parokshsaxena commited on
Commit
5b49f28
β€’
1 Parent(s): 1f56321

reducing size to 1/4

Browse files
Files changed (1) hide show
  1. app.py +6 -5
app.py CHANGED
@@ -1,3 +1,4 @@
 
1
  import gradio as gr
2
  from PIL import Image
3
  from src.tryon_pipeline import StableDiffusionXLInpaintPipeline as TryonPipeline
@@ -25,7 +26,6 @@ from preprocess.openpose.run_openpose import OpenPose
25
  from detectron2.data.detection_utils import convert_PIL_to_numpy,_apply_exif_orientation
26
  from torchvision.transforms.functional import to_pil_image
27
 
28
-
29
  def pil_to_binary_mask(pil_image, threshold=0):
30
  np_image = np.array(pil_image)
31
  grayscale_image = Image.fromarray(np_image).convert("L")
@@ -121,10 +121,10 @@ pipe = TryonPipeline.from_pretrained(
121
  )
122
  pipe.unet_encoder = UNet_Encoder
123
 
124
- WIDTH = int(4160/2) # 768
125
- HEIGHT = int(6240/2) # 1024
126
- POSE_WIDTH = int(WIDTH/4) # int(WIDTH/2)
127
- POSE_HEIGHT = int(HEIGHT/4) #int(HEIGHT/2)
128
 
129
  @spaces.GPU
130
  def start_tryon(dict,garm_img,garment_des,is_checked,is_checked_crop,denoise_steps,seed):
@@ -158,6 +158,7 @@ def start_tryon(dict,garm_img,garment_des,is_checked,is_checked_crop,denoise_ste
158
  model_parse, _ = parsing_model(human_img.resize((POSE_WIDTH, POSE_HEIGHT)))
159
  mask, mask_gray = get_mask_location('hd', "upper_body", model_parse, keypoints)
160
  mask = mask.resize((WIDTH, HEIGHT))
 
161
  else:
162
  mask = pil_to_binary_mask(dict['layers'][0].convert("RGB").resize((WIDTH, HEIGHT)))
163
  # mask = transforms.ToTensor()(mask)
 
1
+ import logging
2
  import gradio as gr
3
  from PIL import Image
4
  from src.tryon_pipeline import StableDiffusionXLInpaintPipeline as TryonPipeline
 
26
  from detectron2.data.detection_utils import convert_PIL_to_numpy,_apply_exif_orientation
27
  from torchvision.transforms.functional import to_pil_image
28
 
 
29
  def pil_to_binary_mask(pil_image, threshold=0):
30
  np_image = np.array(pil_image)
31
  grayscale_image = Image.fromarray(np_image).convert("L")
 
121
  )
122
  pipe.unet_encoder = UNet_Encoder
123
 
124
+ WIDTH = int(4160/4) # 768
125
+ HEIGHT = int(6240/4) # 1024
126
+ POSE_WIDTH = int(WIDTH/2) # int(WIDTH/2)
127
+ POSE_HEIGHT = int(HEIGHT/2) #int(HEIGHT/2)
128
 
129
  @spaces.GPU
130
  def start_tryon(dict,garm_img,garment_des,is_checked,is_checked_crop,denoise_steps,seed):
 
158
  model_parse, _ = parsing_model(human_img.resize((POSE_WIDTH, POSE_HEIGHT)))
159
  mask, mask_gray = get_mask_location('hd', "upper_body", model_parse, keypoints)
160
  mask = mask.resize((WIDTH, HEIGHT))
161
+ logging.info("Mask location on model identified")
162
  else:
163
  mask = pil_to_binary_mask(dict['layers'][0].convert("RGB").resize((WIDTH, HEIGHT)))
164
  # mask = transforms.ToTensor()(mask)