Virtual-Try-On / src /background_processor.py
parokshsaxena
removing naize harmonization, adding functions for creating masks
0c774a3
import os
import requests
import logging
from PIL import Image, ImageEnhance
import cv2
import numpy as np
from preprocess.humanparsing.run_parsing import Parsing
from src.image_format_convertor import ImageFormatConvertor
REMOVE_BG_KEY = os.getenv('REMOVE_BG_KEY')
parsing_model = Parsing(0)
class BackgroundProcessor:
DeprecationWarning("Created only for testing. Not in use")
@classmethod
def add_background(cls, human_img: Image, background_img: Image):
human_img = human_img.convert("RGB")
width = human_img.width
height = human_img.height
# Create mask image
parsed_img, _ = parsing_model(human_img)
mask_img = parsed_img.convert("L")
mask_img = mask_img.resize((width, height))
background_img = background_img.convert("RGB")
background_img = background_img.resize((width, height))
# Convert to numpy arrays
human_np = np.array(human_img)
mask_np = np.array(mask_img)
background_np = np.array(background_img)
# Ensure mask is 3-channel (RGB) for compatibility
mask_np = np.stack((mask_np,) * 3, axis=-1)
# Apply the mask to human_img
human_with_background = np.where(mask_np > 0, human_np, background_np)
# Convert back to PIL Image
result_img = Image.fromarray(human_with_background.astype('uint8'))
# Return or save the result
return result_img
DeprecationWarning("Created only for testing. Not in use")
@classmethod
def add_background_v3(cls, foreground_pil: Image, background_pil: Image):
foreground_pil= foreground_pil.convert("RGB")
width = foreground_pil.width
height = foreground_pil.height
# Create mask image
parsed_img, _ = parsing_model(foreground_pil)
mask_pil = parsed_img.convert("L")
# Apply a threshold to convert to binary image
# mask_pil = mask_pil.point(lambda p: 1 if p > 127 else 0, mode='1')
mask_pil = mask_pil.resize((width, height))
# Resize background image
background_pil = background_pil.convert("RGB")
background_pil = background_pil.resize((width, height))
# Load the images using PIL
#foreground_pil = Image.open(human_img_path).convert("RGB") # The segmented person image
#background_pil = Image.open(background_img_path).convert("RGB") # The new background image
#mask_pil = Image.open(mask_img_path).convert('L') # The mask image from the human parser model
# Resize the background to match the size of the foreground
#background_pil = background_pil.resize(foreground_pil.size)
# Resize mask
#mask_pil = mask_pil.resize(foreground_pil.size)
# Convert PIL images to OpenCV format
foreground_cv2 = ImageFormatConvertor.pil_to_cv2(foreground_pil)
background_cv2 = ImageFormatConvertor.pil_to_cv2(background_pil)
#mask_cv2 = pil_to_cv2(mask_pil)
mask_cv2 = np.array(mask_pil) # Directly convert to NumPy array without color conversion
# Ensure the mask is a single channel image
if len(mask_cv2.shape) == 3:
mask_cv2 = cv2.cvtColor(mask_cv2, cv2.COLOR_BGR2GRAY)
# Threshold the mask to convert it to pure black and white
_, mask_cv2 = cv2.threshold(mask_cv2, 0, 255, cv2.THRESH_BINARY)
# Ensure the mask is a single channel image
#if len(mask_cv2.shape) == 3:
# mask_cv2 = cv2.cvtColor(mask_cv2, cv2.COLOR_BGR2GRAY)
# Create an inverted mask
mask_inv_cv2 = cv2.bitwise_not(mask_cv2)
# Convert mask to 3 channels
mask_3ch_cv2 = cv2.cvtColor(mask_cv2, cv2.COLOR_GRAY2BGR)
mask_inv_3ch_cv2 = cv2.cvtColor(mask_inv_cv2, cv2.COLOR_GRAY2BGR)
# Extract the person from the foreground image using the mask
person_cv2 = cv2.bitwise_and(foreground_cv2, mask_3ch_cv2)
# Extract the background where the person is not present
background_extracted_cv2 = cv2.bitwise_and(background_cv2, mask_inv_3ch_cv2)
# Combine the person and the new background
combined_cv2 = cv2.add(person_cv2, background_extracted_cv2)
# Refine edges using Gaussian Blur (feathering technique)
blurred_combined_cv2 = cv2.GaussianBlur(combined_cv2, (5, 5), 0)
# Convert the result back to PIL format
combined_pil = ImageFormatConvertor.cv2_to_pil(blurred_combined_cv2)
"""
# Post-processing: Adjust brightness, contrast, etc. (optional)
enhancer = ImageEnhance.Contrast(combined_pil)
post_processed_pil = enhancer.enhance(1.2) # Adjust contrast
enhancer = ImageEnhance.Brightness(post_processed_pil)
