_layer.up.weight".format(x)
|
26 |
+
A_name = None
|
27 |
+
|
28 |
+
if regular_lora in lora.keys():
|
29 |
+
A_name = regular_lora
|
30 |
+
B_name = "{}.lora_down.weight".format(x)
|
31 |
+
mid_name = "{}.lora_mid.weight".format(x)
|
32 |
+
elif diffusers_lora in lora.keys():
|
33 |
+
A_name = diffusers_lora
|
34 |
+
B_name = "{}_lora.down.weight".format(x)
|
35 |
+
mid_name = None
|
36 |
+
elif transformers_lora in lora.keys():
|
37 |
+
A_name = transformers_lora
|
38 |
+
B_name ="{}.lora_linear_layer.down.weight".format(x)
|
39 |
+
mid_name = None
|
40 |
+
|
41 |
+
if A_name is not None:
|
42 |
+
mid = None
|
43 |
+
if mid_name is not None and mid_name in lora.keys():
|
44 |
+
mid = lora[mid_name]
|
45 |
+
loaded_keys.add(mid_name)
|
46 |
+
patch_dict[to_load[x]] = ("lora", (lora[A_name], lora[B_name], alpha, mid))
|
47 |
+
loaded_keys.add(A_name)
|
48 |
+
loaded_keys.add(B_name)
|
49 |
+
|
50 |
+
|
51 |
+
######## loha
|
52 |
+
hada_w1_a_name = "{}.hada_w1_a".format(x)
|
53 |
+
hada_w1_b_name = "{}.hada_w1_b".format(x)
|
54 |
+
hada_w2_a_name = "{}.hada_w2_a".format(x)
|
55 |
+
hada_w2_b_name = "{}.hada_w2_b".format(x)
|
56 |
+
hada_t1_name = "{}.hada_t1".format(x)
|
57 |
+
hada_t2_name = "{}.hada_t2".format(x)
|
58 |
+
if hada_w1_a_name in lora.keys():
|
59 |
+
hada_t1 = None
|
60 |
+
hada_t2 = None
|
61 |
+
if hada_t1_name in lora.keys():
|
62 |
+
hada_t1 = lora[hada_t1_name]
|
63 |
+
hada_t2 = lora[hada_t2_name]
|
64 |
+
loaded_keys.add(hada_t1_name)
|
65 |
+
loaded_keys.add(hada_t2_name)
|
66 |
+
|
67 |
+
patch_dict[to_load[x]] = ("loha", (lora[hada_w1_a_name], lora[hada_w1_b_name], alpha, lora[hada_w2_a_name], lora[hada_w2_b_name], hada_t1, hada_t2))
|
68 |
+
loaded_keys.add(hada_w1_a_name)
|
69 |
+
loaded_keys.add(hada_w1_b_name)
|
70 |
+
loaded_keys.add(hada_w2_a_name)
|
71 |
+
loaded_keys.add(hada_w2_b_name)
|
72 |
+
|
73 |
+
|
74 |
+
######## lokr
|
75 |
+
lokr_w1_name = "{}.lokr_w1".format(x)
|
76 |
+
lokr_w2_name = "{}.lokr_w2".format(x)
|
77 |
+
lokr_w1_a_name = "{}.lokr_w1_a".format(x)
|
78 |
+
lokr_w1_b_name = "{}.lokr_w1_b".format(x)
|
79 |
+
lokr_t2_name = "{}.lokr_t2".format(x)
|
80 |
+
lokr_w2_a_name = "{}.lokr_w2_a".format(x)
|
81 |
+
lokr_w2_b_name = "{}.lokr_w2_b".format(x)
|
82 |
+
|
83 |
+
lokr_w1 = None
|
84 |
+
if lokr_w1_name in lora.keys():
|
85 |
+
lokr_w1 = lora[lokr_w1_name]
|
86 |
+
loaded_keys.add(lokr_w1_name)
|
87 |
+
|
88 |
+
lokr_w2 = None
|
89 |
+
if lokr_w2_name in lora.keys():
|
90 |
+
lokr_w2 = lora[lokr_w2_name]
|
91 |
+
loaded_keys.add(lokr_w2_name)
|
92 |
+
|
93 |
+
lokr_w1_a = None
|
94 |
+
if lokr_w1_a_name in lora.keys():
|
95 |
+
lokr_w1_a = lora[lokr_w1_a_name]
|
96 |
+
loaded_keys.add(lokr_w1_a_name)
|
97 |
+
|
98 |
+
lokr_w1_b = None
|
99 |
+
if lokr_w1_b_name in lora.keys():
|
100 |
+
lokr_w1_b = lora[lokr_w1_b_name]
|
101 |
+
loaded_keys.add(lokr_w1_b_name)
|
102 |
+
|
103 |
+
lokr_w2_a = None
|
104 |
+
if lokr_w2_a_name in lora.keys():
|
105 |
+
lokr_w2_a = lora[lokr_w2_a_name]
|
106 |
+
loaded_keys.add(lokr_w2_a_name)
|
107 |
+
|
108 |
+
lokr_w2_b = None
|
109 |
+
if lokr_w2_b_name in lora.keys():
|
110 |
+
lokr_w2_b = lora[lokr_w2_b_name]
|
111 |
+
loaded_keys.add(lokr_w2_b_name)
|
112 |
+
|
113 |
+
lokr_t2 = None
|
114 |
+
if lokr_t2_name in lora.keys():
|
115 |
+
lokr_t2 = lora[lokr_t2_name]
|
116 |
+
loaded_keys.add(lokr_t2_name)
|
117 |
+
|
118 |
+
if (lokr_w1 is not None) or (lokr_w2 is not None) or (lokr_w1_a is not None) or (lokr_w2_a is not None):
|
119 |
+
patch_dict[to_load[x]] = ("lokr", (lokr_w1, lokr_w2, alpha, lokr_w1_a, lokr_w1_b, lokr_w2_a, lokr_w2_b, lokr_t2))
|
120 |
+
|
121 |
+
#glora
|
122 |
+
a1_name = "{}.a1.weight".format(x)
|
123 |
+
a2_name = "{}.a2.weight".format(x)
|
124 |
+
b1_name = "{}.b1.weight".format(x)
|
125 |
+
b2_name = "{}.b2.weight".format(x)
|
126 |
+
if a1_name in lora:
|
127 |
+
patch_dict[to_load[x]] = ("glora", (lora[a1_name], lora[a2_name], lora[b1_name], lora[b2_name], alpha))
|
128 |
+
loaded_keys.add(a1_name)
|
129 |
+
loaded_keys.add(a2_name)
|
130 |
+
loaded_keys.add(b1_name)
|
131 |
+
loaded_keys.add(b2_name)
|
132 |
+
|
133 |
+
w_norm_name = "{}.w_norm".format(x)
|
134 |
+
b_norm_name = "{}.b_norm".format(x)
|
135 |
+
w_norm = lora.get(w_norm_name, None)
|
136 |
+
b_norm = lora.get(b_norm_name, None)
|
137 |
+
|
138 |
+
if w_norm is not None:
|
139 |
+
loaded_keys.add(w_norm_name)
|
140 |
+
patch_dict[to_load[x]] = ("diff", (w_norm,))
|
141 |
+
if b_norm is not None:
|
142 |
+
loaded_keys.add(b_norm_name)
|
143 |
+
patch_dict["{}.bias".format(to_load[x][:-len(".weight")])] = ("diff", (b_norm,))
|
144 |
+
|
145 |
+
diff_name = "{}.diff".format(x)
|
146 |
+
diff_weight = lora.get(diff_name, None)
|
147 |
+
if diff_weight is not None:
|
148 |
+
patch_dict[to_load[x]] = ("diff", (diff_weight,))
|
149 |
+
loaded_keys.add(diff_name)
|
150 |
+
|
151 |
+
diff_bias_name = "{}.diff_b".format(x)
|
152 |
+
diff_bias = lora.get(diff_bias_name, None)
|
153 |
+
if diff_bias is not None:
|
154 |
+
patch_dict["{}.bias".format(to_load[x][:-len(".weight")])] = ("diff", (diff_bias,))
|
155 |
+
loaded_keys.add(diff_bias_name)
|
156 |
+
|
157 |
+
for x in lora.keys():
|
158 |
+
if x not in loaded_keys:
|
159 |
+
print("lora key not loaded", x)
|
160 |
+
return patch_dict
|
161 |
+
|
162 |
+
def model_lora_keys_clip(model, key_map={}):
|
163 |
+
sdk = model.state_dict().keys()
|
164 |
+
|
165 |
+
text_model_lora_key = "lora_te_text_model_encoder_layers_{}_{}"
|
166 |
+
clip_l_present = False
|
167 |
+
for b in range(32): #TODO: clean up
|
168 |
+
for c in LORA_CLIP_MAP:
|
169 |
+
k = "clip_h.transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
|
170 |
+
if k in sdk:
|
171 |
+
lora_key = text_model_lora_key.format(b, LORA_CLIP_MAP[c])
|
172 |
+
key_map[lora_key] = k
|
173 |
+
lora_key = "lora_te1_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c])
|
174 |
+
key_map[lora_key] = k
|
175 |
+
lora_key = "text_encoder.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora
|
176 |
+
key_map[lora_key] = k
|
177 |
+
|
178 |
+
k = "clip_l.transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
|
179 |
+
if k in sdk:
|
180 |
+
lora_key = text_model_lora_key.format(b, LORA_CLIP_MAP[c])
|
181 |
+
key_map[lora_key] = k
|
182 |
+
lora_key = "lora_te1_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #SDXL base
|
183 |
+
key_map[lora_key] = k
|
184 |
+
clip_l_present = True
|
185 |
+
lora_key = "text_encoder.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora
|
186 |
+
key_map[lora_key] = k
|
187 |
+
|
188 |
+
k = "clip_g.transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
|
189 |
+
if k in sdk:
|
190 |
+
if clip_l_present:
|
191 |
+
lora_key = "lora_te2_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #SDXL base
|
192 |
+
key_map[lora_key] = k
|
193 |
+
lora_key = "text_encoder_2.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora
|
194 |
+
key_map[lora_key] = k
|
195 |
+
else:
|
196 |
+
lora_key = "lora_te_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #TODO: test if this is correct for SDXL-Refiner
|
197 |
+
key_map[lora_key] = k
|
198 |
+
lora_key = "text_encoder.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora
|
199 |
+
key_map[lora_key] = k
|
200 |
+
lora_key = "lora_prior_te_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #cascade lora: TODO put lora key prefix in the model config
|
201 |
+
key_map[lora_key] = k
|
202 |
+
|
203 |
+
|
204 |
+
k = "clip_g.transformer.text_projection.weight"
|
205 |
+
if k in sdk:
|
206 |
+
key_map["lora_prior_te_text_projection"] = k #cascade lora?
|
207 |
+
# key_map["text_encoder.text_projection"] = k #TODO: check if other lora have the text_projection too
|
208 |
+
# key_map["lora_te_text_projection"] = k
|
209 |
+
|
210 |
+
return key_map
|
211 |
+
|
212 |
+
def model_lora_keys_unet(model, key_map={}):
|
213 |
+
sdk = model.state_dict().keys()
|
214 |
+
|
215 |
+
for k in sdk:
|
216 |
+
if k.startswith("diffusion_model.") and k.endswith(".weight"):
|
217 |
+
key_lora = k[len("diffusion_model."):-len(".weight")].replace(".", "_")
|
218 |
+
key_map["lora_unet_{}".format(key_lora)] = k
|
219 |
+
key_map["lora_prior_unet_{}".format(key_lora)] = k #cascade lora: TODO put lora key prefix in the model config
|
220 |
+
|
221 |
+
diffusers_keys = comfy.utils.unet_to_diffusers(model.model_config.unet_config)
|
222 |
+
for k in diffusers_keys:
|
223 |
+
if k.endswith(".weight"):
|
224 |
+
unet_key = "diffusion_model.{}".format(diffusers_keys[k])
|
225 |
+
key_lora = k[:-len(".weight")].replace(".", "_")
|
226 |
+
key_map["lora_unet_{}".format(key_lora)] = unet_key
|
227 |
+
|
228 |
+
diffusers_lora_prefix = ["", "unet."]
|
229 |
+
for p in diffusers_lora_prefix:
|
230 |
+
diffusers_lora_key = "{}{}".format(p, k[:-len(".weight")].replace(".to_", ".processor.to_"))
|
231 |
+
if diffusers_lora_key.endswith(".to_out.0"):
|
232 |
+
diffusers_lora_key = diffusers_lora_key[:-2]
|
233 |
+
key_map[diffusers_lora_key] = unet_key
|
234 |
+
return key_map
|
comfy/model_base.py
ADDED
@@ -0,0 +1,491 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from comfy.ldm.modules.diffusionmodules.openaimodel import UNetModel, Timestep
|
3 |
+
from comfy.ldm.cascade.stage_c import StageC
|
4 |
+
from comfy.ldm.cascade.stage_b import StageB
|
5 |
+
from comfy.ldm.modules.encoders.noise_aug_modules import CLIPEmbeddingNoiseAugmentation
|
6 |
+
from comfy.ldm.modules.diffusionmodules.upscaling import ImageConcatWithNoiseAugmentation
|
7 |
+
import comfy.model_management
|
8 |
+
import comfy.conds
|
9 |
+
import comfy.ops
|
10 |
+
from enum import Enum
|
11 |
+
from . import utils
|
12 |
+
|
13 |
+
class ModelType(Enum):
|
14 |
+
EPS = 1
|
15 |
+
V_PREDICTION = 2
|
16 |
+
V_PREDICTION_EDM = 3
|
17 |
+
STABLE_CASCADE = 4
|
18 |
+
EDM = 5
|
19 |
+
|
20 |
+
|
21 |
+
from comfy.model_sampling import EPS, V_PREDICTION, EDM, ModelSamplingDiscrete, ModelSamplingContinuousEDM, StableCascadeSampling
|
22 |
+
|
23 |
+
|
24 |
+
def model_sampling(model_config, model_type):
|
25 |
+
s = ModelSamplingDiscrete
|
26 |
+
|
27 |
+
if model_type == ModelType.EPS:
|
28 |
+
c = EPS
|
29 |
+
elif model_type == ModelType.V_PREDICTION:
|
30 |
+
c = V_PREDICTION
|
31 |
+
elif model_type == ModelType.V_PREDICTION_EDM:
|
32 |
+
c = V_PREDICTION
|
33 |
+
s = ModelSamplingContinuousEDM
|
34 |
+
elif model_type == ModelType.STABLE_CASCADE:
|
35 |
+
c = EPS
|
36 |
+
s = StableCascadeSampling
|
37 |
+
elif model_type == ModelType.EDM:
|
38 |
+
c = EDM
|
39 |
+
s = ModelSamplingContinuousEDM
|
40 |
+
|
41 |
+
class ModelSampling(s, c):
|
42 |
+
pass
|
43 |
+
|
44 |
+
return ModelSampling(model_config)
|
45 |
+
|
46 |
+
|
47 |
+
class BaseModel(torch.nn.Module):
|
48 |
+
def __init__(self, model_config, model_type=ModelType.EPS, device=None, unet_model=UNetModel):
|
49 |
+
super().__init__()
|
50 |
+
|
51 |
+
unet_config = model_config.unet_config
|
52 |
+
self.latent_format = model_config.latent_format
|
53 |
+
self.model_config = model_config
|
54 |
+
self.manual_cast_dtype = model_config.manual_cast_dtype
|
55 |
+
|
56 |
+
if not unet_config.get("disable_unet_model_creation", False):
|
57 |
+
if self.manual_cast_dtype is not None:
|
58 |
+
operations = comfy.ops.manual_cast
|
59 |
+
else:
|
60 |
+
operations = comfy.ops.disable_weight_init
|
61 |
+
self.diffusion_model = unet_model(**unet_config, device=device, operations=operations)
|
62 |
+
self.model_type = model_type
|
63 |
+
self.model_sampling = model_sampling(model_config, model_type)
|
64 |
+
|
65 |
+
self.adm_channels = unet_config.get("adm_in_channels", None)
|
66 |
+
if self.adm_channels is None:
|
67 |
+
self.adm_channels = 0
|
68 |
+
self.inpaint_model = False
|
69 |
+
print("model_type", model_type.name)
|
70 |
+
print("adm", self.adm_channels)
|
71 |
+
|
72 |
+
def apply_model(self, x, t, c_concat=None, c_crossattn=None, control=None, transformer_options={}, **kwargs):
|
73 |
+
sigma = t
|
74 |
+
xc = self.model_sampling.calculate_input(sigma, x)
|
75 |
+
if c_concat is not None:
|
76 |
+
xc = torch.cat([xc] + [c_concat], dim=1)
|
77 |
+
|
78 |
+
context = c_crossattn
|
79 |
+
dtype = self.get_dtype()
|
80 |
+
|
81 |
+
if self.manual_cast_dtype is not None:
|
82 |
+
dtype = self.manual_cast_dtype
|
83 |
+
|
84 |
+
xc = xc.to(dtype)
|
85 |
+
t = self.model_sampling.timestep(t).float()
|
86 |
+
context = context.to(dtype)
|
87 |
+
extra_conds = {}
|
88 |
+
for o in kwargs:
|
89 |
+
extra = kwargs[o]
|
90 |
+
if hasattr(extra, "dtype"):
|
91 |
+
if extra.dtype != torch.int and extra.dtype != torch.long:
|
92 |
+
extra = extra.to(dtype)
|
93 |
+
extra_conds[o] = extra
|
94 |
+
|
95 |
+
model_output = self.diffusion_model(xc, t, context=context, control=control, transformer_options=transformer_options, **extra_conds).float()
|
96 |
+
return self.model_sampling.calculate_denoised(sigma, model_output, x)
|
97 |
+
|
98 |
+
def get_dtype(self):
|
99 |
+
return self.diffusion_model.dtype
|
100 |
+
|
101 |
+
def is_adm(self):
|
102 |
+
return self.adm_channels > 0
|
103 |
+
|
104 |
+
def encode_adm(self, **kwargs):
|
105 |
+
return None
|
106 |
+
|
107 |
+
def extra_conds(self, **kwargs):
|
108 |
+
out = {}
|
109 |
+
if self.inpaint_model:
|
110 |
+
concat_keys = ("mask", "masked_image")
|
111 |
+
cond_concat = []
|
112 |
+
denoise_mask = kwargs.get("concat_mask", kwargs.get("denoise_mask", None))
|
113 |
+
concat_latent_image = kwargs.get("concat_latent_image", None)
|
114 |
+
if concat_latent_image is None:
|
115 |
+
concat_latent_image = kwargs.get("latent_image", None)
|
116 |
+
else:
|
117 |
+
concat_latent_image = self.process_latent_in(concat_latent_image)
|
118 |
+
|
119 |
+
noise = kwargs.get("noise", None)
|
120 |
+
device = kwargs["device"]
|
121 |
+
|
122 |
+
if concat_latent_image.shape[1:] != noise.shape[1:]:
|
123 |
+
concat_latent_image = utils.common_upscale(concat_latent_image, noise.shape[-1], noise.shape[-2], "bilinear", "center")
|
124 |
+
|
125 |
+
concat_latent_image = utils.resize_to_batch_size(concat_latent_image, noise.shape[0])
|
126 |
+
|
127 |
+
if len(denoise_mask.shape) == len(noise.shape):
|
128 |
+
denoise_mask = denoise_mask[:,:1]
