Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
class ResidualBlock(nn.Module): | |
def __init__(self, in_channels, out_channels): | |
super(ResidualBlock, self).__init__() | |
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1) | |
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1) | |
self.bn1 = nn.BatchNorm2d(out_channels) | |
self.bn2 = nn.BatchNorm2d(out_channels) | |
self.relu = nn.ReLU(inplace=True) | |
self.downsample = nn.Conv2d(in_channels, out_channels, kernel_size=1) if in_channels != out_channels else None | |
def forward(self, x): | |
residual = x | |
out = self.relu(self.bn1(self.conv1(x))) | |
out = self.bn2(self.conv2(out)) | |
if self.downsample: | |
residual = self.downsample(x) | |
out += residual | |
return self.relu(out) | |
class EnhancedGarmentNet(nn.Module): | |
def __init__(self, in_channels=3, base_channels=64, num_residual_blocks=4): | |
super(EnhancedGarmentNet, self).__init__() | |
self.initial = nn.Sequential( | |
nn.Conv2d(in_channels, base_channels, kernel_size=7, padding=3), | |
nn.BatchNorm2d(base_channels), | |
nn.ReLU(inplace=True) | |
) | |
self.encoder1 = self._make_layer(base_channels, base_channels, num_residual_blocks) | |
self.encoder2 = self._make_layer(base_channels, base_channels*2, num_residual_blocks) | |
self.encoder3 = self._make_layer(base_channels*2, base_channels*4, num_residual_blocks) | |
self.bridge = self._make_layer(base_channels*4, base_channels*8, num_residual_blocks) | |
self.decoder3 = self._make_layer(base_channels*8, base_channels*4, num_residual_blocks) | |
self.decoder2 = self._make_layer(base_channels*4, base_channels*2, num_residual_blocks) | |
self.decoder1 = self._make_layer(base_channels*2, base_channels, num_residual_blocks) | |
self.final = nn.Conv2d(base_channels, in_channels, kernel_size=7, padding=3) | |
self.downsample = nn.MaxPool2d(2) | |
self.upsample = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True) | |
def _make_layer(self, in_channels, out_channels, num_blocks): | |
layers = [] | |
layers.append(ResidualBlock(in_channels, out_channels)) | |
for _ in range(1, num_blocks): | |
layers.append(ResidualBlock(out_channels, out_channels)) | |
return nn.Sequential(*layers) | |
def forward(self, x): | |
# Initial convolution | |
x = self.initial(x) | |
# Encoder | |
e1 = self.encoder1(x) | |
e2 = self.encoder2(self.downsample(e1)) | |
e3 = self.encoder3(self.downsample(e2)) | |
# Bridge | |
b = self.bridge(self.downsample(e3)) | |
# Decoder with skip connections | |
d3 = self.decoder3(torch.cat([self.upsample(b), e3], dim=1)) | |
d2 = self.decoder2(torch.cat([self.upsample(d3), e2], dim=1)) | |
d1 = self.decoder1(torch.cat([self.upsample(d2), e1], dim=1)) | |
# Final convolution | |
out = self.final(d1) | |
return out, [e1, e2, e3, b] | |
class EnhancedGarmentNetWithTimestep(nn.Module): | |
def __init__(self, in_channels=3, base_channels=64, num_residual_blocks=4, time_emb_dim=256): | |
super(EnhancedGarmentNetWithTimestep, self).__init__() | |
self.garment_net = EnhancedGarmentNet(in_channels, base_channels, num_residual_blocks) | |
# Timestep embedding | |
self.time_mlp = nn.Sequential( | |
nn.Linear(1, time_emb_dim), | |
nn.SiLU(), | |
nn.Linear(time_emb_dim, time_emb_dim) | |
) | |
# Projection for text embeddings | |
self.text_proj = nn.Linear(768, time_emb_dim) # Assuming text embeddings are 768-dimensional | |
# Combine garment features with time and text embeddings | |
self.combine = nn.ModuleList([ | |
nn.Conv2d(base_channels + time_emb_dim, base_channels, kernel_size=1), | |
nn.Conv2d(base_channels*2 + time_emb_dim, base_channels*2, kernel_size=1), | |
nn.Conv2d(base_channels*4 + time_emb_dim, base_channels*4, kernel_size=1), | |
nn.Conv2d(base_channels*8 + time_emb_dim, base_channels*8, kernel_size=1) | |
]) | |
def forward(self, x, t, text_embeds): | |
# Ensure all inputs are of the same dtype | |
x = x.to(dtype=self.garment_net.initial[0].weight.dtype) | |
t = t.to(dtype=self.garment_net.initial[0].weight.dtype) | |
text_embeds = text_embeds.to(dtype=self.garment_net.initial[0].weight.dtype) | |
# Get garment features | |
garment_out, garment_features = self.garment_net(x) | |
# Process timestep | |
t_emb = self.time_mlp(t.unsqueeze(-1)).unsqueeze(-1).unsqueeze(-1) | |
# Process text embeddings | |
text_emb = self.text_proj(text_embeds).unsqueeze(-1).unsqueeze(-1) | |
# Combine embeddings | |
cond_emb = t_emb + text_emb | |
# Combine garment features with conditional embedding | |
combined_features = [] | |
for feat, comb_layer in zip(garment_features, self.combine): | |
# Expand conditional embedding to match feature map size | |
expanded_cond_emb = cond_emb.expand(-1, -1, feat.size(2), feat.size(3)) | |
combined = comb_layer(torch.cat([feat, expanded_cond_emb], dim=1)) | |
combined_features.append(combined) | |
return garment_out, combined_features | |