post_processed_pil = enhancer.enhance(1.2) # Adjust brightness
"""
# Save the final image
# post_processed_pil.save('path_to_save_final_image_1.png')
# Display the images (optional)
#foreground_pil.show(title="Foreground")
#background_pil.show(title="Background")
#mask_pil.show(title="Mask")
#combined_pil.show(title="Combined")
# post_processed_pil.show(title="Post Processed")
return combined_pil
DeprecationWarning("Created only for testing. Not in use")
@classmethod
def replace_background(cls, foreground_img_path: str, background_img_path: str):
# Load the input image (with alpha channel) and the background image
#input_image = cv2.imread(foreground_img_path, cv2.IMREAD_UNCHANGED)
# background_image = cv2.imread(background_img_path)
foreground_img_pil = Image.open(foreground_img_path)
width = foreground_img_pil.width
height = foreground_img_pil.height
background_image_pil = Image.open(background_img_path)
background_image_pil = background_image_pil.resize((width, height))
input_image = ImageFormatConvertor.pil_to_cv2(foreground_img_pil)
background_image = ImageFormatConvertor.pil_to_cv2(background_image_pil)
# Ensure the input image has an alpha channel
if input_image.shape[2] != 4:
raise ValueError("Input image must have an alpha channel")
# Extract the alpha channel
alpha_channel = input_image[:, :, 3]
# Resize the background image to match the input image dimensions
background_image = cv2.resize(background_image, (input_image.shape[1], input_image.shape[0]))
# Convert alpha channel to 3 channels
alpha_channel_3ch = cv2.cvtColor(alpha_channel, cv2.COLOR_GRAY2BGR)
alpha_channel_3ch = alpha_channel_3ch / 255.0 # Normalize to 0-1
# Extract the BGR channels of the input image
input_bgr = input_image[:, :, :3]
background_bgr = background_image[:,:,:3]
# Blend the images using the alpha channel
foreground = cv2.multiply(alpha_channel_3ch, input_bgr.astype(float))
background = cv2.multiply(1.0 - alpha_channel_3ch, background_bgr.astype(float))
combined_image = cv2.add(foreground, background).astype(np.uint8)
# Save and display the result
cv2.imwrite('path_to_save_combined_image.png', combined_image)
cv2.imshow('Combined Image', combined_image)
cv2.waitKey(0)
cv2.destroyAllWindows()
@classmethod
def replace_background_with_removebg(cls, foreground_img_pil: Image, background_image_pil: Image):
foreground_img_pil= foreground_img_pil.convert("RGB")
width = foreground_img_pil.width
height = foreground_img_pil.height
# Resize background image
background_image_pil = background_image_pil.convert("RGB")
background_image_pil = background_image_pil.resize((width, height))
#foreground_img_pil = Image.open(foreground_img_path)
#width = foreground_img_pil.width
#height = foreground_img_pil.height
#background_image_pil = Image.open(background_img_path)
#background_image_pil = background_image_pil.resize((width, height))
# Do color transfer of background to foreground to adjust lighting condition
#foreground_img_pil = cls.color_transfer(foreground_img_pil, background_image_pil)
foreground_binary = ImageFormatConvertor.pil_image_to_binary_data(foreground_img_pil)
background_binary = ImageFormatConvertor.pil_image_to_binary_data(background_image_pil)
combined_img_pil = cls.remove_bg(foreground_binary, background_binary)
return combined_img_pil
@classmethod
def remove_bg(cls, foreground_binary: str, background_binary: str):
# ref: https://www.remove.bg/api#api-reference
url = "https://api.remove.bg/v1.0/removebg"
# using form-data as passing binary data is not supported in application/json
files = {
"image_file": ('foreground.png', foreground_binary, 'image/png'),
"bg_image_file": ('background.png', background_binary, 'image/png')
}
# get output image in same resolution as input
payload = {
"size": "full",
"shadow_type": "3D"
}
headers = {
"accept": "image/*",
'X-Api-Key': REMOVE_BG_KEY
}
remove_bg_request = requests.post(url, files=files, data=payload, headers=headers, timeout=20)
if remove_bg_request.status_code == 200:
image_content = remove_bg_request.content
pil_image = ImageFormatConvertor.binary_data_to_pil_image(image_content)
return pil_image
logging.error(f"failed to use remove bg. Status: {remove_bg_request.status_code}. Resp: {remove_bg_request.content}")
return None
@classmethod