|
129 |
+
|
130 |
+
denoise_mask = denoise_mask.reshape((-1, 1, denoise_mask.shape[-2], denoise_mask.shape[-1]))
|
131 |
+
if denoise_mask.shape[-2:] != noise.shape[-2:]:
|
132 |
+
denoise_mask = utils.common_upscale(denoise_mask, noise.shape[-1], noise.shape[-2], "bilinear", "center")
|
133 |
+
denoise_mask = utils.resize_to_batch_size(denoise_mask.round(), noise.shape[0])
|
134 |
+
|
135 |
+
def blank_inpaint_image_like(latent_image):
|
136 |
+
blank_image = torch.ones_like(latent_image)
|
137 |
+
# these are the values for "zero" in pixel space translated to latent space
|
138 |
+
blank_image[:,0] *= 0.8223
|
139 |
+
blank_image[:,1] *= -0.6876
|
140 |
+
blank_image[:,2] *= 0.6364
|
141 |
+
blank_image[:,3] *= 0.1380
|
142 |
+
return blank_image
|
143 |
+
|
144 |
+
for ck in concat_keys:
|
145 |
+
if denoise_mask is not None:
|
146 |
+
if ck == "mask":
|
147 |
+
cond_concat.append(denoise_mask.to(device))
|
148 |
+
elif ck == "masked_image":
|
149 |
+
cond_concat.append(concat_latent_image.to(device)) #NOTE: the latent_image should be masked by the mask in pixel space
|
150 |
+
else:
|
151 |
+
if ck == "mask":
|
152 |
+
cond_concat.append(torch.ones_like(noise)[:,:1])
|
153 |
+
elif ck == "masked_image":
|
154 |
+
cond_concat.append(blank_inpaint_image_like(noise))
|
155 |
+
data = torch.cat(cond_concat, dim=1)
|
156 |
+
out['c_concat'] = comfy.conds.CONDNoiseShape(data)
|
157 |
+
|
158 |
+
adm = self.encode_adm(**kwargs)
|
159 |
+
if adm is not None:
|
160 |
+
out['y'] = comfy.conds.CONDRegular(adm)
|
161 |
+
|
162 |
+
cross_attn = kwargs.get("cross_attn", None)
|
163 |
+
if cross_attn is not None:
|
164 |
+
out['c_crossattn'] = comfy.conds.CONDCrossAttn(cross_attn)
|
165 |
+
|
166 |
+
cross_attn_cnet = kwargs.get("cross_attn_controlnet", None)
|
167 |
+
if cross_attn_cnet is not None:
|
168 |
+
out['crossattn_controlnet'] = comfy.conds.CONDCrossAttn(cross_attn_cnet)
|
169 |
+
|
170 |
+
c_concat = kwargs.get("noise_concat", None)
|
171 |
+
if c_concat is not None:
|
172 |
+
out['c_concat'] = comfy.conds.CONDNoiseShape(data)
|
173 |
+
|
174 |
+
return out
|
175 |
+
|
176 |
+
def load_model_weights(self, sd, unet_prefix=""):
|
177 |
+
to_load = {}
|
178 |
+
keys = list(sd.keys())
|
179 |
+
for k in keys:
|
180 |
+
if k.startswith(unet_prefix):
|
181 |
+
to_load[k[len(unet_prefix):]] = sd.pop(k)
|
182 |
+
|
183 |
+
to_load = self.model_config.process_unet_state_dict(to_load)
|
184 |
+
m, u = self.diffusion_model.load_state_dict(to_load, strict=False)
|
185 |
+
if len(m) > 0:
|
186 |
+
print("unet missing:", m)
|
187 |
+
|
188 |
+
if len(u) > 0:
|
189 |
+
print("unet unexpected:", u)
|
190 |
+
del to_load
|
191 |
+
return self
|
192 |
+
|
193 |
+
def process_latent_in(self, latent):
|
194 |
+
return self.latent_format.process_in(latent)
|
195 |
+
|
196 |
+
def process_latent_out(self, latent):
|
197 |
+
return self.latent_format.process_out(latent)
|
198 |
+
|
199 |
+
def state_dict_for_saving(self, clip_state_dict=None, vae_state_dict=None, clip_vision_state_dict=None):
|
200 |
+
extra_sds = []
|
201 |
+
if clip_state_dict is not None:
|
202 |
+
extra_sds.append(self.model_config.process_clip_state_dict_for_saving(clip_state_dict))
|
203 |
+
if vae_state_dict is not None:
|
204 |
+
extra_sds.append(self.model_config.process_vae_state_dict_for_saving(vae_state_dict))
|
205 |
+
if clip_vision_state_dict is not None:
|
206 |
+
extra_sds.append(self.model_config.process_clip_vision_state_dict_for_saving(clip_vision_state_dict))
|
207 |
+
|
208 |
+
unet_state_dict = self.diffusion_model.state_dict()
|
209 |
+
unet_state_dict = self.model_config.process_unet_state_dict_for_saving(unet_state_dict)
|
210 |
+
|
211 |
+
if self.get_dtype() == torch.float16:
|
212 |
+
extra_sds = map(lambda sd: utils.convert_sd_to(sd, torch.float16), extra_sds)
|
213 |
+
|
214 |
+
if self.model_type == ModelType.V_PREDICTION:
|
215 |
+
unet_state_dict["v_pred"] = torch.tensor([])
|
216 |
+
|
217 |
+
for sd in extra_sds:
|
218 |
+
unet_state_dict.update(sd)
|
219 |
+
|
220 |
+
return unet_state_dict
|
221 |
+
|
222 |
+
def set_inpaint(self):
|
223 |
+
self.inpaint_model = True
|
224 |
+
|
225 |
+
def memory_required(self, input_shape):
|
226 |
+
if comfy.model_management.xformers_enabled() or comfy.model_management.pytorch_attention_flash_attention():
|
227 |
+
dtype = self.get_dtype()
|
228 |
+
if self.manual_cast_dtype is not None:
|
229 |
+
dtype = self.manual_cast_dtype
|
230 |
+
#TODO: this needs to be tweaked
|
231 |
+
area = input_shape[0] * input_shape[2] * input_shape[3]
|
232 |
+
return (area * comfy.model_management.dtype_size(dtype) / 50) * (1024 * 1024)
|
233 |
+
else:
|
234 |
+
#TODO: this formula might be too aggressive since I tweaked the sub-quad and split algorithms to use less memory.
|
235 |
+
area = input_shape[0] * input_shape[2] * input_shape[3]
|
236 |
+
return (((area * 0.6) / 0.9) + 1024) * (1024 * 1024)
|
237 |
+
|
238 |
+
|
239 |
+
def unclip_adm(unclip_conditioning, device, noise_augmentor, noise_augment_merge=0.0, seed=None):
|
240 |
+
adm_inputs = []
|
241 |
+
weights = []
|
242 |
+
noise_aug = []
|
243 |
+
for unclip_cond in unclip_conditioning:
|
244 |
+
for adm_cond in unclip_cond["clip_vision_output"].image_embeds:
|
245 |
+
weight = unclip_cond["strength"]
|
246 |
+
noise_augment = unclip_cond["noise_augmentation"]
|
247 |
+
noise_level = round((noise_augmentor.max_noise_level - 1) * noise_augment)
|
248 |
+
c_adm, noise_level_emb = noise_augmentor(adm_cond.to(device), noise_level=torch.tensor([noise_level], device=device), seed=seed)
|
249 |
+
adm_out = torch.cat((c_adm, noise_level_emb), 1) * weight
|
250 |
+
weights.append(weight)
|
251 |
+
noise_aug.append(noise_augment)
|
252 |
+
adm_inputs.append(adm_out)
|
253 |
+
|
254 |
+
if len(noise_aug) > 1:
|
255 |
+
adm_out = torch.stack(adm_inputs).sum(0)
|
256 |
+
noise_augment = noise_augment_merge
|
257 |
+
noise_level = round((noise_augmentor.max_noise_level - 1) * noise_augment)
|
258 |
+
c_adm, noise_level_emb = noise_augmentor(adm_out[:, :noise_augmentor.time_embed.dim], noise_level=torch.tensor([noise_level], device=device))
|
259 |
+
adm_out = torch.cat((c_adm, noise_level_emb), 1)
|
260 |
+
|
261 |
+
return adm_out
|
262 |
+
|
263 |
+
class SD21UNCLIP(BaseModel):
|
264 |
+
def __init__(self, model_config, noise_aug_config, model_type=ModelType.V_PREDICTION, device=None):
|
265 |
+
super().__init__(model_config, model_type, device=device)
|
266 |
+
self.noise_augmentor = CLIPEmbeddingNoiseAugmentation(**noise_aug_config)
|
267 |
+
|
268 |
+
def encode_adm(self, **kwargs):
|
269 |
+
unclip_conditioning = kwargs.get("unclip_conditioning", None)
|
270 |
+
device = kwargs["device"]
|
271 |
+
if unclip_conditioning is None:
|
272 |
+
return torch.zeros((1, self.adm_channels))
|
273 |
+
else:
|
274 |
+
return unclip_adm(unclip_conditioning, device, self.noise_augmentor, kwargs.get("unclip_noise_augment_merge", 0.05), kwargs.get("seed", 0) - 10)
|
275 |
+
|
276 |
+
def sdxl_pooled(args, noise_augmentor):
|
277 |
+
if "unclip_conditioning" in args:
|
278 |
+
return unclip_adm(args.get("unclip_conditioning", None), args["device"], noise_augmentor, seed=args.get("seed", 0) - 10)[:,:1280]
|
279 |
+
else:
|
280 |
+
return args["pooled_output"]
|
281 |
+
|
282 |
+
class SDXLRefiner(BaseModel):
|
283 |
+
def __init__(self, model_config, model_type=ModelType.EPS, device=None):
|
284 |
+
super().__init__(model_config, model_type, device=device)
|
285 |
+
self.embedder = Timestep(256)
|
286 |
+
self.noise_augmentor = CLIPEmbeddingNoiseAugmentation(**{"noise_schedule_config": {"timesteps": 1000, "beta_schedule": "squaredcos_cap_v2"}, "timestep_dim": 1280})
|
287 |
+
|
288 |
+
def encode_adm(self, **kwargs):
|
289 |
+
clip_pooled = sdxl_pooled(kwargs, self.noise_augmentor)
|
290 |
+
width = kwargs.get("width", 768)
|
291 |
+
height = kwargs.get("height", 768)
|
292 |
+
crop_w = kwargs.get("crop_w", 0)
|
293 |
+
crop_h = kwargs.get("crop_h", 0)
|
294 |
+
|
295 |
+
if kwargs.get("prompt_type", "") == "negative":
|
296 |
+
aesthetic_score = kwargs.get("aesthetic_score", 2.5)
|
297 |
+
else:
|
298 |
+
aesthetic_score = kwargs.get("aesthetic_score", 6)
|
299 |
+
|
300 |
+
out = []
|
301 |
+
out.append(self.embedder(torch.Tensor([height])))
|
302 |
+
out.append(self.embedder(torch.Tensor([width])))
|
303 |
+
out.append(self.embedder(torch.Tensor([crop_h])))
|
304 |
+
out.append(self.embedder(torch.Tensor([crop_w])))
|
305 |
+
out.append(self.embedder(torch.Tensor([aesthetic_score])))
|
306 |
+
flat = torch.flatten(torch.cat(out)).unsqueeze(dim=0).repeat(clip_pooled.shape[0], 1)
|
307 |
+
return torch.cat((clip_pooled.to(flat.device), flat), dim=1)
|
308 |
+
|
309 |
+
class SDXL(BaseModel):
|
310 |
+
def __init__(self, model_config, model_type=ModelType.EPS, device=None):
|
311 |
+
super().__init__(model_config, model_type, device=device)
|
312 |
+
self.embedder = Timestep(256)
|
313 |
+
self.noise_augmentor = CLIPEmbeddingNoiseAugmentation(**{"noise_schedule_config": {"timesteps": 1000, "beta_schedule": "squaredcos_cap_v2"}, "timestep_dim": 1280})
|
314 |
+
|
315 |
+
def encode_adm(self, **kwargs):
|
316 |
+
clip_pooled = sdxl_pooled(kwargs, self.noise_augmentor)
|
317 |
+
width = kwargs.get("width", 768)
|
318 |
+
height = kwargs.get("height", 768)
|
319 |
+
crop_w = kwargs.get("crop_w", 0)
|
320 |
+
crop_h = kwargs.get("crop_h", 0)
|
321 |
+
target_width = kwargs.get("target_width", width)
|
322 |
+
target_height = kwargs.get("target_height", height)
|
323 |
+
|
324 |
+
out = []
|
325 |
+
out.append(self.embedder(torch.Tensor([height])))
|
326 |
+
out.append(self.embedder(torch.Tensor([width])))
|
327 |
+
out.append(self.embedder(torch.Tensor([crop_h])))
|
328 |
+
out.append(self.embedder(torch.Tensor([crop_w])))
|
329 |
+
out.append(self.embedder(torch.Tensor([target_height])))
|
330 |
+
out.append(self.embedder(torch.Tensor([target_width])))
|
331 |
+
flat = torch.flatten(torch.cat(out)).unsqueeze(dim=0).repeat(clip_pooled.shape[0], 1)
|
332 |
+
return torch.cat((clip_pooled.to(flat.device), flat), dim=1)
|
333 |
+
|
334 |
+
class SVD_img2vid(BaseModel):
|
335 |
+
def __init__(self, model_config, model_type=ModelType.V_PREDICTION_EDM, device=None):
|
336 |
+
super().__init__(model_config, model_type, device=device)
|
337 |
+
self.embedder = Timestep(256)
|
338 |
+
|
339 |
+
def encode_adm(self, **kwargs):
|
340 |
+
fps_id = kwargs.get("fps", 6) - 1
|
341 |
+
motion_bucket_id = kwargs.get("motion_bucket_id", 127)
|
342 |
+
augmentation = kwargs.get("augmentation_level", 0)
|
343 |
+
|
344 |
+
out = []
|
345 |
+
out.append(self.embedder(torch.Tensor([fps_id])))
|
346 |
+
out.append(self.embedder(torch.Tensor([motion_bucket_id])))
|
347 |
+
out.append(self.embedder(torch.Tensor([augmentation])))
|
348 |
+
|
349 |
+
flat = torch.flatten(torch.cat(out)).unsqueeze(dim=0)
|
350 |
+
return flat
|
351 |
+
|
352 |
+
def extra_conds(self, **kwargs):
|
353 |
+
out = {}
|
354 |
+
adm = self.encode_adm(**kwargs)
|
355 |
+
if adm is not None:
|
356 |
+
out['y'] = comfy.conds.CONDRegular(adm)
|
357 |
+
|
358 |
+
latent_image = kwargs.get("concat_latent_image", None)
|
359 |
+
noise = kwargs.get("noise", None)
|
360 |
+
device = kwargs["device"]
|
361 |
+
|
362 |
+
if latent_image is None:
|
363 |
+
latent_image = torch.zeros_like(noise)
|
364 |
+
|
365 |
+
if latent_image.shape[1:] != noise.shape[1:]:
|
366 |
+
latent_image = utils.common_upscale(latent_image, noise.shape[-1], noise.shape[-2], "bilinear", "center")
|
367 |
+
|
368 |
+
latent_image = utils.resize_to_batch_size(latent_image, noise.shape[0])
|
369 |
+
|
370 |
+
out['c_concat'] = comfy.conds.CONDNoiseShape(latent_image)
|
371 |
+
|
372 |
+
cross_attn = kwargs.get("cross_attn", None)
|
373 |
+
if cross_attn is not None:
|
374 |
+
out['c_crossattn'] = comfy.conds.CONDCrossAttn(cross_attn)
|
375 |
+
|
376 |
+
if "time_conditioning" in kwargs:
|
377 |
+
out["time_context"] = comfy.conds.CONDCrossAttn(kwargs["time_conditioning"])
|
378 |
+
|
379 |
+
out['num_video_frames'] = comfy.conds.CONDConstant(noise.shape[0])
|
380 |
+
return out
|
381 |
+
|
382 |
+
class Stable_Zero123(BaseModel):
|
383 |
+
def __init__(self, model_config, model_type=ModelType.EPS, device=None, cc_projection_weight=None, cc_projection_bias=None):
|
384 |
+
super().__init__(model_config, model_type, device=device)
|
385 |
+
self.cc_projection = comfy.ops.manual_cast.Linear(cc_projection_weight.shape[1], cc_projection_weight.shape[0], dtype=self.get_dtype(), device=device)
|
386 |
+
self.cc_projection.weight.copy_(cc_projection_weight)
|
387 |
+
self.cc_projection.bias.copy_(cc_projection_bias)
|
388 |
+
|
389 |
+
def extra_conds(self, **kwargs):
|
390 |
+
out = {}
|
391 |
+
|
392 |
+
latent_image = kwargs.get("concat_latent_image", None)
|
393 |
+
noise = kwargs.get("noise", None)
|
394 |
+
|
395 |
+
if latent_image is None:
|
396 |
+
latent_image = torch.zeros_like(noise)
|
397 |
+
|
398 |
+
if latent_image.shape[1:] != noise.shape[1:]:
|
399 |
+
latent_image = utils.common_upscale(latent_image, noise.shape[-1], noise.shape[-2], "bilinear", "center")
|
400 |
+
|
401 |
+
latent_image = utils.resize_to_batch_size(latent_image, noise.shape[0])
|
402 |
+
|
403 |
+
out['c_concat'] = comfy.conds.CONDNoiseShape(latent_image)
|
404 |
+
|
405 |
+
cross_attn = kwargs.get("cross_attn", None)
|
406 |
+
if cross_attn is not None:
|
407 |
+
if cross_attn.shape[-1] != 768:
|
408 |
+
cross_attn = self.cc_projection(cross_attn)
|
409 |
+
out['c_crossattn'] = comfy.conds.CONDCrossAttn(cross_attn)
|
410 |
+
return out
|
411 |
+
|
412 |
+
class SD_X4Upscaler(BaseModel):
|
413 |
+
def __init__(self, model_config, model_type=ModelType.V_PREDICTION, device=None):
|
414 |
+
super().__init__(model_config, model_type, device=device)
|
415 |
+
self.noise_augmentor = ImageConcatWithNoiseAugmentation(noise_schedule_config={"linear_start": 0.0001, "linear_end": 0.02}, max_noise_level=350)
|
416 |
+
|
417 |
+
def extra_conds(self, **kwargs):
|
418 |
+
out = {}
|
419 |
+
|
420 |
+
image = kwargs.get("concat_image", None)
|
421 |
+
noise = kwargs.get("noise", None)
|
