import torch import torch.nn as nn import torch.nn.functional as F class ResidualBlock(nn.Module): def __init__(self, in_channels, out_channels): super(ResidualBlock, self).__init__() self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1) self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1) self.bn1 = nn.BatchNorm2d(out_channels) self.bn2 = nn.BatchNorm2d(out_channels) self.relu = nn.ReLU(inplace=True) self.downsample = nn.Conv2d(in_channels, out_channels, kernel_size=1) if in_channels != out_channels else None def forward(self, x): residual = x out = self.relu(self.bn1(self.conv1(x))) out = self.bn2(self.conv2(out)) if self.downsample: residual = self.downsample(x) out += residual return self.relu(out) class EnhancedGarmentNet(nn.Module): def __init__(self, in_channels=3, base_channels=64, num_residual_blocks=4): super(EnhancedGarmentNet, self).__init__() self.initial = nn.Sequential( nn.Conv2d(in_channels, base_channels, kernel_size=7, padding=3), nn.BatchNorm2d(base_channels), nn.ReLU(inplace=True) ) self.encoder1 = self._make_layer(base_channels, base_channels, num_residual_blocks) self.encoder2 = self._make_layer(base_channels, base_channels*2, num_residual_blocks) self.encoder3 = self._make_layer(base_channels*2, base_channels*4, num_residual_blocks) self.bridge = self._make_layer(base_channels*4, base_channels*8, num_residual_blocks) self.decoder3 = self._make_layer(base_channels*8, base_channels*4, num_residual_blocks) self.decoder2 = self._make_layer(base_channels*4, base_channels*2, num_residual_blocks) self.decoder1 = self._make_layer(base_channels*2, base_channels, num_residual_blocks) self.final = nn.Conv2d(base_channels, in_channels, kernel_size=7, padding=3) self.downsample = nn.MaxPool2d(2) self.upsample = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True) def _make_layer(self, in_channels, out_channels, num_blocks): layers = [] layers.append(ResidualBlock(in_channels, out_channels)) for _ in range(1, num_blocks): layers.append(ResidualBlock(out_channels, out_channels)) return nn.Sequential(*layers) def forward(self, x): # Initial convolution x = self.initial(x) # Encoder e1 = self.encoder1(x) e2 = self.encoder2(self.downsample(e1)) e3 = self.encoder3(self.downsample(e2)) # Bridge b = self.bridge(self.downsample(e3)) # Decoder with skip connections d3 = self.decoder3(torch.cat([self.upsample(b), e3], dim=1)) d2 = self.decoder2(torch.cat([self.upsample(d3), e2], dim=1)) d1 = self.decoder1(torch.cat([self.upsample(d2), e1], dim=1)) # Final convolution out = self.final(d1) return out, [e1, e2, e3, b] class EnhancedGarmentNetWithTimestep(nn.Module): def __init__(self, in_channels=3, base_channels=64, num_residual_blocks=4, time_emb_dim=256): super(EnhancedGarmentNetWithTimestep, self).__init__() self.garment_net = EnhancedGarmentNet(in_channels, base_channels, num_residual_blocks) # Timestep embedding self.time_mlp = nn.Sequential( nn.Linear(1, time_emb_dim), nn.SiLU(), nn.Linear(time_emb_dim, time_emb_dim) ) # Projection for text embeddings self.text_proj = nn.Linear(768, time_emb_dim) # Assuming text embeddings are 768-dimensional # Combine garment features with time and text embeddings self.combine = nn.ModuleList([ nn.Conv2d(base_channels + time_emb_dim, base_channels, kernel_size=1), nn.Conv2d(base_channels*2 + time_emb_dim, base_channels*2, kernel_size=1), nn.Conv2d(base_channels*4 + time_emb_dim, base_channels*4, kernel_size=1), nn.Conv2d(base_channels*8 + time_emb_dim, base_channels*8, kernel_size=1) ]) def forward(self, x, t, text_embeds): # Ensure all inputs are of the same dtype x = x.to(dtype=self.garment_net.initial[0].weight.dtype) t = t.to(dtype=self.garment_net.initial[0].weight.dtype) text_embeds = text_embeds.to(dtype=self.garment_net.initial[0].weight.dtype) # Get garment features garment_out, garment_features = self.garment_net(x) # Process timestep t_emb = self.time_mlp(t.unsqueeze(-1)).unsqueeze(-1).unsqueeze(-1) # Process text embeddings text_emb = self.text_proj(text_embeds).unsqueeze(-1).unsqueeze(-1) # Combine embeddings cond_emb = t_emb + text_emb # Combine garment features with conditional embedding combined_features = [] for feat, comb_layer in zip(garment_features, self.combine): # Expand conditional embedding to match feature map size expanded_cond_emb = cond_emb.expand(-1, -1, feat.size(2), feat.size(3)) combined = comb_layer(torch.cat([feat, expanded_cond_emb], dim=1)) combined_features.append(combined) return garment_out, combined_features