422 |
+
noise_augment = kwargs.get("noise_augmentation", 0.0)
|
423 |
+
device = kwargs["device"]
|
424 |
+
seed = kwargs["seed"] - 10
|
425 |
+
|
426 |
+
noise_level = round((self.noise_augmentor.max_noise_level) * noise_augment)
|
427 |
+
|
428 |
+
if image is None:
|
429 |
+
image = torch.zeros_like(noise)[:,:3]
|
430 |
+
|
431 |
+
if image.shape[1:] != noise.shape[1:]:
|
432 |
+
image = utils.common_upscale(image.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center")
|
433 |
+
|
434 |
+
noise_level = torch.tensor([noise_level], device=device)
|
435 |
+
if noise_augment > 0:
|
436 |
+
image, noise_level = self.noise_augmentor(image.to(device), noise_level=noise_level, seed=seed)
|
437 |
+
|
438 |
+
image = utils.resize_to_batch_size(image, noise.shape[0])
|
439 |
+
|
440 |
+
out['c_concat'] = comfy.conds.CONDNoiseShape(image)
|
441 |
+
out['y'] = comfy.conds.CONDRegular(noise_level)
|
442 |
+
return out
|
443 |
+
|
444 |
+
class StableCascade_C(BaseModel):
|
445 |
+
def __init__(self, model_config, model_type=ModelType.STABLE_CASCADE, device=None):
|
446 |
+
super().__init__(model_config, model_type, device=device, unet_model=StageC)
|
447 |
+
self.diffusion_model.eval().requires_grad_(False)
|
448 |
+
|
449 |
+
def extra_conds(self, **kwargs):
|
450 |
+
out = {}
|
451 |
+
clip_text_pooled = kwargs["pooled_output"]
|
452 |
+
if clip_text_pooled is not None:
|
453 |
+
out['clip_text_pooled'] = comfy.conds.CONDRegular(clip_text_pooled)
|
454 |
+
|
455 |
+
if "unclip_conditioning" in kwargs:
|
456 |
+
embeds = []
|
457 |
+
for unclip_cond in kwargs["unclip_conditioning"]:
|
458 |
+
weight = unclip_cond["strength"]
|
459 |
+
embeds.append(unclip_cond["clip_vision_output"].image_embeds.unsqueeze(0) * weight)
|
460 |
+
clip_img = torch.cat(embeds, dim=1)
|
461 |
+
else:
|
462 |
+
clip_img = torch.zeros((1, 1, 768))
|
463 |
+
out["clip_img"] = comfy.conds.CONDRegular(clip_img)
|
464 |
+
out["sca"] = comfy.conds.CONDRegular(torch.zeros((1,)))
|
465 |
+
out["crp"] = comfy.conds.CONDRegular(torch.zeros((1,)))
|
466 |
+
|
467 |
+
cross_attn = kwargs.get("cross_attn", None)
|
468 |
+
if cross_attn is not None:
|
469 |
+
out['clip_text'] = comfy.conds.CONDCrossAttn(cross_attn)
|
470 |
+
return out
|
471 |
+
|
472 |
+
|
473 |
+
class StableCascade_B(BaseModel):
|
474 |
+
def __init__(self, model_config, model_type=ModelType.STABLE_CASCADE, device=None):
|
475 |
+
super().__init__(model_config, model_type, device=device, unet_model=StageB)
|
476 |
+
self.diffusion_model.eval().requires_grad_(False)
|
477 |
+
|
478 |
+
def extra_conds(self, **kwargs):
|
479 |
+
out = {}
|
480 |
+
noise = kwargs.get("noise", None)
|
481 |
+
|
482 |
+
clip_text_pooled = kwargs["pooled_output"]
|
483 |
+
if clip_text_pooled is not None:
|
484 |
+
out['clip'] = comfy.conds.CONDRegular(clip_text_pooled)
|
485 |
+
|
486 |
+
#size of prior doesn't really matter if zeros because it gets resized but I still want it to get batched
|
487 |
+
prior = kwargs.get("stable_cascade_prior", torch.zeros((1, 16, (noise.shape[2] * 4) // 42, (noise.shape[3] * 4) // 42), dtype=noise.dtype, layout=noise.layout, device=noise.device))
|
488 |
+
|
489 |
+
out["effnet"] = comfy.conds.CONDRegular(prior)
|
490 |
+
out["sca"] = comfy.conds.CONDRegular(torch.zeros((1,)))
|
491 |
+
return out
|
comfy/model_detection.py
ADDED
@@ -0,0 +1,363 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import comfy.supported_models
|
2 |
+
import comfy.supported_models_base
|
3 |
+
|
4 |
+
def count_blocks(state_dict_keys, prefix_string):
|
5 |
+
count = 0
|
6 |
+
while True:
|
7 |
+
c = False
|
8 |
+
for k in state_dict_keys:
|
9 |
+
if k.startswith(prefix_string.format(count)):
|
10 |
+
c = True
|
11 |
+
break
|
12 |
+
if c == False:
|
13 |
+
break
|
14 |
+
count += 1
|
15 |
+
return count
|
16 |
+
|
17 |
+
def calculate_transformer_depth(prefix, state_dict_keys, state_dict):
|
18 |
+
context_dim = None
|
19 |
+
use_linear_in_transformer = False
|
20 |
+
|
21 |
+
transformer_prefix = prefix + "1.transformer_blocks."
|
22 |
+
transformer_keys = sorted(list(filter(lambda a: a.startswith(transformer_prefix), state_dict_keys)))
|
23 |
+
if len(transformer_keys) > 0:
|
24 |
+
last_transformer_depth = count_blocks(state_dict_keys, transformer_prefix + '{}')
|
25 |
+
context_dim = state_dict['{}0.attn2.to_k.weight'.format(transformer_prefix)].shape[1]
|
26 |
+
use_linear_in_transformer = len(state_dict['{}1.proj_in.weight'.format(prefix)].shape) == 2
|
27 |
+
time_stack = '{}1.time_stack.0.attn1.to_q.weight'.format(prefix) in state_dict or '{}1.time_mix_blocks.0.attn1.to_q.weight'.format(prefix) in state_dict
|
28 |
+
return last_transformer_depth, context_dim, use_linear_in_transformer, time_stack
|
29 |
+
return None
|
30 |
+
|
31 |
+
def detect_unet_config(state_dict, key_prefix):
|
32 |
+
state_dict_keys = list(state_dict.keys())
|
33 |
+
|
34 |
+
if '{}clf.1.weight'.format(key_prefix) in state_dict_keys: #stable cascade
|
35 |
+
unet_config = {}
|
36 |
+
text_mapper_name = '{}clip_txt_mapper.weight'.format(key_prefix)
|
37 |
+
if text_mapper_name in state_dict_keys:
|
38 |
+
unet_config['stable_cascade_stage'] = 'c'
|
39 |
+
w = state_dict[text_mapper_name]
|
40 |
+
if w.shape[0] == 1536: #stage c lite
|
41 |
+
unet_config['c_cond'] = 1536
|
42 |
+
unet_config['c_hidden'] = [1536, 1536]
|
43 |
+
unet_config['nhead'] = [24, 24]
|
44 |
+
unet_config['blocks'] = [[4, 12], [12, 4]]
|
45 |
+
elif w.shape[0] == 2048: #stage c full
|
46 |
+
unet_config['c_cond'] = 2048
|
47 |
+
elif '{}clip_mapper.weight'.format(key_prefix) in state_dict_keys:
|
48 |
+
unet_config['stable_cascade_stage'] = 'b'
|
49 |
+
w = state_dict['{}down_blocks.1.0.channelwise.0.weight'.format(key_prefix)]
|
50 |
+
if w.shape[-1] == 640:
|
51 |
+
unet_config['c_hidden'] = [320, 640, 1280, 1280]
|
52 |
+
unet_config['nhead'] = [-1, -1, 20, 20]
|
53 |
+
unet_config['blocks'] = [[2, 6, 28, 6], [6, 28, 6, 2]]
|
54 |
+
unet_config['block_repeat'] = [[1, 1, 1, 1], [3, 3, 2, 2]]
|
55 |
+
elif w.shape[-1] == 576: #stage b lite
|
56 |
+
unet_config['c_hidden'] = [320, 576, 1152, 1152]
|
57 |
+
unet_config['nhead'] = [-1, 9, 18, 18]
|
58 |
+
unet_config['blocks'] = [[2, 4, 14, 4], [4, 14, 4, 2]]
|
59 |
+
unet_config['block_repeat'] = [[1, 1, 1, 1], [2, 2, 2, 2]]
|
60 |
+
|
61 |
+
return unet_config
|
62 |
+
|
63 |
+
unet_config = {
|
64 |
+
"use_checkpoint": False,
|
65 |
+
"image_size": 32,
|
66 |
+
"use_spatial_transformer": True,
|
67 |
+
"legacy": False
|
68 |
+
}
|
69 |
+
|
70 |
+
y_input = '{}label_emb.0.0.weight'.format(key_prefix)
|
71 |
+
if y_input in state_dict_keys:
|
72 |
+
unet_config["num_classes"] = "sequential"
|
73 |
+
unet_config["adm_in_channels"] = state_dict[y_input].shape[1]
|
74 |
+
else:
|
75 |
+
unet_config["adm_in_channels"] = None
|
76 |
+
|
77 |
+
model_channels = state_dict['{}input_blocks.0.0.weight'.format(key_prefix)].shape[0]
|
78 |
+
in_channels = state_dict['{}input_blocks.0.0.weight'.format(key_prefix)].shape[1]
|
79 |
+
|
80 |
+
out_key = '{}out.2.weight'.format(key_prefix)
|
81 |
+
if out_key in state_dict:
|
82 |
+
out_channels = state_dict[out_key].shape[0]
|
83 |
+
else:
|
84 |
+
out_channels = 4
|
85 |
+
|
86 |
+
num_res_blocks = []
|
87 |
+
channel_mult = []
|
88 |
+
attention_resolutions = []
|
89 |
+
transformer_depth = []
|
90 |
+
transformer_depth_output = []
|
91 |
+
context_dim = None
|
92 |
+
use_linear_in_transformer = False
|
93 |
+
|
94 |
+
video_model = False
|
95 |
+
|
96 |
+
current_res = 1
|
97 |
+
count = 0
|
98 |
+
|
99 |
+
last_res_blocks = 0
|
100 |
+
last_channel_mult = 0
|
101 |
+
|
102 |
+
input_block_count = count_blocks(state_dict_keys, '{}input_blocks'.format(key_prefix) + '.{}.')
|
103 |
+
for count in range(input_block_count):
|
104 |
+
prefix = '{}input_blocks.{}.'.format(key_prefix, count)
|
105 |
+
prefix_output = '{}output_blocks.{}.'.format(key_prefix, input_block_count - count - 1)
|
106 |
+
|
107 |
+
block_keys = sorted(list(filter(lambda a: a.startswith(prefix), state_dict_keys)))
|
108 |
+
if len(block_keys) == 0:
|
109 |
+
break
|
110 |
+
|
111 |
+
block_keys_output = sorted(list(filter(lambda a: a.startswith(prefix_output), state_dict_keys)))
|
112 |
+
|
113 |
+
if "{}0.op.weight".format(prefix) in block_keys: #new layer
|
114 |
+
num_res_blocks.append(last_res_blocks)
|
115 |
+
channel_mult.append(last_channel_mult)
|
116 |
+
|
117 |
+
current_res *= 2
|
118 |
+
last_res_blocks = 0
|
119 |
+
last_channel_mult = 0
|
120 |
+
out = calculate_transformer_depth(prefix_output, state_dict_keys, state_dict)
|
121 |
+
if out is not None:
|
122 |
+
transformer_depth_output.append(out[0])
|
123 |
+
else:
|
124 |
+
transformer_depth_output.append(0)
|
125 |
+
else:
|
126 |
+
res_block_prefix = "{}0.in_layers.0.weight".format(prefix)
|
127 |
+
if res_block_prefix in block_keys:
|
128 |
+
last_res_blocks += 1
|
129 |
+
last_channel_mult = state_dict["{}0.out_layers.3.weight".format(prefix)].shape[0] // model_channels
|
130 |
+
|
131 |
+
out = calculate_transformer_depth(prefix, state_dict_keys, state_dict)
|
132 |
+
if out is not None:
|
133 |
+
transformer_depth.append(out[0])
|
134 |
+
if context_dim is None:
|
135 |
+
context_dim = out[1]
|
136 |
+
use_linear_in_transformer = out[2]
|
137 |
+
video_model = out[3]
|
138 |
+
else:
|
139 |
+
transformer_depth.append(0)
|
140 |
+
|
141 |
+
res_block_prefix = "{}0.in_layers.0.weight".format(prefix_output)
|
142 |
+
if res_block_prefix in block_keys_output:
|
143 |
+
out = calculate_transformer_depth(prefix_output, state_dict_keys, state_dict)
|
144 |
+
if out is not None:
|
145 |
+
transformer_depth_output.append(out[0])
|
146 |
+
else:
|
147 |
+
transformer_depth_output.append(0)
|
148 |
+
|
149 |
+
|
150 |
+
num_res_blocks.append(last_res_blocks)
|
151 |
+
channel_mult.append(last_channel_mult)
|
152 |
+
if "{}middle_block.1.proj_in.weight".format(key_prefix) in state_dict_keys:
|
153 |
+
transformer_depth_middle = count_blocks(state_dict_keys, '{}middle_block.1.transformer_blocks.'.format(key_prefix) + '{}')
|
154 |
+
elif "{}middle_block.0.in_layers.0.weight".format(key_prefix) in state_dict_keys:
|
155 |
+
transformer_depth_middle = -1
|
156 |
+
else:
|
157 |
+
transformer_depth_middle = -2
|
158 |
+
|
159 |
+
unet_config["in_channels"] = in_channels
|
160 |
+
unet_config["out_channels"] = out_channels
|
161 |
+
unet_config["model_channels"] = model_channels
|
162 |
+
unet_config["num_res_blocks"] = num_res_blocks
|
163 |
+
unet_config["transformer_depth"] = transformer_depth
|
164 |
+
unet_config["transformer_depth_output"] = transformer_depth_output
|
165 |
+
unet_config["channel_mult"] = channel_mult
|
166 |
+
unet_config["transformer_depth_middle"] = transformer_depth_middle
|
167 |
+
unet_config['use_linear_in_transformer'] = use_linear_in_transformer
|
168 |
+
unet_config["context_dim"] = context_dim
|
169 |
+
|
170 |
+
if video_model:
|
171 |
+
unet_config["extra_ff_mix_layer"] = True
|
172 |
+
unet_config["use_spatial_context"] = True
|
173 |
+
unet_config["merge_strategy"] = "learned_with_images"
|
174 |
+
unet_config["merge_factor"] = 0.0
|
175 |
+
unet_config["video_kernel_size"] = [3, 1, 1]
|
176 |
+
unet_config["use_temporal_resblock"] = True
|
177 |
+
unet_config["use_temporal_attention"] = True
|
178 |
+
else:
|
179 |
+
unet_config["use_temporal_resblock"] = False
|
180 |
+
unet_config["use_temporal_attention"] = False
|
181 |
+
|
182 |
+
return unet_config
|
183 |
+
|
184 |
+
def model_config_from_unet_config(unet_config):
|
185 |
+
for model_config in comfy.supported_models.models:
|
186 |
+
if model_config.matches(unet_config):
|
187 |
+
return model_config(unet_config)
|
188 |
+
|
189 |
+
print("no match", unet_config)
|
190 |
+
return None
|
191 |
+
|
192 |
+
def model_config_from_unet(state_dict, unet_key_prefix, use_base_if_no_match=False):
|
193 |
+
unet_config = detect_unet_config(state_dict, unet_key_prefix)
|
194 |
+
model_config = model_config_from_unet_config(unet_config)
|
195 |
+
if model_config is None and use_base_if_no_match:
|
196 |
+
return comfy.supported_models_base.BASE(unet_config)
|
197 |
+
else:
|
198 |
+
return model_config
|
199 |
+
|
200 |
+
def convert_config(unet_config):
|
201 |
+
new_config = unet_config.copy()
|
202 |
+
num_res_blocks = new_config.get("num_res_blocks", None)
|
203 |
+
channel_mult = new_config.get("channel_mult", None)
|
204 |
+
|
205 |
+
if isinstance(num_res_blocks, int):
|
206 |
+
num_res_blocks = len(channel_mult) * [num_res_blocks]
|
207 |
+
|
208 |
+
if "attention_resolutions" in new_config:
|
209 |
+
attention_resolutions = new_config.pop("attention_resolutions")
|
210 |
+
transformer_depth = new_config.get("transformer_depth", None)
|
211 |
+
transformer_depth_middle = new_config.get("transformer_depth_middle", None)
|
212 |
+
|
213 |
+
if isinstance(transformer_depth, int):
|
214 |
+
transformer_depth = len(channel_mult) * [transformer_depth]
|
215 |
+
if transformer_depth_middle is None:
|
216 |
+
transformer_depth_middle = transformer_depth[-1]
|
217 |
+
t_in = []
|
218 |
+
t_out = []
|
219 |
+
s = 1
|
220 |
+
for i in range(len(num_res_blocks)):
|
221 |
+
res = num_res_blocks[i]
|
222 |
+
d = 0
|
223 |
+
if s in attention_resolutions:
|
224 |
+
d = transformer_depth[i]
|
225 |
+
|
226 |
+
t_in += [d] * res
|
227 |
+
t_out += [d] * (res + 1)
|
228 |
+
s *= 2
|
229 |
+
transformer_depth = t_in
|
230 |
+
transformer_depth_output = t_out
|
231 |
+
new_config["transformer_depth"] = t_in
|
232 |
+
new_config["transformer_depth_output"] = t_out
|
233 |
+
new_config["transformer_depth_middle"] = transformer_depth_middle
|
234 |
+
|
235 |
+
new_config["num_res_blocks"] = num_res_blocks
|
236 |
+
return new_config
|
237 |
+
|
238 |
+
|
239 |
+
def unet_config_from_diffusers_unet(state_dict, dtype=None):
|
240 |
+
match = {}
|
241 |
+
transformer_depth = []
|
242 |
+
|
243 |
+
attn_res = 1
|
244 |
+
down_blocks = count_blocks(state_dict, "down_blocks.{}")
|
245 |
+
for i in range(down_blocks):
|
246 |
+
attn_blocks = count_blocks(state_dict, "down_blocks.{}.attentions.".format(i) + '{}')
|
247 |
+
res_blocks = count_blocks(state_dict, "down_blocks.{}.resnets.".format(i) + '{}')
|
248 |
+
for ab in range(attn_blocks):
|
249 |
+
transformer_count = count_blocks(state_dict, "down_blocks.{}.attentions.{}.transformer_blocks.".format(i, ab) + '{}')
|
250 |
+
transformer_depth.append(transformer_count)
|
251 |
+
if transformer_count > 0:
|
252 |
+
match["context_dim"] = state_dict["down_blocks.{}.attentions.{}.transformer_blocks.0.attn2.to_k.weight".format(i, ab)].shape[1]
|
253 |
+
|
254 |
+
attn_res *= 2
|
255 |
+
if attn_blocks == 0:
|
256 |
+
for i in range(res_blocks):
|
257 |
+
transformer_depth.append(0)
|
258 |
+
|
259 |
+
match["transformer_depth"] = transformer_depth
|
260 |
+
|
261 |
+
match["model_channels"] = state_dict["conv_in.weight"].shape[0]
|
262 |
+
match["in_channels"] = state_dict["conv_in.weight"].shape[1]
|
263 |
+
match["adm_in_channels"] = None
|
264 |
+
if "class_embedding.linear_1.weight" in state_dict:
|
265 |
+
match["adm_in_channels"] = state_dict["class_embedding.linear_1.weight"].shape[1]
|
266 |
+
elif "add_embedding.linear_1.weight" in state_dict:
|
267 |
+
match["adm_in_channels"] = state_dict["add_embedding.linear_1.weight"].shape[1]
|
268 |
+
|
269 |
+
SDXL = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
|
270 |
+
'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320,
|
271 |
+
'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 2, 2, 10, 10], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 10,
|
272 |
+
'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 0, 2, 2, 2, 10, 10, 10],
|
273 |
+
'use_temporal_attention': False, 'use_temporal_resblock': False}
|
274 |
+
|
275 |
+
SDXL_refiner = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
|
276 |
+
'num_classes': 'sequential', 'adm_in_channels': 2560, 'dtype': dtype, 'in_channels': 4, 'model_channels': 384,
|
277 |
+
'num_res_blocks': [2, 2, 2, 2], 'transformer_depth': [0, 0, 4, 4, 4, 4, 0, 0], 'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 4,
|
278 |
+
'use_linear_in_transformer': True, 'context_dim': 1280, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 0, 4, 4, 4, 4, 4, 4, 0, 0, 0],
|
279 |
+
'use_temporal_attention': False, 'use_temporal_resblock': False}
|
280 |
+
|
281 |
+
SD21 = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
|
282 |
+
'adm_in_channels': None, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': [2, 2, 2, 2],
|
283 |
+
'transformer_depth': [1, 1, 1, 1, 1, 1, 0, 0], 'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 1, 'use_linear_in_transformer': True,
|
284 |
+
'context_dim': 1024, 'num_head_channels': 64, 'transformer_depth_output': [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0],
|
285 |
+
'use_temporal_attention': False, 'use_temporal_resblock': False}
|
286 |
+
|
287 |
+
SD21_uncliph = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
|
288 |
+
'num_classes': 'sequential', 'adm_in_channels': 2048, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320,
|
289 |
+
'num_res_blocks': [2, 2, 2, 2], 'transformer_depth': [1, 1, 1, 1, 1, 1, 0, 0], 'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 1,
|
290 |
+
'use_linear_in_transformer': True, 'context_dim': 1024, 'num_head_channels': 64, 'transformer_depth_output': [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0],
|
291 |
+
'use_temporal_attention': False, 'use_temporal_resblock': False}
|
292 |
+
|
293 |
+
SD21_unclipl = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
|
294 |
+
'num_classes': 'sequential', 'adm_in_channels': 1536, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320,
|
295 |
+
'num_res_blocks': [2, 2, 2, 2], 'transformer_depth': [1, 1, 1, 1, 1, 1, 0, 0], 'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 1,
|
296 |
+
'use_linear_in_transformer': True, 'context_dim': 1024, 'num_head_channels': 64, 'transformer_depth_output': [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0],
|
297 |
+
'use_temporal_attention': False, 'use_temporal_resblock': False}
|
298 |
+
|
299 |
+
SD15 = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, 'adm_in_channels': None,
|
300 |
+
'dtype': dtype, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': [2, 2, 2, 2], 'transformer_depth': [1, 1, 1, 1, 1, 1, 0, 0],
|
301 |
+
'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 1, 'use_linear_in_transformer': False, 'context_dim': 768, 'num_heads': 8,
|
302 |
+
'transformer_depth_output': [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0],
|
303 |
+
'use_temporal_attention': False, 'use_temporal_resblock': False}
|
304 |
+
|
305 |
+
SDXL_mid_cnet = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
|
306 |
+
'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320,
|
307 |
+
'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 0, 0, 1, 1], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 1,
|
308 |
+
'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 0, 0, 0, 0, 1, 1, 1],
|
309 |
+
'use_temporal_attention': False, 'use_temporal_resblock': False}
|
310 |
+
|
311 |
+
SDXL_small_cnet = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
|
312 |
+
'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320,
|
313 |
+
'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 0, 0, 0, 0], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 0,
|
314 |
+
'use_linear_in_transformer': True, 'num_head_channels': 64, 'context_dim': 1, 'transformer_depth_output': [0, 0, 0, 0, 0, 0, 0, 0, 0],
|
315 |
+
'use_temporal_attention': False, 'use_temporal_resblock': False}
|
316 |
+
|
317 |
+
SDXL_diffusers_inpaint = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
|
318 |
+
'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 9, 'model_channels': 320,
|
319 |
+
'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 2, 2, 10, 10], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 10,
|
320 |
+
'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 0, 2, 2, 2, 10, 10, 10],
|
321 |
+
'use_temporal_attention': False, 'use_temporal_resblock': False}
|
322 |
+
|
323 |
+
SSD_1B = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
|
324 |
+
'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320,
|
325 |
+
'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 2, 2, 4, 4], 'transformer_depth_output': [0, 0, 0, 1, 1, 2, 10, 4, 4],
|
326 |
+
'channel_mult': [1, 2, 4], 'transformer_depth_middle': -1, 'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64,
|
327 |
+
'use_temporal_attention': False, 'use_temporal_resblock': False}
|
328 |
+
|
329 |
+
Segmind_Vega = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
|
330 |
+
'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320,
|
331 |
+
'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 1, 1, 2, 2], 'transformer_depth_output': [0, 0, 0, 1, 1, 1, 2, 2, 2],
|
332 |
+
'channel_mult': [1, 2, 4], 'transformer_depth_middle': -1, 'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64,
|
333 |
+
'use_temporal_attention': False, 'use_temporal_resblock': False}
|
334 |
+
|
335 |
+
KOALA_700M = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
|
336 |
+
'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320,
|
337 |
+
'num_res_blocks': [1, 1, 1], 'transformer_depth': [0, 2, 5], 'transformer_depth_output': [0, 0, 2, 2, 5, 5],
|
338 |
+
'channel_mult': [1, 2, 4], 'transformer_depth_middle': -2, 'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64,
|
339 |
+
'use_temporal_attention': False, 'use_temporal_resblock': False}
|
340 |
+
|
341 |
+
KOALA_1B = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
|
342 |
+
'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320,
|
343 |
+
'num_res_blocks': [1, 1, 1], 'transformer_depth': [0, 2, 6], 'transformer_depth_output': [0, 0, 2, 2, 6, 6],
|
344 |
+
'channel_mult': [1, 2, 4], 'transformer_depth_middle': 6, 'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64,
|
345 |
+
'use_temporal_attention': False, 'use_temporal_resblock': False}
|
346 |
+
|
347 |
+
supported_models = [SDXL, SDXL_refiner, SD21, SD15, SD21_uncliph, SD21_unclipl, SDXL_mid_cnet, SDXL_small_cnet, SDXL_diffusers_inpaint, SSD_1B, Segmind_Vega, KOALA_700M, KOALA_1B]
|
348 |
+
|
349 |
+
for unet_config in supported_models:
|
350 |
+
matches = True
|
351 |
+
for k in match:
|
352 |
+
if match[k] != unet_config[k]:
|
353 |
+
matches = False
|
354 |
+
break
|
355 |
+
if matches:
|
356 |
+
return convert_config(unet_config)
|
357 |
+
return None
|
358 |
+
|
359 |
+
def model_config_from_diffusers_unet(state_dict):
|
360 |
+
unet_config = unet_config_from_diffusers_unet(state_dict)
|
361 |
+
if unet_config is not None:
|
362 |
+
return model_config_from_unet_config(unet_config)
|
363 |
+
return None
|
comfy/model_management.py
ADDED
@@ -0,0 +1,859 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import psutil
|
2 |
+
from enum import Enum
|
3 |
+
from comfy.cli_args import args
|
4 |
+
import comfy.utils
|
5 |
+
import torch
|
6 |
+
import sys
|
7 |
+
|
8 |
+
class VRAMState(Enum):
|
9 |
+
DISABLED = 0 #No vram present: no need to move models to vram
|
10 |
+
NO_VRAM = 1 #Very low vram: enable all the options to save vram
|
11 |
+
LOW_VRAM = 2
|
12 |
+
NORMAL_VRAM = 3
|
13 |
+
HIGH_VRAM = 4
|
14 |
+
SHARED = 5 #No dedicated vram: memory shared between CPU and GPU but models still need to be moved between both.
|
15 |
+
|
16 |
+
class CPUState(Enum):
|
17 |
+
GPU = 0
|
18 |
+
CPU = 1
|
19 |
+
MPS = 2
|
20 |
+
|
21 |
+
# Determine VRAM State
|
22 |
+
vram_state = VRAMState.NORMAL_VRAM
|
23 |
+
set_vram_to = VRAMState.NORMAL_VRAM
|
24 |
+
cpu_state = CPUState.GPU
|
25 |
+
|
26 |
+
total_vram = 0
|
27 |
+
|
28 |
+
lowvram_available = True
|
29 |
+
xpu_available = False
|
30 |
+
|
31 |
+
if args.deterministic:
|
32 |
+
print("Using deterministic algorithms for pytorch")
|
33 |
+
torch.use_deterministic_algorithms(True, warn_only=True)
|
34 |
+
|
35 |
+
directml_enabled = False
|
36 |
+
if args.directml is not None:
|
37 |
+
import torch_directml
|
38 |
+
directml_enabled = True
|
39 |
+
device_index = args.directml
|
40 |
+
if device_index < 0:
|
41 |
+
directml_device = torch_directml.device()
|
42 |
+
else:
|
43 |
+
directml_device = torch_directml.device(device_index)
|
44 |
+
print("Using directml with device:", torch_directml.device_name(device_index))
|
45 |
+
# torch_directml.disable_tiled_resources(True)
|
46 |
+
lowvram_available = False #TODO: need to find a way to get free memory in directml before this can be enabled by default.
|
47 |
+
|
48 |
+
try:
|
49 |
+
import intel_extension_for_pytorch as ipex
|
50 |
+
if torch.xpu.is_available():
|
51 |
+
xpu_available = True
|
52 |
+
except:
|
53 |
+
pass
|
54 |
+
|
55 |
+
try:
|
56 |
+
if torch.backends.mps.is_available():
|
57 |
+
cpu_state = CPUState.MPS
|
58 |
+
import torch.mps
|
59 |
+
except:
|
60 |
+
pass
|
61 |
+
|
62 |
+
if args.cpu:
|
63 |
+
cpu_state = CPUState.CPU
|
64 |
+
|
65 |
+
def is_intel_xpu():
|
66 |
+
global cpu_state
|
67 |
+
global xpu_available
|
68 |
+
if cpu_state == CPUState.GPU:
|
69 |
+
if xpu_available:
|
70 |
+
return True
|
71 |
+
return False
|
72 |
+
|
73 |
+
def get_torch_device():
|
74 |
+
global directml_enabled
|
75 |
+
global cpu_state
|
76 |
+
if directml_enabled:
|
77 |
+
global directml_device
|
78 |
+
return directml_device
|
79 |
+
if cpu_state == CPUState.MPS:
|
80 |
+
return torch.device("mps")
|
81 |
+
if cpu_state == CPUState.CPU:
|
82 |
+
return torch.device("cpu")
|
83 |
+
else:
|
84 |
+
if is_intel_xpu():
|
85 |
+
return torch.device("xpu")
|
86 |
+
else:
|
87 |
+
return torch.device(torch.cuda.current_device())
|
88 |
+
|
89 |
+
def get_total_memory(dev=None, torch_total_too=False):
|
90 |
+
global directml_enabled
|
91 |
+
if dev is None:
|
92 |
+
dev = get_torch_device()
|
93 |
+
|
94 |
+
if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'):
|
95 |
+
mem_total = psutil.virtual_memory().total
|
96 |
+
mem_total_torch = mem_total
|
97 |
+
else:
|
98 |
+
if directml_enabled:
|
99 |
+
mem_total = 1024 * 1024 * 1024 #TODO
|
100 |
+
mem_total_torch = mem_total
|
101 |
+
elif is_intel_xpu():
|
102 |
+
stats = torch.xpu.memory_stats(dev)
|
103 |
+
mem_reserved = stats['reserved_bytes.all.current']
|
104 |
+
mem_total = torch.xpu.get_device_properties(dev).total_memory
|
105 |
+
mem_total_torch = mem_reserved
|
106 |
+
else:
|
107 |
+
stats = torch.cuda.memory_stats(dev)
|
108 |
+
mem_reserved = stats['reserved_bytes.all.current']
|
109 |
+
_, mem_total_cuda = torch.cuda.mem_get_info(dev)
|
110 |
+
mem_total_torch = mem_reserved
|
111 |
+
mem_total = mem_total_cuda
|
112 |
+
|
113 |
+
if torch_total_too:
|
114 |
+
return (mem_total, mem_total_torch)
|
115 |
+
else:
|
116 |
+
return mem_total
|
117 |
+
|
118 |
+
total_vram = get_total_memory(get_torch_device()) / (1024 * 1024)
|
119 |
+
total_ram = psutil.virtual_memory().total / (1024 * 1024)
|
120 |
+
print("Total VRAM {:0.0f} MB, total RAM {:0.0f} MB".format(total_vram, total_ram))
|
121 |
+
if not args.normalvram and not args.cpu:
|
122 |
+
if lowvram_available and total_vram <= 4096:
|
123 |
+
print("Trying to enable lowvram mode because your GPU seems to have 4GB or less. If you don't want this use: --normalvram")
|
124 |
+
set_vram_to = VRAMState.LOW_VRAM
|
125 |
+
|
126 |
+
try:
|
127 |
+
OOM_EXCEPTION = torch.cuda.OutOfMemoryError
|
128 |
+
except:
|
129 |
+
OOM_EXCEPTION = Exception
|
130 |
+
|
131 |
+
XFORMERS_VERSION = ""
|
132 |
+
XFORMERS_ENABLED_VAE = True
|
133 |
+
if args.disable_xformers:
|
134 |
+
XFORMERS_IS_AVAILABLE = False
|
135 |
+
else:
|
136 |
+
try:
|
137 |
+
import xformers
|
138 |
+
import xformers.ops
|
139 |
+
XFORMERS_IS_AVAILABLE = True
|
140 |
+
try:
|
141 |
+
XFORMERS_IS_AVAILABLE = xformers._has_cpp_library
|
142 |
+
except:
|
143 |
+
pass
|
144 |
+
try:
|
145 |
+
XFORMERS_VERSION = xformers.version.__version__
|
146 |
+
print("xformers version:", XFORMERS_VERSION)
|
147 |
+
if XFORMERS_VERSION.startswith("0.0.18"):
|
148 |
+
print()
|
149 |
+
print("WARNING: This version of xformers has a major bug where you will get black images when generating high resolution images.")
|
150 |
+
print("Please downgrade or upgrade xformers to a different version.")
|
151 |
+
print()
|
152 |
+
XFORMERS_ENABLED_VAE = False
|
153 |
+
except:
|
154 |
+
pass
|
155 |
+
except:
|
156 |
+
XFORMERS_IS_AVAILABLE = False
|
157 |
+
|
158 |
+
def is_nvidia():
|
159 |
+
global cpu_state
|
160 |
+
if cpu_state == CPUState.GPU:
|
161 |
+
if torch.version.cuda:
|
162 |
+
return True
|
163 |
+
return False
|
164 |
+
|
165 |
+
ENABLE_PYTORCH_ATTENTION = False
|
166 |
+
if args.use_pytorch_cross_attention:
|
167 |
+
ENABLE_PYTORCH_ATTENTION = True
|
168 |
+
XFORMERS_IS_AVAILABLE = False
|
169 |
+
|
170 |
+
VAE_DTYPE = torch.float32
|
171 |
+
|
172 |
+
try:
|
173 |
+
if is_nvidia():
|
174 |
+
torch_version = torch.version.__version__
|
175 |
+
if int(torch_version[0]) >= 2:
|
176 |
+
if ENABLE_PYTORCH_ATTENTION == False and args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
|
177 |
+
ENABLE_PYTORCH_ATTENTION = True
|
178 |
+
if torch.cuda.is_bf16_supported() and torch.cuda.get_device_properties(torch.cuda.current_device()).major >= 8:
|
179 |
+
VAE_DTYPE = torch.bfloat16
|
180 |
+
if is_intel_xpu():
|
181 |
+
if args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
|
182 |
+
ENABLE_PYTORCH_ATTENTION = True
|
183 |
+
except:
|
184 |
+
pass
|
185 |
+
|
186 |
+
if is_intel_xpu():
|
187 |
+
VAE_DTYPE = torch.bfloat16
|
188 |
+
|
189 |
+
if args.cpu_vae:
|
190 |
+
VAE_DTYPE = torch.float32
|
191 |
+
|
192 |
+
if args.fp16_vae:
|
193 |
+
VAE_DTYPE = torch.float16
|
194 |
+
elif args.bf16_vae:
|
195 |
+
VAE_DTYPE = torch.bfloat16
|
196 |
+
elif args.fp32_vae:
|
197 |
+
VAE_DTYPE = torch.float32
|
198 |
+
|
199 |
+
|
200 |
+
if ENABLE_PYTORCH_ATTENTION:
|
201 |
+
torch.backends.cuda.enable_math_sdp(True)
|
202 |
+
torch.backends.cuda.enable_flash_sdp(True)
|
203 |
+
torch.backends.cuda.enable_mem_efficient_sdp(True)
|
204 |
+
|
205 |
+
if args.lowvram:
|
206 |
+
set_vram_to = VRAMState.LOW_VRAM
|
207 |
+
lowvram_available = True
|
208 |
+
elif args.novram:
|
209 |
+
set_vram_to = VRAMState.NO_VRAM
|
210 |
+
elif args.highvram or args.gpu_only:
|
211 |
+
vram_state = VRAMState.HIGH_VRAM
|
212 |
+
|
213 |
+
FORCE_FP32 = False
|
214 |
+
FORCE_FP16 = False
|
215 |
+
if args.force_fp32:
|
216 |
+
print("Forcing FP32, if this improves things please report it.")
|
217 |
+
FORCE_FP32 = True
|
218 |
+
|
219 |
+
if args.force_fp16:
|
220 |
+
print("Forcing FP16.")
|
221 |
+
FORCE_FP16 = True
|
222 |
+
|
223 |
+
if lowvram_available:
|
224 |
+
if set_vram_to in (VRAMState.LOW_VRAM, VRAMState.NO_VRAM):
|
225 |
+
vram_state = set_vram_to
|
226 |
+
|
227 |
+
|
228 |
+
if cpu_state != CPUState.GPU:
|
229 |
+
vram_state = VRAMState.DISABLED
|
230 |
+
|
231 |
+
if cpu_state == CPUState.MPS:
|
232 |
+
vram_state = VRAMState.SHARED
|
233 |
+
|
234 |
+
print(f"Set vram state to: {vram_state.name}")
|
235 |
+
|
236 |
+
DISABLE_SMART_MEMORY = args.disable_smart_memory
|
237 |
+
|
238 |
+
if DISABLE_SMART_MEMORY:
|
239 |
+
print("Disabling smart memory management")
|
240 |
+
|
241 |
+
def get_torch_device_name(device):
|
242 |
+
if hasattr(device, 'type'):
|
243 |
+
if device.type == "cuda":
|
244 |
+
try:
|
245 |
+
allocator_backend = torch.cuda.get_allocator_backend()
|
246 |
+
except:
|
247 |
+
allocator_backend = ""
|
248 |
+
return "{} {} : {}".format(device, torch.cuda.get_device_name(device), allocator_backend)
|
249 |
+
else:
|
250 |
+
return "{}".format(device.type)
|
251 |
+
elif is_intel_xpu():
|
252 |
+
return "{} {}".format(device, torch.xpu.get_device_name(device))
|
253 |
+
else:
|
254 |
+
return "CUDA {}: {}".format(device, torch.cuda.get_device_name(device))
|
255 |
+
|
256 |
+
try:
|
257 |
+
print("Device:", get_torch_device_name(get_torch_device()))
|
258 |
+
except:
|
259 |
+
print("Could not pick default device.")
|
260 |
+
|
261 |
+
print("VAE dtype:", VAE_DTYPE)
|
262 |
+
|
263 |
+
current_loaded_models = []
|
264 |
+
|
265 |
+
def module_size(module):
|
266 |
+
module_mem = 0
|
267 |
+
sd = module.state_dict()
|
268 |
+
for k in sd:
|
269 |
+
t = sd[k]
|
270 |
+
module_mem += t.nelement() * t.element_size()
|
271 |
+
return module_mem
|
272 |
+
|
273 |
+
class LoadedModel:
|
274 |
+
def __init__(self, model):
|
275 |
+
self.model = model
|
276 |
+
self.model_accelerated = False
|
277 |
+
self.device = model.load_device
|
278 |
+
|
279 |
+
def model_memory(self):
|
280 |
+
return self.model.model_size()
|
281 |
+
|
282 |
+
def model_memory_required(self, device):
|
283 |
+
if device == self.model.current_device:
|
284 |
+
return 0
|
285 |
+
else:
|
286 |
+
return self.model_memory()
|
287 |
+
|
288 |
+
def model_load(self, lowvram_model_memory=0):
|
289 |
+
patch_model_to = None
|
290 |
+
if lowvram_model_memory == 0:
|
291 |
+
patch_model_to = self.device
|
292 |
+
|
293 |
+
self.model.model_patches_to(self.device)
|
294 |
+
self.model.model_patches_to(self.model.model_dtype())
|
295 |
+
|
296 |
+
try:
|
297 |
+
self.real_model = self.model.patch_model(device_to=patch_model_to) #TODO: do something with loras and offloading to CPU
|
298 |
+
except Exception as e:
|
299 |
+
self.model.unpatch_model(self.model.offload_device)
|
300 |
+
self.model_unload()
|
301 |
+
raise e
|
302 |
+
|
303 |
+
if lowvram_model_memory > 0:
|
304 |
+
print("loading in lowvram mode", lowvram_model_memory/(1024 * 1024))
|
305 |
+
mem_counter = 0
|
306 |
+
for m in self.real_model.modules():
|
307 |
+
if hasattr(m, "comfy_cast_weights"):
|
308 |
+
m.prev_comfy_cast_weights = m.comfy_cast_weights
|
309 |
+
m.comfy_cast_weights = True
|
310 |
+
module_mem = module_size(m)
|
311 |
+
if mem_counter + module_mem < lowvram_model_memory:
|
312 |
+
m.to(self.device)
|
313 |
+
mem_counter += module_mem
|
314 |
+
elif hasattr(m, "weight"): #only modules with comfy_cast_weights can be set to lowvram mode
|
315 |
+
m.to(self.device)
|
316 |
+
mem_counter += module_size(m)
|
317 |
+
print("lowvram: loaded module regularly", m)
|
318 |
+
|
319 |
+
self.model_accelerated = True
|
320 |
+
|
321 |
+
if is_intel_xpu() and not args.disable_ipex_optimize:
|
322 |
+
self.real_model = torch.xpu.optimize(self.real_model.eval(), inplace=True, auto_kernel_selection=True, graph_mode=True)
|
323 |
+
|
324 |
+
return self.real_model
|
325 |
+
|
326 |
+
def model_unload(self):
|
327 |
+
if self.model_accelerated:
|
328 |
+
for m in self.real_model.modules():
|
329 |
+
if hasattr(m, "prev_comfy_cast_weights"):
|
330 |
+
m.comfy_cast_weights = m.prev_comfy_cast_weights
|
331 |
+
del m.prev_comfy_cast_weights
|
332 |
+
|
333 |
+
self.model_accelerated = False
|
334 |
+
|
335 |
+
self.model.unpatch_model(self.model.offload_device)
|
336 |
+
self.model.model_patches_to(self.model.offload_device)
|
337 |
+
|
338 |
+
def __eq__(self, other):
|
339 |
+
return self.model is other.model
|
340 |
+
|
341 |
+
def minimum_inference_memory():
|
342 |
+
return (1024 * 1024 * 1024)
|
343 |
+
|
344 |
+
def unload_model_clones(model):
|
345 |
+
to_unload = []
|
346 |
+
for i in range(len(current_loaded_models)):
|
347 |
+
if model.is_clone(current_loaded_models[i].model):
|
348 |
+
to_unload = [i] + to_unload
|
349 |
+
|
350 |
+
for i in to_unload:
|
351 |
+
print("unload clone", i)
|
352 |
+
current_loaded_models.pop(i).model_unload()
|
353 |
+
|
354 |
+
def free_memory(memory_required, device, keep_loaded=[]):
|
355 |
+
unloaded_model = False
|
356 |
+
for i in range(len(current_loaded_models) -1, -1, -1):
|
357 |
+
if not DISABLE_SMART_MEMORY:
|
358 |
+
if get_free_memory(device) > memory_required:
|
359 |
+
break
|
360 |
+
shift_model = current_loaded_models[i]
|
361 |
+
if shift_model.device == device:
|
362 |
+
if shift_model not in keep_loaded:
|
363 |
+
m = current_loaded_models.pop(i)
|
364 |
+
m.model_unload()
|
365 |
+
del m
|
366 |
+
unloaded_model = True
|
367 |
+
|
368 |
+
if unloaded_model:
|
369 |
+
soft_empty_cache()
|
370 |
+
else:
|
371 |
+
if vram_state != VRAMState.HIGH_VRAM:
|
372 |
+
mem_free_total, mem_free_torch = get_free_memory(device, torch_free_too=True)
|
373 |
+
if mem_free_torch > mem_free_total * 0.25:
|
374 |
+
soft_empty_cache()
|
375 |
+
|
376 |
+
def load_models_gpu(models, memory_required=0):
|
377 |
+
global vram_state
|
378 |
+
|
379 |
+
inference_memory = minimum_inference_memory()
|
380 |
+
extra_mem = max(inference_memory, memory_required)
|
381 |
+
|
382 |
+
models_to_load = []
|
383 |
+
models_already_loaded = []
|
384 |
+
for x in models:
|
385 |
+
loaded_model = LoadedModel(x)
|
386 |
+
|
387 |
+
if loaded_model in current_loaded_models:
|
388 |
+
index = current_loaded_models.index(loaded_model)
|
389 |
+
current_loaded_models.insert(0, current_loaded_models.pop(index))
|
390 |
+
models_already_loaded.append(loaded_model)
|
391 |
+
else:
|
392 |
+
if hasattr(x, "model"):
|
393 |
+
print(f"Requested to load {x.model.__class__.__name__}")
|
394 |
+
models_to_load.append(loaded_model)
|
395 |
+
|
396 |
+
if len(models_to_load) == 0:
|
397 |
+
devs = set(map(lambda a: a.device, models_already_loaded))
|
398 |
+
for d in devs:
|
399 |
+
if d != torch.device("cpu"):
|
400 |
+
free_memory(extra_mem, d, models_already_loaded)
|
401 |
+
return
|
402 |
+
|
403 |
+
print(f"Loading {len(models_to_load)} new model{'s' if len(models_to_load) > 1 else ''}")
|
404 |
+
|
405 |
+
total_memory_required = {}
|
406 |
+
for loaded_model in models_to_load:
|
407 |
+
unload_model_clones(loaded_model.model)
|
408 |
+
total_memory_required[loaded_model.device] = total_memory_required.get(loaded_model.device, 0) + loaded_model.model_memory_required(loaded_model.device)
|
409 |
+
|
410 |
+
for device in total_memory_required:
|
411 |
+
if device != torch.device("cpu"):
|
412 |
+
free_memory(total_memory_required[device] * 1.3 + extra_mem, device, models_already_loaded)
|
413 |
+
|
414 |
+
for loaded_model in models_to_load:
|
415 |
+
model = loaded_model.model
|
416 |
+
torch_dev = model.load_device
|
417 |
+
if is_device_cpu(torch_dev):
|
418 |
+
vram_set_state = VRAMState.DISABLED
|
419 |
+
else:
|
420 |
+
vram_set_state = vram_state
|
421 |
+
lowvram_model_memory = 0
|
422 |
+
if lowvram_available and (vram_set_state == VRAMState.LOW_VRAM or vram_set_state == VRAMState.NORMAL_VRAM):
|
423 |
+
model_size = loaded_model.model_memory_required(torch_dev)
|
424 |
+
current_free_mem = get_free_memory(torch_dev)
|
425 |
+
lowvram_model_memory = int(max(64 * (1024 * 1024), (current_free_mem - 1024 * (1024 * 1024)) / 1.3 ))
|
426 |
+
if model_size > (current_free_mem - inference_memory): #only switch to lowvram if really necessary
|
427 |
+
vram_set_state = VRAMState.LOW_VRAM
|
428 |
+
else:
|
429 |
+
lowvram_model_memory = 0
|
430 |
+
|
431 |
+
if vram_set_state == VRAMState.NO_VRAM:
|
432 |
+
lowvram_model_memory = 64 * 1024 * 1024
|
433 |
+
|
434 |
+
cur_loaded_model = loaded_model.model_load(lowvram_model_memory)
|
435 |
+
current_loaded_models.insert(0, loaded_model)
|
436 |
+
return
|
437 |
+
|
438 |
+
|
439 |
+
def load_model_gpu(model):
|
440 |
+
return load_models_gpu([model])
|
441 |
+
|
442 |
+
def cleanup_models():
|
443 |
+
to_delete = []
|
444 |
+
for i in range(len(current_loaded_models)):
|
445 |
+
if sys.getrefcount(current_loaded_models[i].model) <= 2:
|
446 |
+
to_delete = [i] + to_delete
|
447 |
+
|
448 |
+
for i in to_delete:
|
449 |
+
x = current_loaded_models.pop(i)
|
450 |
+
x.model_unload()
|
451 |
+
del x
|
452 |
+
|
453 |
+
def dtype_size(dtype):
|
454 |
+
dtype_size = 4
|
455 |
+
if dtype == torch.float16 or dtype == torch.bfloat16:
|
456 |
+
dtype_size = 2
|
457 |
+
elif dtype == torch.float32:
|
458 |
+
dtype_size = 4
|
459 |
+
else:
|
460 |
+
try:
|
461 |
+
dtype_size = dtype.itemsize
|
462 |
+
except: #Old pytorch doesn't have .itemsize
|
463 |
+
pass
|
464 |
+
return dtype_size
|
465 |
+
|
466 |
+
def unet_offload_device():
|
467 |
+
if vram_state == VRAMState.HIGH_VRAM:
|
468 |
+
return get_torch_device()
|
469 |
+
else:
|
470 |
+
return torch.device("cpu")
|
471 |
+
|
472 |
+
def unet_inital_load_device(parameters, dtype):
|
473 |
+
torch_dev = get_torch_device()
|
474 |
+
if vram_state == VRAMState.HIGH_VRAM:
|
475 |
+
return torch_dev
|
476 |
+
|
477 |
+
cpu_dev = torch.device("cpu")
|
478 |
+
if DISABLE_SMART_MEMORY:
|
479 |
+
return cpu_dev
|
480 |
+
|
481 |
+
model_size = dtype_size(dtype) * parameters
|
482 |
+
|
483 |
+
mem_dev = get_free_memory(torch_dev)
|
484 |
+
mem_cpu = get_free_memory(cpu_dev)
|
485 |
+
if mem_dev > mem_cpu and model_size < mem_dev:
|
486 |
+
return torch_dev
|
487 |
+
else:
|
488 |
+
return cpu_dev
|
489 |
+
|
490 |
+
def unet_dtype(device=None, model_params=0, supported_dtypes=[torch.float16, torch.bfloat16, torch.float32]):
|
491 |
+
if args.bf16_unet:
|
492 |
+
return torch.bfloat16
|
493 |
+
if args.fp16_unet:
|
494 |
+
return torch.float16
|
495 |
+
if args.fp8_e4m3fn_unet:
|
496 |
+
return torch.float8_e4m3fn
|
497 |
+
if args.fp8_e5m2_unet:
|
498 |
+
return torch.float8_e5m2
|
499 |
+
if should_use_fp16(device=device, model_params=model_params, manual_cast=True):
|
500 |
+
if torch.float16 in supported_dtypes:
|
501 |
+
return torch.float16
|
502 |
+
if should_use_bf16(device, model_params=model_params, manual_cast=True):
|
503 |
+
if torch.bfloat16 in supported_dtypes:
|
504 |
+
return torch.bfloat16
|
505 |
+
return torch.float32
|
506 |
+
|
507 |
+
# None means no manual cast
|
508 |
+
def unet_manual_cast(weight_dtype, inference_device, supported_dtypes=[torch.float16, torch.bfloat16, torch.float32]):
|
509 |
+
if weight_dtype == torch.float32:
|
510 |
+
return None
|
511 |
+
|
512 |
+
fp16_supported = should_use_fp16(inference_device, prioritize_performance=False)
|
513 |
+
if fp16_supported and weight_dtype == torch.float16:
|
514 |
+
return None
|
515 |
+
|
516 |
+
bf16_supported = should_use_bf16(inference_device)
|
517 |
+
if bf16_supported and weight_dtype == torch.bfloat16:
|
518 |
+
return None
|
519 |
+
|
520 |
+
if fp16_supported and torch.float16 in supported_dtypes:
|
521 |
+
return torch.float16
|
522 |
+
|
523 |
+
elif bf16_supported and torch.bfloat16 in supported_dtypes:
|
524 |
+
return torch.bfloat16
|
525 |
+
else:
|
526 |
+
return torch.float32
|
527 |
+
|
528 |
+
def text_encoder_offload_device():
|
529 |
+
if args.gpu_only:
|
530 |
+
return get_torch_device()
|
531 |
+
else:
|
532 |
+
return torch.device("cpu")
|
533 |
+
|
534 |
+
def text_encoder_device():
|
535 |
+
if args.gpu_only:
|
536 |
+
return get_torch_device()
|
537 |
+
elif vram_state == VRAMState.HIGH_VRAM or vram_state == VRAMState.NORMAL_VRAM:
|
538 |
+
if is_intel_xpu():
|
539 |
+
return torch.device("cpu")
|
540 |
+
if should_use_fp16(prioritize_performance=False):
|
541 |
+
return get_torch_device()
|
542 |
+
else:
|
543 |
+
return torch.device("cpu")
|
544 |
+
else:
|
545 |
+
return torch.device("cpu")
|
546 |
+
|
547 |
+
def text_encoder_dtype(device=None):
|
548 |
+
if args.fp8_e4m3fn_text_enc:
|
549 |
+
return torch.float8_e4m3fn
|
550 |
+
elif args.fp8_e5m2_text_enc:
|
551 |
+
return torch.float8_e5m2
|
552 |
+
elif args.fp16_text_enc:
|
553 |
+
return torch.float16
|
554 |
+
elif args.fp32_text_enc:
|
555 |
+
return torch.float32
|
556 |
+
|
557 |
+
if is_device_cpu(device):
|
558 |
+
return torch.float16
|
559 |
+
|
560 |
+
return torch.float16
|
561 |
+
|
562 |
+
|
563 |
+
def intermediate_device():
|
564 |
+
if args.gpu_only:
|
565 |
+
return get_torch_device()
|
566 |
+
else:
|
567 |
+
return torch.device("cpu")
|
568 |
+
|
569 |
+
def vae_device():
|
570 |
+
if args.cpu_vae:
|
571 |
+
return torch.device("cpu")
|
572 |
+
return get_torch_device()
|
573 |
+
|
574 |
+
def vae_offload_device():
|
575 |
+
if args.gpu_only:
|
576 |
+
return get_torch_device()
|
577 |
+
else:
|
578 |
+
return torch.device("cpu")
|
579 |
+
|
580 |
+
def vae_dtype():
|
581 |
+
global VAE_DTYPE
|
582 |
+
return VAE_DTYPE
|
583 |
+
|
584 |
+
def get_autocast_device(dev):
|
585 |
+
if hasattr(dev, 'type'):
|
586 |
+
return dev.type
|
587 |
+
return "cuda"
|
588 |
+
|
589 |
+
def supports_dtype(device, dtype): #TODO
|
590 |
+
if dtype == torch.float32:
|
591 |
+
return True
|
592 |
+
if is_device_cpu(device):
|
593 |
+
return False
|
594 |
+
if dtype == torch.float16:
|
595 |
+
return True
|
596 |
+
if dtype == torch.bfloat16:
|
597 |
+
return True
|
598 |
+
return False
|
599 |
+
|
600 |
+
def device_supports_non_blocking(device):
|
601 |
+
if is_device_mps(device):
|
602 |
+
return False #pytorch bug? mps doesn't support non blocking
|
603 |
+
return True
|
604 |
+
|
605 |
+
def cast_to_device(tensor, device, dtype, copy=False):
|
606 |
+
device_supports_cast = False
|
607 |
+
if tensor.dtype == torch.float32 or tensor.dtype == torch.float16:
|
608 |
+
device_supports_cast = True
|
609 |
+
elif tensor.dtype == torch.bfloat16:
|
610 |
+
if hasattr(device, 'type') and device.type.startswith("cuda"):
|
611 |
+
device_supports_cast = True
|
612 |
+
elif is_intel_xpu():
|
613 |
+
device_supports_cast = True
|
614 |
+
|
615 |
+
non_blocking = device_supports_non_blocking(device)
|
616 |
+
|
617 |
+
if device_supports_cast:
|
618 |
+
if copy:
|
619 |
+
if tensor.device == device:
|
620 |
+
return tensor.to(dtype, copy=copy, non_blocking=non_blocking)
|
621 |
+
return tensor.to(device, copy=copy, non_blocking=non_blocking).to(dtype, non_blocking=non_blocking)
|
622 |
+
else:
|
623 |
+
return tensor.to(device, non_blocking=non_blocking).to(dtype, non_blocking=non_blocking)
|
624 |
+
else:
|
625 |
+
return tensor.to(device, dtype, copy=copy, non_blocking=non_blocking)
|
626 |
+
|
627 |
+
def xformers_enabled():
|
628 |
+
global directml_enabled
|
629 |
+
global cpu_state
|
630 |
+
if cpu_state != CPUState.GPU:
|
631 |
+
return False
|
632 |
+
if is_intel_xpu():
|
633 |
+
return False
|
634 |
+
if directml_enabled:
|
635 |
+
return False
|
636 |
+
return XFORMERS_IS_AVAILABLE
|
637 |
+
|
638 |
+
|
639 |
+
def xformers_enabled_vae():
|
640 |
+
enabled = xformers_enabled()
|
641 |
+
if not enabled:
|
642 |
+
return False
|
643 |
+
|
644 |
+
return XFORMERS_ENABLED_VAE
|
645 |
+
|
646 |
+
def pytorch_attention_enabled():
|
647 |
+
global ENABLE_PYTORCH_ATTENTION
|
648 |
+
return ENABLE_PYTORCH_ATTENTION
|
649 |
+
|
650 |
+
def pytorch_attention_flash_attention():
|
651 |
+
global ENABLE_PYTORCH_ATTENTION
|
652 |
+
if ENABLE_PYTORCH_ATTENTION:
|
653 |
+
#TODO: more reliable way of checking for flash attention?
|
654 |
+
if is_nvidia(): #pytorch flash attention only works on Nvidia
|
655 |
+
return True
|
656 |
+
return False
|
657 |
+
|
658 |
+
def get_free_memory(dev=None, torch_free_too=False):
|
659 |
+
global directml_enabled
|
660 |
+
if dev is None:
|
661 |
+
dev = get_torch_device()
|
662 |
+
|
663 |
+
if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'):
|
664 |
+
mem_free_total = psutil.virtual_memory().available
|
665 |
+
mem_free_torch = mem_free_total
|
666 |
+
else:
|
667 |
+
if directml_enabled:
|
668 |
+
mem_free_total = 1024 * 1024 * 1024 #TODO
|
669 |
+
mem_free_torch = mem_free_total
|
670 |
+
elif is_intel_xpu():
|
671 |
+
stats = torch.xpu.memory_stats(dev)
|
672 |
+
mem_active = stats['active_bytes.all.current']
|
673 |
+
mem_allocated = stats['allocated_bytes.all.current']
|
674 |
+
mem_reserved = stats['reserved_bytes.all.current']
|
675 |
+
mem_free_torch = mem_reserved - mem_active
|
676 |
+
mem_free_total = torch.xpu.get_device_properties(dev).total_memory - mem_allocated
|
677 |
+
else:
|
678 |
+
stats = torch.cuda.memory_stats(dev)
|
679 |
+
mem_active = stats['active_bytes.all.current']
|
680 |
+
mem_reserved = stats['reserved_bytes.all.current']
|
681 |
+
mem_free_cuda, _ = torch.cuda.mem_get_info(dev)
|
682 |
+
mem_free_torch = mem_reserved - mem_active
|
683 |
+
mem_free_total = mem_free_cuda + mem_free_torch
|
684 |
+
|
685 |
+
if torch_free_too:
|
686 |
+
return (mem_free_total, mem_free_torch)
|
687 |
+
else:
|
688 |
+
return mem_free_total
|
689 |
+
|
690 |
+
def cpu_mode():
|
691 |
+
global cpu_state
|
692 |
+
return cpu_state == CPUState.CPU
|
693 |
+
|
694 |
+
def mps_mode():
|
695 |
+
global cpu_state
|
696 |
+
return cpu_state == CPUState.MPS
|
697 |
+
|
698 |
+
def is_device_type(device, type):
|
699 |
+
if hasattr(device, 'type'):
|
700 |
+
if (device.type == type):
|
701 |
+
return True
|
702 |
+
return False
|
703 |
+
|
704 |
+
def is_device_cpu(device):
|
705 |
+
return is_device_type(device, 'cpu')
|
706 |
+
|
707 |
+
def is_device_mps(device):
|
708 |
+
return is_device_type(device, 'mps')
|
709 |
+
|
710 |
+
def is_device_cuda(device):
|
711 |
+
return is_device_type(device, 'cuda')
|
712 |
+
|
713 |
+
def should_use_fp16(device=None, model_params=0, prioritize_performance=True, manual_cast=False):
|
714 |
+
global directml_enabled
|
715 |
+
|
716 |
+
if device is not None:
|
717 |
+
if is_device_cpu(device):
|
718 |
+
return False
|
719 |
+
|
720 |
+
if FORCE_FP16:
|
721 |
+
return True
|
722 |
+
|
723 |
+
if device is not None:
|
724 |
+
if is_device_mps(device):
|
725 |
+
return True
|
726 |
+
|
727 |
+
if FORCE_FP32:
|
728 |
+
return False
|
729 |
+
|
730 |
+
if directml_enabled:
|
731 |
+
return False
|
732 |
+
|
733 |
+
if mps_mode():
|
734 |
+
return True
|
735 |
+
|
736 |
+
if cpu_mode():
|
737 |
+
return False
|
738 |
+
|
739 |
+
if is_intel_xpu():
|
740 |
+
return True
|
741 |
+
|
742 |
+
if torch.version.hip:
|
743 |
+
return True
|
744 |
+
|
745 |
+
props = torch.cuda.get_device_properties("cuda")
|
746 |
+
if props.major >= 8:
|
747 |
+
return True
|
748 |
+
|
749 |
+
if props.major < 6:
|
750 |
+
return False
|
751 |
+
|
752 |
+
fp16_works = False
|
753 |
+
#FP16 is confirmed working on a 1080 (GP104) but it's a bit slower than FP32 so it should only be enabled
|
754 |
+
#when the model doesn't actually fit on the card
|
755 |
+
#TODO: actually test if GP106 and others have the same type of behavior
|
756 |
+
nvidia_10_series = ["1080", "1070", "titan x", "p3000", "p3200", "p4000", "p4200", "p5000", "p5200", "p6000", "1060", "1050", "p40", "p100", "p6", "p4"]
|
757 |
+
for x in nvidia_10_series:
|
758 |
+
if x in props.name.lower():
|
759 |
+
fp16_works = True
|
760 |
+
|
761 |
+
if fp16_works or manual_cast:
|
762 |
+
free_model_memory = (get_free_memory() * 0.9 - minimum_inference_memory())
|
763 |
+
if (not prioritize_performance) or model_params * 4 > free_model_memory:
|
764 |
+
return True
|
765 |
+
|
766 |
+
if props.major < 7:
|
767 |
+
return False
|
768 |
+
|
769 |
+
#FP16 is just broken on these cards
|
770 |
+
nvidia_16_series = ["1660", "1650", "1630", "T500", "T550", "T600", "MX550", "MX450", "CMP 30HX", "T2000", "T1000", "T1200"]
|
771 |
+
for x in nvidia_16_series:
|
772 |
+
if x in props.name:
|
773 |
+
return False
|
774 |
+
|
775 |
+
return True
|
776 |
+
|
777 |
+
def should_use_bf16(device=None, model_params=0, prioritize_performance=True, manual_cast=False):
|
778 |
+
if device is not None:
|
779 |
+
if is_device_cpu(device): #TODO ? bf16 works on CPU but is extremely slow
|
780 |
+
return False
|
781 |
+
|
782 |
+
if device is not None: #TODO not sure about mps bf16 support
|
783 |
+
if is_device_mps(device):
|
784 |
+
return False
|
785 |
+
|
786 |
+
if FORCE_FP32:
|
787 |
+
return False
|
788 |
+
|
789 |
+
if directml_enabled:
|
790 |
+
return False
|
791 |
+
|
792 |
+
if cpu_mode() or mps_mode():
|
793 |
+
return False
|
794 |
+
|
795 |
+
if is_intel_xpu():
|
796 |
+
return True
|
797 |
+
|
798 |
+
if device is None:
|
799 |
+
device = torch.device("cuda")
|
800 |
+
|
801 |
+
props = torch.cuda.get_device_properties(device)
|
802 |
+
if props.major >= 8:
|
803 |
+
return True
|
804 |
+
|
805 |
+
bf16_works = torch.cuda.is_bf16_supported()
|
806 |
+
|
807 |
+
if bf16_works or manual_cast:
|
808 |
+
free_model_memory = (get_free_memory() * 0.9 - minimum_inference_memory())
|
809 |
+
if (not prioritize_performance) or model_params * 4 > free_model_memory:
|
810 |
+
return True
|
811 |
+
|
812 |
+
return False
|
813 |
+
|
814 |
+
def soft_empty_cache(force=False):
|
815 |
+
global cpu_state
|
816 |
+
if cpu_state == CPUState.MPS:
|
817 |
+
torch.mps.empty_cache()
|
818 |
+
elif is_intel_xpu():
|
819 |
+
torch.xpu.empty_cache()
|
820 |
+
elif torch.cuda.is_available():
|
821 |
+
if force or is_nvidia(): #This seems to make things worse on ROCm so I only do it for cuda
|
822 |
+
torch.cuda.empty_cache()
|
823 |
+
torch.cuda.ipc_collect()
|
824 |
+
|
825 |
+
def unload_all_models():
|
826 |
+
free_memory(1e30, get_torch_device())
|
827 |
+
|
828 |
+
|
829 |
+
def resolve_lowvram_weight(weight, model, key): #TODO: remove
|
830 |
+
return weight
|
831 |
+
|
832 |
+
#TODO: might be cleaner to put this somewhere else
|
833 |
+
import threading
|
834 |
+
|
835 |
+
class InterruptProcessingException(Exception):
|
836 |
+
pass
|
837 |
+
|
838 |
+
interrupt_processing_mutex = threading.RLock()
|
839 |
+
|
840 |
+
interrupt_processing = False
|
841 |
+
def interrupt_current_processing(value=True):
|
842 |
+
global interrupt_processing
|
843 |
+
global interrupt_processing_mutex
|
844 |
+
with interrupt_processing_mutex:
|
845 |
+
interrupt_processing = value
|
846 |
+
|
847 |
+
def processing_interrupted():
|
848 |
+
global interrupt_processing
|
849 |
+
global interrupt_processing_mutex
|
850 |
+
with interrupt_processing_mutex:
|
851 |
+
return interrupt_processing
|
852 |
+
|
853 |
+
def throw_exception_if_processing_interrupted():
|
854 |
+
global interrupt_processing
|
855 |
+
global interrupt_processing_mutex
|
856 |
+
with interrupt_processing_mutex:
|
857 |
+
if interrupt_processing:
|
858 |
+
interrupt_processing = False
|
859 |
+
raise InterruptProcessingException()
|
comfy/model_patcher.py
ADDED
@@ -0,0 +1,359 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import copy
|
3 |
+
import inspect
|
4 |
+
|
5 |
+
import comfy.utils
|
6 |
+
import comfy.model_management
|
7 |
+
|
8 |
+
class ModelPatcher:
|
9 |
+
def __init__(self, model, load_device, offload_device, size=0, current_device=None, weight_inplace_update=False):
|
10 |
+
self.size = size
|
11 |
+
self.model = model
|
12 |
+
self.patches = {}
|
13 |
+
self.backup = {}
|
14 |
+
self.object_patches = {}
|
15 |
+
self.object_patches_backup = {}
|
16 |
+
self.model_options = {"transformer_options":{}}
|
17 |
+
self.model_size()
|
18 |
+
self.load_device = load_device
|
19 |
+
self.offload_device = offload_device
|
20 |
+
if current_device is None:
|
21 |
+
self.current_device = self.offload_device
|
22 |
+
else:
|
23 |
+
self.current_device = current_device
|
24 |
+
|
25 |
+
self.weight_inplace_update = weight_inplace_update
|
26 |
+
|
27 |
+
def model_size(self):
|
28 |
+
if self.size > 0:
|
29 |
+
return self.size
|
30 |
+
model_sd = self.model.state_dict()
|
31 |
+
self.size = comfy.model_management.module_size(self.model)
|
32 |
+
self.model_keys = set(model_sd.keys())
|
33 |
+
return self.size
|
34 |
+
|
35 |
+
def clone(self):
|
36 |
+
n = ModelPatcher(self.model, self.load_device, self.offload_device, self.size, self.current_device, weight_inplace_update=self.weight_inplace_update)
|
37 |
+
n.patches = {}
|
38 |
+
for k in self.patches:
|
39 |
+
n.patches[k] = self.patches[k][:]
|
40 |
+
|
41 |
+
n.object_patches = self.object_patches.copy()
|
42 |
+
n.model_options = copy.deepcopy(self.model_options)
|
43 |
+
n.model_keys = self.model_keys
|
44 |
+
return n
|
45 |
+
|
46 |
+
def is_clone(self, other):
|
47 |
+
if hasattr(other, 'model') and self.model is other.model:
|
48 |
+
return True
|
49 |
+
return False
|
50 |
+
|
51 |
+
def memory_required(self, input_shape):
|
52 |
+
return self.model.memory_required(input_shape=input_shape)
|
53 |
+
|
54 |
+
def set_model_sampler_cfg_function(self, sampler_cfg_function, disable_cfg1_optimization=False):
|
55 |
+
if len(inspect.signature(sampler_cfg_function).parameters) == 3:
|
56 |
+
self.model_options["sampler_cfg_function"] = lambda args: sampler_cfg_function(args["cond"], args["uncond"], args["cond_scale"]) #Old way
|
57 |
+
else:
|
58 |
+
self.model_options["sampler_cfg_function"] = sampler_cfg_function
|
59 |
+
if disable_cfg1_optimization:
|
60 |
+
self.model_options["disable_cfg1_optimization"] = True
|
61 |
+
|
62 |
+
def set_model_sampler_post_cfg_function(self, post_cfg_function, disable_cfg1_optimization=False):
|
63 |
+
self.model_options["sampler_post_cfg_function"] = self.model_options.get("sampler_post_cfg_function", []) + [post_cfg_function]
|
64 |
+
if disable_cfg1_optimization:
|
65 |
+
self.model_options["disable_cfg1_optimization"] = True
|
66 |
+
|
67 |
+
def set_model_unet_function_wrapper(self, unet_wrapper_function):
|
68 |
+
self.model_options["model_function_wrapper"] = unet_wrapper_function
|
69 |
+
|
70 |
+
def set_model_denoise_mask_function(self, denoise_mask_function):
|
71 |
+
self.model_options["denoise_mask_function"] = denoise_mask_function
|
72 |
+
|
73 |
+
def set_model_patch(self, patch, name):
|
74 |
+
to = self.model_options["transformer_options"]
|
75 |
+
if "patches" not in to:
|
76 |
+
to["patches"] = {}
|
77 |
+
to["patches"][name] = to["patches"].get(name, []) + [patch]
|
78 |
+
|
79 |
+
def set_model_patch_replace(self, patch, name, block_name, number, transformer_index=None):
|
80 |
+
to = self.model_options["transformer_options"]
|
81 |
+
if "patches_replace" not in to:
|
82 |
+
to["patches_replace"] = {}
|
83 |
+
if name not in to["patches_replace"]:
|
84 |
+
to["patches_replace"][name] = {}
|
85 |
+
if transformer_index is not None:
|
86 |
+
block = (block_name, number, transformer_index)
|
87 |
+
else:
|
88 |
+
block = (block_name, number)
|
89 |
+
to["patches_replace"][name][block] = patch
|
90 |
+
|
91 |
+
def set_model_attn1_patch(self, patch):
|
92 |
+
self.set_model_patch(patch, "attn1_patch")
|
93 |
+
|
94 |
+
def set_model_attn2_patch(self, patch):
|
95 |
+
self.set_model_patch(patch, "attn2_patch")
|
96 |
+
|
97 |
+
def set_model_attn1_replace(self, patch, block_name, number, transformer_index=None):
|
98 |
+
self.set_model_patch_replace(patch, "attn1", block_name, number, transformer_index)
|
99 |
+
|
100 |
+
def set_model_attn2_replace(self, patch, block_name, number, transformer_index=None):
|
101 |
+
self.set_model_patch_replace(patch, "attn2", block_name, number, transformer_index)
|
102 |
+
|
103 |
+
def set_model_attn1_output_patch(self, patch):
|
104 |
+
self.set_model_patch(patch, "attn1_output_patch")
|
105 |
+
|
106 |
+
def set_model_attn2_output_patch(self, patch):
|
107 |
+
self.set_model_patch(patch, "attn2_output_patch")
|
108 |
+
|
109 |
+
def set_model_input_block_patch(self, patch):
|
110 |
+
self.set_model_patch(patch, "input_block_patch")
|
111 |
+
|
112 |
+
def set_model_input_block_patch_after_skip(self, patch):
|
113 |
+
self.set_model_patch(patch, "input_block_patch_after_skip")
|
114 |
+
|
115 |
+
def set_model_output_block_patch(self, patch):
|
116 |
+
self.set_model_patch(patch, "output_block_patch")
|
117 |
+
|
118 |
+
def add_object_patch(self, name, obj):
|
119 |
+
self.object_patches[name] = obj
|
120 |
+
|
121 |
+
def model_patches_to(self, device):
|
122 |
+
to = self.model_options["transformer_options"]
|
123 |
+
if "patches" in to:
|
124 |
+
patches = to["patches"]
|
125 |
+
for name in patches:
|
126 |
+
patch_list = patches[name]
|
127 |
+
for i in range(len(patch_list)):
|
128 |
+
if hasattr(patch_list[i], "to"):
|
129 |
+
patch_list[i] = patch_list[i].to(device)
|
130 |
+
if "patches_replace" in to:
|
131 |
+
patches = to["patches_replace"]
|
132 |
+
for name in patches:
|
133 |
+
patch_list = patches[name]
|
134 |
+
for k in patch_list:
|
135 |
+
if hasattr(patch_list[k], "to"):
|
136 |
+
patch_list[k] = patch_list[k].to(device)
|
137 |
+
if "model_function_wrapper" in self.model_options:
|
138 |
+
wrap_func = self.model_options["model_function_wrapper"]
|
139 |
+
if hasattr(wrap_func, "to"):
|
140 |
+
self.model_options["model_function_wrapper"] = wrap_func.to(device)
|
141 |
+
|
142 |
+
def model_dtype(self):
|
143 |
+
if hasattr(self.model, "get_dtype"):
|
144 |
+
return self.model.get_dtype()
|
145 |
+
|
146 |
+
def add_patches(self, patches, strength_patch=1.0, strength_model=1.0):
|
147 |
+
p = set()
|
148 |
+
for k in patches:
|
149 |
+
if k in self.model_keys:
|
150 |
+
p.add(k)
|
151 |
+
current_patches = self.patches.get(k, [])
|
152 |
+
current_patches.append((strength_patch, patches[k], strength_model))
|
153 |
+
self.patches[k] = current_patches
|
154 |
+
|
155 |
+
return list(p)
|
156 |
+
|
157 |
+
def get_key_patches(self, filter_prefix=None):
|
158 |
+
comfy.model_management.unload_model_clones(self)
|
159 |
+
model_sd = self.model_state_dict()
|
160 |
+
p = {}
|
161 |
+
for k in model_sd:
|
162 |
+
if filter_prefix is not None:
|
163 |
+
if not k.startswith(filter_prefix):
|
164 |
+
continue
|
165 |
+
if k in self.patches:
|
166 |
+
p[k] = [model_sd[k]] + self.patches[k]
|
167 |
+
else:
|
168 |
+
p[k] = (model_sd[k],)
|
169 |
+
return p
|
170 |
+
|
171 |
+
def model_state_dict(self, filter_prefix=None):
|
172 |
+
sd = self.model.state_dict()
|
173 |
+
keys = list(sd.keys())
|
174 |
+
if filter_prefix is not None:
|
175 |
+
for k in keys:
|
176 |
+
if not k.startswith(filter_prefix):
|
177 |
+
sd.pop(k)
|
178 |
+
return sd
|
179 |
+
|
180 |
+
def patch_model(self, device_to=None, patch_weights=True):
|
181 |
+
for k in self.object_patches:
|
182 |
+
old = comfy.utils.set_attr(self.model, k, self.object_patches[k])
|
183 |
+
if k not in self.object_patches_backup:
|
184 |
+
self.object_patches_backup[k] = old
|
185 |
+
|
186 |
+
if patch_weights:
|
187 |
+
model_sd = self.model_state_dict()
|
188 |
+
for key in self.patches:
|
189 |
+
if key not in model_sd:
|
190 |
+
print("could not patch. key doesn't exist in model:", key)
|
191 |
+
continue
|
192 |
+
|
193 |
+
weight = model_sd[key]
|
194 |
+
|
195 |
+
inplace_update = self.weight_inplace_update
|
196 |
+
|
197 |
+
if key not in self.backup:
|
198 |
+
self.backup[key] = weight.to(device=self.offload_device, copy=inplace_update)
|
199 |
+
|
200 |
+
if device_to is not None:
|
201 |
+
temp_weight = comfy.model_management.cast_to_device(weight, device_to, torch.float32, copy=True)
|
202 |
+
else:
|
203 |
+
temp_weight = weight.to(torch.float32, copy=True)
|
204 |
+
out_weight = self.calculate_weight(self.patches[key], temp_weight, key).to(weight.dtype)
|
205 |
+
if inplace_update:
|
206 |
+
comfy.utils.copy_to_param(self.model, key, out_weight)
|
207 |
+
else:
|
208 |
+
comfy.utils.set_attr_param(self.model, key, out_weight)
|
209 |
+
del temp_weight
|
210 |
+
|
211 |
+
if device_to is not None:
|
212 |
+
self.model.to(device_to)
|
213 |
+
self.current_device = device_to
|
214 |
+
|
215 |
+
return self.model
|
216 |
+
|
217 |
+
def calculate_weight(self, patches, weight, key):
|
218 |
+
for p in patches:
|
219 |
+
alpha = p[0]
|
220 |
+
v = p[1]
|
221 |
+
strength_model = p[2]
|
222 |
+
|
223 |
+
if strength_model != 1.0:
|
224 |
+
weight *= strength_model
|
225 |
+
|
226 |
+
if isinstance(v, list):
|
227 |
+
v = (self.calculate_weight(v[1:], v[0].clone(), key), )
|
228 |
+
|
229 |
+
if len(v) == 1:
|
230 |
+
patch_type = "diff"
|
231 |
+
elif len(v) == 2:
|
232 |
+
patch_type = v[0]
|
233 |
+
v = v[1]
|
234 |
+
|
235 |
+
if patch_type == "diff":
|
236 |
+
w1 = v[0]
|
237 |
+
if alpha != 0.0:
|
238 |
+
if w1.shape != weight.shape:
|
239 |
+
print("WARNING SHAPE MISMATCH {} WEIGHT NOT MERGED {} != {}".format(key, w1.shape, weight.shape))
|
240 |
+
else:
|
241 |
+
weight += alpha * comfy.model_management.cast_to_device(w1, weight.device, weight.dtype)
|
242 |
+
elif patch_type == "lora": #lora/locon
|
243 |
+
mat1 = comfy.model_management.cast_to_device(v[0], weight.device, torch.float32)
|
244 |
+
mat2 = comfy.model_management.cast_to_device(v[1], weight.device, torch.float32)
|
245 |
+
if v[2] is not None:
|
246 |
+
alpha *= v[2] / mat2.shape[0]
|
247 |
+
if v[3] is not None:
|
248 |
+
#locon mid weights, hopefully the math is fine because I didn't properly test it
|
249 |
+
mat3 = comfy.model_management.cast_to_device(v[3], weight.device, torch.float32)
|
250 |
+
final_shape = [mat2.shape[1], mat2.shape[0], mat3.shape[2], mat3.shape[3]]
|
251 |
+
mat2 = torch.mm(mat2.transpose(0, 1).flatten(start_dim=1), mat3.transpose(0, 1).flatten(start_dim=1)).reshape(final_shape).transpose(0, 1)
|
252 |
+
try:
|
253 |
+
weight += (alpha * torch.mm(mat1.flatten(start_dim=1), mat2.flatten(start_dim=1))).reshape(weight.shape).type(weight.dtype)
|
254 |
+
except Exception as e:
|
255 |
+
print("ERROR", key, e)
|
256 |
+
elif patch_type == "lokr":
|
257 |
+
w1 = v[0]
|
258 |
+
w2 = v[1]
|
259 |
+
w1_a = v[3]
|
260 |
+
w1_b = v[4]
|
261 |
+
w2_a = v[5]
|
262 |
+
w2_b = v[6]
|
263 |
+
t2 = v[7]
|
264 |
+
dim = None
|
265 |
+
|
266 |
+
if w1 is None:
|
267 |
+
dim = w1_b.shape[0]
|
268 |
+
w1 = torch.mm(comfy.model_management.cast_to_device(w1_a, weight.device, torch.float32),
|
269 |
+
comfy.model_management.cast_to_device(w1_b, weight.device, torch.float32))
|
270 |
+
else:
|
271 |
+
w1 = comfy.model_management.cast_to_device(w1, weight.device, torch.float32)
|
272 |
+
|
273 |
+
if w2 is None:
|
274 |
+
dim = w2_b.shape[0]
|
275 |
+
if t2 is None:
|
276 |
+
w2 = torch.mm(comfy.model_management.cast_to_device(w2_a, weight.device, torch.float32),
|
277 |
+
comfy.model_management.cast_to_device(w2_b, weight.device, torch.float32))
|
278 |
+
else:
|
279 |
+
w2 = torch.einsum('i j k l, j r, i p -> p r k l',
|
280 |
+
comfy.model_management.cast_to_device(t2, weight.device, torch.float32),
|
281 |
+
comfy.model_management.cast_to_device(w2_b, weight.device, torch.float32),
|
282 |
+
comfy.model_management.cast_to_device(w2_a, weight.device, torch.float32))
|
283 |
+
else:
|
284 |
+
w2 = comfy.model_management.cast_to_device(w2, weight.device, torch.float32)
|
285 |
+
|
286 |
+
if len(w2.shape) == 4:
|
287 |
+
w1 = w1.unsqueeze(2).unsqueeze(2)
|
288 |
+
if v[2] is not None and dim is not None:
|
289 |
+
alpha *= v[2] / dim
|
290 |
+
|
291 |
+
try:
|
292 |
+
weight += alpha * torch.kron(w1, w2).reshape(weight.shape).type(weight.dtype)
|
293 |
+
except Exception as e:
|
294 |
+
print("ERROR", key, e)
|
295 |
+
elif patch_type == "loha":
|
296 |
+
w1a = v[0]
|
297 |
+
w1b = v[1]
|
298 |
+
if v[2] is not None:
|
299 |
+
alpha *= v[2] / w1b.shape[0]
|
300 |
+
w2a = v[3]
|
301 |
+
w2b = v[4]
|
302 |
+
if v[5] is not None: #cp decomposition
|
303 |
+
t1 = v[5]
|
304 |
+
t2 = v[6]
|
305 |
+
m1 = torch.einsum('i j k l, j r, i p -> p r k l',
|
306 |
+
comfy.model_management.cast_to_device(t1, weight.device, torch.float32),
|
307 |
+
comfy.model_management.cast_to_device(w1b, weight.device, torch.float32),
|
308 |
+
comfy.model_management.cast_to_device(w1a, weight.device, torch.float32))
|
309 |
+
|
310 |
+
m2 = torch.einsum('i j k l, j r, i p -> p r k l',
|
311 |
+
comfy.model_management.cast_to_device(t2, weight.device, torch.float32),
|
312 |
+
comfy.model_management.cast_to_device(w2b, weight.device, torch.float32),
|
313 |
+
comfy.model_management.cast_to_device(w2a, weight.device, torch.float32))
|
314 |
+
else:
|
315 |
+
m1 = torch.mm(comfy.model_management.cast_to_device(w1a, weight.device, torch.float32),
|
316 |
+
comfy.model_management.cast_to_device(w1b, weight.device, torch.float32))
|
317 |
+
m2 = torch.mm(comfy.model_management.cast_to_device(w2a, weight.device, torch.float32),
|
318 |
+
comfy.model_management.cast_to_device(w2b, weight.device, torch.float32))
|
319 |
+
|
320 |
+
try:
|
321 |
+
weight += (alpha * m1 * m2).reshape(weight.shape).type(weight.dtype)
|
322 |
+
except Exception as e:
|
323 |
+
print("ERROR", key, e)
|
324 |
+
elif patch_type == "glora":
|
325 |
+
if v[4] is not None:
|
326 |
+
alpha *= v[4] / v[0].shape[0]
|
327 |
+
|
328 |
+
a1 = comfy.model_management.cast_to_device(v[0].flatten(start_dim=1), weight.device, torch.float32)
|
329 |
+
a2 = comfy.model_management.cast_to_device(v[1].flatten(start_dim=1), weight.device, torch.float32)
|
330 |
+
b1 = comfy.model_management.cast_to_device(v[2].flatten(start_dim=1), weight.device, torch.float32)
|
331 |
+
b2 = comfy.model_management.cast_to_device(v[3].flatten(start_dim=1), weight.device, torch.float32)
|
332 |
+
|
333 |
+
weight += ((torch.mm(b2, b1) + torch.mm(torch.mm(weight.flatten(start_dim=1), a2), a1)) * alpha).reshape(weight.shape).type(weight.dtype)
|
334 |
+
else:
|
335 |
+
print("patch type not recognized", patch_type, key)
|
336 |
+
|
337 |
+
return weight
|
338 |
+
|
339 |
+
def unpatch_model(self, device_to=None):
|
340 |
+
keys = list(self.backup.keys())
|
341 |
+
|
342 |
+
if self.weight_inplace_update:
|
343 |
+
for k in keys:
|
344 |
+
comfy.utils.copy_to_param(self.model, k, self.backup[k])
|
345 |
+
else:
|
346 |
+
for k in keys:
|
347 |
+
comfy.utils.set_attr_param(self.model, k, self.backup[k])
|
348 |
+
|
349 |
+
self.backup = {}
|
350 |
+
|
351 |
+
if device_to is not None:
|
352 |
+
self.model.to(device_to)
|
353 |
+
self.current_device = device_to
|
354 |
+
|
355 |
+
keys = list(self.object_patches_backup.keys())
|
356 |
+
for k in keys:
|
357 |
+
comfy.utils.set_attr(self.model, k, self.object_patches_backup[k])
|
358 |
+
|
359 |
+
self.object_patches_backup = {}
|
comfy/model_sampling.py
ADDED
@@ -0,0 +1,200 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from comfy.ldm.modules.diffusionmodules.util import make_beta_schedule
|
3 |
+
import math
|
4 |
+
|
5 |
+
class EPS:
|
6 |
+
def calculate_input(self, sigma, noise):
|
7 |
+
sigma = sigma.view(sigma.shape[:1] + (1,) * (noise.ndim - 1))
|
8 |
+
return noise / (sigma ** 2 + self.sigma_data ** 2) ** 0.5
|
9 |
+
|
10 |
+
def calculate_denoised(self, sigma, model_output, model_input):
|
11 |
+
sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
|
12 |
+
return model_input - model_output * sigma
|
13 |
+
|
14 |
+
def noise_scaling(self, sigma, noise, latent_image, max_denoise=False):
|
15 |
+
if max_denoise:
|
16 |
+
noise = noise * torch.sqrt(1.0 + sigma ** 2.0)
|
17 |
+
else:
|
18 |
+
noise = noise * sigma
|
19 |
+
|
20 |
+
noise += latent_image
|
21 |
+
return noise
|
22 |
+
|
23 |
+
class V_PREDICTION(EPS):
|
24 |
+
def calculate_denoised(self, sigma, model_output, model_input):
|
25 |
+
sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
|
26 |
+
return model_input * self.sigma_data ** 2 / (sigma ** 2 + self.sigma_data ** 2) - model_output * sigma * self.sigma_data / (sigma ** 2 + self.sigma_data ** 2) ** 0.5
|
27 |
+
|
28 |
+
class EDM(V_PREDICTION):
|
29 |
+
def calculate_denoised(self, sigma, model_output, model_input):
|
30 |
+
sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
|
31 |
+
return model_input * self.sigma_data ** 2 / (sigma ** 2 + self.sigma_data ** 2) + model_output * sigma * self.sigma_data / (sigma ** 2 + self.sigma_data ** 2) ** 0.5
|
32 |
+
|
33 |
+
|
34 |
+
class ModelSamplingDiscrete(torch.nn.Module):
|
35 |
+
def __init__(self, model_config=None):
|
36 |
+
super().__init__()
|
37 |
+
|
38 |
+
if model_config is not None:
|
39 |
+
sampling_settings = model_config.sampling_settings
|
40 |
+
else:
|
41 |
+
sampling_settings = {}
|
42 |
+
|
43 |
+
beta_schedule = sampling_settings.get("beta_schedule", "linear")
|
44 |
+
linear_start = sampling_settings.get("linear_start", 0.00085)
|
45 |
+
linear_end = sampling_settings.get("linear_end", 0.012)
|
46 |
+
|
47 |
+
self._register_schedule(given_betas=None, beta_schedule=beta_schedule, timesteps=1000, linear_start=linear_start, linear_end=linear_end, cosine_s=8e-3)
|
48 |
+
self.sigma_data = 1.0
|
49 |
+
|
50 |
+
def _register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000,
|
51 |
+
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
52 |
+
if given_betas is not None:
|
53 |
+
betas = given_betas
|
54 |
+
else:
|
55 |
+
betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s)
|
56 |
+
alphas = 1. - betas
|
57 |
+
alphas_cumprod = torch.cumprod(alphas, dim=0)
|
58 |
+
|
59 |
+
timesteps, = betas.shape
|
60 |
+
self.num_timesteps = int(timesteps)
|
61 |
+
self.linear_start = linear_start
|
62 |
+
self.linear_end = linear_end
|
63 |
+
|
64 |
+
# self.register_buffer('betas', torch.tensor(betas, dtype=torch.float32))
|
65 |
+
# self.register_buffer('alphas_cumprod', torch.tensor(alphas_cumprod, dtype=torch.float32))
|
66 |
+
# self.register_buffer('alphas_cumprod_prev', torch.tensor(alphas_cumprod_prev, dtype=torch.float32))
|
67 |
+
|
68 |
+
sigmas = ((1 - alphas_cumprod) / alphas_cumprod) ** 0.5
|
69 |
+
self.set_sigmas(sigmas)
|
70 |
+
|
71 |
+
def set_sigmas(self, sigmas):
|
72 |
+
self.register_buffer('sigmas', sigmas.float())
|
73 |
+
self.register_buffer('log_sigmas', sigmas.log().float())
|
74 |
+
|
75 |
+
@property
|
76 |
+
def sigma_min(self):
|
77 |
+
return self.sigmas[0]
|
78 |
+
|
79 |
+
@property
|
80 |
+
def sigma_max(self):
|
81 |
+
return self.sigmas[-1]
|
82 |
+
|
83 |
+
def timestep(self, sigma):
|
84 |
+
log_sigma = sigma.log()
|
85 |
+
dists = log_sigma.to(self.log_sigmas.device) - self.log_sigmas[:, None]
|
86 |
+
return dists.abs().argmin(dim=0).view(sigma.shape).to(sigma.device)
|
87 |
+
|
88 |
+
def sigma(self, timestep):
|
89 |
+
t = torch.clamp(timestep.float().to(self.log_sigmas.device), min=0, max=(len(self.sigmas) - 1))
|
90 |
+
low_idx = t.floor().long()
|
91 |
+
high_idx = t.ceil().long()
|
92 |
+
w = t.frac()
|
93 |
+
log_sigma = (1 - w) * self.log_sigmas[low_idx] + w * self.log_sigmas[high_idx]
|
94 |
+
return log_sigma.exp().to(timestep.device)
|
95 |
+
|
96 |
+
def percent_to_sigma(self, percent):
|
97 |
+
if percent <= 0.0:
|
98 |
+
return 999999999.9
|
99 |
+
if percent >= 1.0:
|
100 |
+
return 0.0
|
101 |
+
percent = 1.0 - percent
|
102 |
+
return self.sigma(torch.tensor(percent * 999.0)).item()
|
103 |
+
|
104 |
+
|
105 |
+
class ModelSamplingContinuousEDM(torch.nn.Module):
|
106 |
+
def __init__(self, model_config=None):
|
107 |
+
super().__init__()
|
108 |
+
if model_config is not None:
|
109 |
+
sampling_settings = model_config.sampling_settings
|
110 |
+
else:
|
111 |
+
sampling_settings = {}
|
112 |
+
|
113 |
+
sigma_min = sampling_settings.get("sigma_min", 0.002)
|
114 |
+
sigma_max = sampling_settings.get("sigma_max", 120.0)
|
115 |
+
sigma_data = sampling_settings.get("sigma_data", 1.0)
|
116 |
+
self.set_parameters(sigma_min, sigma_max, sigma_data)
|
117 |
+
|
118 |
+
def set_parameters(self, sigma_min, sigma_max, sigma_data):
|
119 |
+
self.sigma_data = sigma_data
|
120 |
+
sigmas = torch.linspace(math.log(sigma_min), math.log(sigma_max), 1000).exp()
|
121 |
+
|
122 |
+
self.register_buffer('sigmas', sigmas) #for compatibility with some schedulers
|
123 |
+
self.register_buffer('log_sigmas', sigmas.log())
|
124 |
+
|
125 |
+
@property
|
126 |
+
def sigma_min(self):
|
127 |
+
return self.sigmas[0]
|
128 |
+
|
129 |
+
@property
|
130 |
+
def sigma_max(self):
|
131 |
+
return self.sigmas[-1]
|
132 |
+
|
133 |
+
def timestep(self, sigma):
|
134 |
+
return 0.25 * sigma.log()
|
135 |
+
|
136 |
+
def sigma(self, timestep):
|
137 |
+
return (timestep / 0.25).exp()
|
138 |
+
|
139 |
+
def percent_to_sigma(self, percent):
|
140 |
+
if percent <= 0.0:
|
141 |
+
return 999999999.9
|
142 |
+
if percent >= 1.0:
|
143 |
+
return 0.0
|
144 |
+
percent = 1.0 - percent
|
145 |
+
|
146 |
+
log_sigma_min = math.log(self.sigma_min)
|
147 |
+
return math.exp((math.log(self.sigma_max) - log_sigma_min) * percent + log_sigma_min)
|
148 |
+
|
149 |
+
class StableCascadeSampling(ModelSamplingDiscrete):
|
150 |
+
def __init__(self, model_config=None):
|
151 |
+
super().__init__()
|
152 |
+
|
153 |
+
if model_config is not None:
|
154 |
+
sampling_settings = model_config.sampling_settings
|
155 |
+
else:
|
156 |
+
sampling_settings = {}
|
157 |
+
|
158 |
+
self.set_parameters(sampling_settings.get("shift", 1.0))
|
159 |
+
|
160 |
+
def set_parameters(self, shift=1.0, cosine_s=8e-3):
|
161 |
+
self.shift = shift
|
162 |
+
self.cosine_s = torch.tensor(cosine_s)
|
163 |
+
self._init_alpha_cumprod = torch.cos(self.cosine_s / (1 + self.cosine_s) * torch.pi * 0.5) ** 2
|
164 |
+
|
165 |
+
#This part is just for compatibility with some schedulers in the codebase
|
166 |
+
self.num_timesteps = 10000
|
167 |
+
sigmas = torch.empty((self.num_timesteps), dtype=torch.float32)
|
168 |
+
for x in range(self.num_timesteps):
|
169 |
+
t = (x + 1) / self.num_timesteps
|
170 |
+
sigmas[x] = self.sigma(t)
|
171 |
+
|
172 |
+
self.set_sigmas(sigmas)
|
173 |
+
|
174 |
+
def sigma(self, timestep):
|
175 |
+
alpha_cumprod = (torch.cos((timestep + self.cosine_s) / (1 + self.cosine_s) * torch.pi * 0.5) ** 2 / self._init_alpha_cumprod)
|
176 |
+
|
177 |
+
if self.shift != 1.0:
|
178 |
+
var = alpha_cumprod
|
179 |
+
logSNR = (var/(1-var)).log()
|
180 |
+
logSNR += 2 * torch.log(1.0 / torch.tensor(self.shift))
|
181 |
+
alpha_cumprod = logSNR.sigmoid()
|
182 |
+
|
183 |
+
alpha_cumprod = alpha_cumprod.clamp(0.0001, 0.9999)
|
184 |
+
return ((1 - alpha_cumprod) / alpha_cumprod) ** 0.5
|
185 |
+
|
186 |
+
def timestep(self, sigma):
|
187 |
+
var = 1 / ((sigma * sigma) + 1)
|
188 |
+
var = var.clamp(0, 1.0)
|
189 |
+
s, min_var = self.cosine_s.to(var.device), self._init_alpha_cumprod.to(var.device)
|
190 |
+
t = (((var * min_var) ** 0.5).acos() / (torch.pi * 0.5)) * (1 + s) - s
|
191 |
+
return t
|
192 |
+
|
193 |
+
def percent_to_sigma(self, percent):
|
194 |
+
if percent <= 0.0:
|
195 |
+
return 999999999.9
|
196 |
+
if percent >= 1.0:
|
197 |
+
return 0.0
|
198 |
+
|
199 |
+
percent = 1.0 - percent
|
200 |
+
return self.sigma(torch.tensor(percent))
|
comfy/ops.py
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
This file is part of ComfyUI.
|
3 |
+
Copyright (C) 2024 Stability AI
|
4 |
+
|
5 |
+
This program is free software: you can redistribute it and/or modify
|
6 |
+
it under the terms of the GNU General Public License as published by
|
7 |
+
the Free Software Foundation, either version 3 of the License, or
|
8 |
+
(at your option) any later version.
|
9 |
+
|
10 |
+
This program is distributed in the hope that it will be useful,
|
11 |
+
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
12 |
+
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
13 |
+
GNU General Public License for more details.
|
14 |
+
|
15 |
+
You should have received a copy of the GNU General Public License
|
16 |
+
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
17 |
+
"""
|
18 |
+
|
19 |
+
import torch
|
20 |
+
import comfy.model_management
|
21 |
+
|
22 |
+
def cast_bias_weight(s, input):
|
23 |
+
bias = None
|
24 |
+
non_blocking = comfy.model_management.device_supports_non_blocking(input.device)
|
25 |
+
if s.bias is not None:
|
26 |
+
bias = s.bias.to(device=input.device, dtype=input.dtype, non_blocking=non_blocking)
|
27 |
+
weight = s.weight.to(device=input.device, dtype=input.dtype, non_blocking=non_blocking)
|
28 |
+
return weight, bias
|
29 |
+
|
30 |
+
|
31 |
+
class disable_weight_init:
|
32 |
+
class Linear(torch.nn.Linear):
|
33 |
+
comfy_cast_weights = False
|
34 |
+
def reset_parameters(self):
|
35 |
+
return None
|
36 |
+
|
37 |
+
def forward_comfy_cast_weights(self, input):
|
38 |
+
weight, bias = cast_bias_weight(self, input)
|
39 |
+
return torch.nn.functional.linear(input, weight, bias)
|
40 |
+
|
41 |
+
def forward(self, *args, **kwargs):
|
42 |
+
if self.comfy_cast_weights:
|
43 |
+
return self.forward_comfy_cast_weights(*args, **kwargs)
|
44 |
+
else:
|
45 |
+
return super().forward(*args, **kwargs)
|
46 |
+
|
47 |
+
class Conv2d(torch.nn.Conv2d):
|
48 |
+
comfy_cast_weights = False
|
49 |
+
def reset_parameters(self):
|
50 |
+
return None
|
51 |
+
|
52 |
+
def forward_comfy_cast_weights(self, input):
|
53 |
+
weight, bias = cast_bias_weight(self, input)
|
54 |
+
return self._conv_forward(input, weight, bias)
|
55 |
+
|
56 |
+
def forward(self, *args, **kwargs):
|
57 |
+
if self.comfy_cast_weights:
|
58 |
+
return self.forward_comfy_cast_weights(*args, **kwargs)
|
59 |
+
else:
|
60 |
+
return super().forward(*args, **kwargs)
|
61 |
+
|
62 |
+
class Conv3d(torch.nn.Conv3d):
|
63 |
+
comfy_cast_weights = False
|
64 |
+
def reset_parameters(self):
|
65 |
+
return None
|
66 |
+
|
67 |
+
def forward_comfy_cast_weights(self, input):
|
68 |
+
weight, bias = cast_bias_weight(self, input)
|
69 |
+
return self._conv_forward(input, weight, bias)
|
70 |
+
|
71 |
+
def forward(self, *args, **kwargs):
|
72 |
+
if self.comfy_cast_weights:
|
73 |
+
return self.forward_comfy_cast_weights(*args, **kwargs)
|
74 |
+
else:
|
75 |
+
return super().forward(*args, **kwargs)
|
76 |
+
|
77 |
+
class GroupNorm(torch.nn.GroupNorm):
|
78 |
+
comfy_cast_weights = False
|
79 |
+
def reset_parameters(self):
|
80 |
+
return None
|
81 |
+
|
82 |
+
def forward_comfy_cast_weights(self, input):
|
83 |
+
weight, bias = cast_bias_weight(self, input)
|
84 |
+
return torch.nn.functional.group_norm(input, self.num_groups, weight, bias, self.eps)
|
85 |
+
|
86 |
+
def forward(self, *args, **kwargs):
|
87 |
+
if self.comfy_cast_weights:
|
88 |
+
return self.forward_comfy_cast_weights(*args, **kwargs)
|
89 |
+
else:
|
90 |
+
return super().forward(*args, **kwargs)
|
91 |
+
|
92 |
+
|
93 |
+
class LayerNorm(torch.nn.LayerNorm):
|
94 |
+
comfy_cast_weights = False
|
95 |
+
def reset_parameters(self):
|
96 |
+
return None
|
97 |
+
|
98 |
+
def forward_comfy_cast_weights(self, input):
|
99 |
+
if self.weight is not None:
|
100 |
+
weight, bias = cast_bias_weight(self, input)
|
101 |
+
else:
|
102 |
+
weight = None
|
103 |
+
bias = None
|
104 |
+
return torch.nn.functional.layer_norm(input, self.normalized_shape, weight, bias, self.eps)
|
105 |
+
|
106 |
+
def forward(self, *args, **kwargs):
|
107 |
+
if self.comfy_cast_weights:
|
108 |
+
return self.forward_comfy_cast_weights(*args, **kwargs)
|
109 |
+
else:
|
110 |
+
return super().forward(*args, **kwargs)
|
111 |
+
|
112 |
+
class ConvTranspose2d(torch.nn.ConvTranspose2d):
|
113 |
+
comfy_cast_weights = False
|
114 |
+
def reset_parameters(self):
|
115 |
+
return None
|
116 |
+
|
117 |
+
def forward_comfy_cast_weights(self, input, output_size=None):
|
118 |
+
num_spatial_dims = 2
|
119 |
+
output_padding = self._output_padding(
|
120 |
+
input, output_size, self.stride, self.padding, self.kernel_size,
|
121 |
+
num_spatial_dims, self.dilation)
|
122 |
+
|
123 |
+
weight, bias = cast_bias_weight(self, input)
|
124 |
+
return torch.nn.functional.conv_transpose2d(
|
125 |
+
input, weight, bias, self.stride, self.padding,
|
126 |
+
output_padding, self.groups, self.dilation)
|
127 |
+
|
128 |
+
def forward(self, *args, **kwargs):
|
129 |
+
if self.comfy_cast_weights:
|
130 |
+
return self.forward_comfy_cast_weights(*args, **kwargs)
|
131 |
+
else:
|
132 |
+
return super().forward(*args, **kwargs)
|
133 |
+
|
134 |
+
@classmethod
|
135 |
+
def conv_nd(s, dims, *args, **kwargs):
|
136 |
+
if dims == 2:
|
137 |
+
return s.Conv2d(*args, **kwargs)
|
138 |
+
elif dims == 3:
|
139 |
+
return s.Conv3d(*args, **kwargs)
|
140 |
+
else:
|
141 |
+
raise ValueError(f"unsupported dimensions: {dims}")
|
142 |
+
|
143 |
+
|
144 |
+
class manual_cast(disable_weight_init):
|
145 |
+
class Linear(disable_weight_init.Linear):
|
146 |
+
comfy_cast_weights = True
|
147 |
+
|
148 |
+
class Conv2d(disable_weight_init.Conv2d):
|
149 |
+
comfy_cast_weights = True
|
150 |
+
|
151 |
+
class Conv3d(disable_weight_init.Conv3d):
|
152 |
+
comfy_cast_weights = True
|
153 |
+
|
154 |
+
class GroupNorm(disable_weight_init.GroupNorm):
|
155 |
+
comfy_cast_weights = True
|
156 |
+
|
157 |
+
class LayerNorm(disable_weight_init.LayerNorm):
|
158 |
+
comfy_cast_weights = True
|
159 |
+
|
160 |
+
class ConvTranspose2d(disable_weight_init.ConvTranspose2d):
|
161 |
+
comfy_cast_weights = True
|
comfy/options.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
args_parsing = False
|
3 |
+
|
4 |
+
def enable_args_parsing(enable=True):
|
5 |
+
global args_parsing
|
6 |
+
args_parsing = enable
|