def create_mask(cls, foreground_path: str, mask_path: str):
"""
Given foreground image path with background removed, create a maska and save it in mask_path
"""
# Load the foreground image with alpha channel
foreground = Image.open(foreground_path)
# Convert to RGBA if not already
foreground = foreground.convert("RGBA")
# Create the mask from the alpha channel
alpha_channel = np.array(foreground.split()[-1])
# Create a binary mask where alpha > 0 is white (255) and alpha == 0 is black (0)
mask = np.where(alpha_channel > 0, 255, 0).astype(np.uint8)
# Save the mask to a file
Image.fromarray(mask).save(mask_path)
@classmethod
def get_minimal_bounding_box(cls, foreground_pil: Image):
"""
Result x1,y1,x2,y2 ie cordinate of bottom left and top right
"""
# convert to cv2
foreground = ImageFormatConvertor.pil_to_cv2(foreground_pil)
# Ensure the image has an alpha channel (transparency)
if foreground.shape[2] == 4:
# Extract the alpha channel
alpha_channel = foreground[:, :, 3]
# Create a binary image from the alpha channel
_, binary_image = cv2.threshold(alpha_channel, 1, 255, cv2.THRESH_BINARY)
else:
# If there is no alpha channel, convert the image to grayscale
gray_image = cv2.cvtColor(foreground, cv2.COLOR_BGR2GRAY)
# Apply binary thresholding
_, binary_image = cv2.threshold(gray_image, 1, 255, cv2.THRESH_BINARY)
# Find all non-zero points (non-background)
non_zero_points = cv2.findNonZero(binary_image)
# Get the minimal bounding rectangle
if non_zero_points is not None:
x, y, w, h = cv2.boundingRect(non_zero_points)
"""
# Optionally, draw the bounding box on the image for visualization
output_image = foreground.copy()
cv2.rectangle(output_image, (x, y), (x+w, y+h), (0, 255, 0, 255), 2)
# Save or display the output image
output_image_pil = ImageFormatConvertor.cv2_to_pil(output_image)
output_image_pil.save('output_with_bounding_box.png')
"""
return (x, y, x + w, y + h)
else:
return 0,0,w,h
@classmethod
def color_transfer(cls, source_pil: Image, target_pil: Image) -> Image:
# NOT IN USE as output color was not good
source = ImageFormatConvertor.pil_to_cv2(source_pil)
# Resize background image
width, height = source_pil.width, source_pil.height
target_pil = target_pil.convert("RGB")
target_pil = target_pil.resize((width, height))
target = ImageFormatConvertor.pil_to_cv2(target_pil)
source = cv2.cvtColor(source, cv2.COLOR_BGR2LAB)
target = cv2.cvtColor(target, cv2.COLOR_BGR2LAB)
# Compute the mean and standard deviation of the source and target images
source_mean, source_std = cv2.meanStdDev(source)
target_mean, target_std = cv2.meanStdDev(target)
#Reshape the mean and std to (1, 1, 3) so they can be broadcast correctly
source_mean = source_mean.reshape((1, 1, 3))
source_std = source_std.reshape((1, 1, 3))
target_mean = target_mean.reshape((1, 1, 3))
target_std = target_std.reshape((1, 1, 3))
# Subtract the mean from the source image
result = (source - source_mean) * (target_std / source_std) + target_mean
result = np.clip(result, 0, 255).astype(np.uint8)
res = cv2.cvtColor(result, cv2.COLOR_LAB2BGR)
res_pil = ImageFormatConvertor.cv2_to_pil(res)
return res_pil
@classmethod
def intensity_transfer(cls, source_pil: Image, target_pil: Image) -> Image:
"""
Transfers the intensity distribution from the target image to the source image.
Parameters:
source (np.ndarray): The source image (foreground) to be harmonized.
target (np.ndarray): The target image (background) whose intensity distribution is to be matched.
eps (float): A small value to avoid division by zero.
Returns:
np.ndarray: The intensity-transferred source image.
"""
source = ImageFormatConvertor.pil_to_cv2(source_pil)
# Resize background image
width, height = source_pil.width, source_pil.height
target_pil = target_pil.convert("RGB")
target_pil = target_pil.resize((width, height))
target = ImageFormatConvertor.pil_to_cv2(target_pil)
source_lab = cv2.cvtColor(source, cv2.COLOR_BGR2LAB)
target_lab = cv2.cvtColor(target, cv2.COLOR_BGR2LAB)
# Compute the mean and standard deviation of the L channel (intensity) of the source and target images
source_mean, source_std = cv2.meanStdDev(source_lab[:, :, 0])
target_mean, target_std = cv2.meanStdDev(target_lab[:, :, 0])
# Reshape the mean and std to (1, 1, 1) so they can be broadcast correctly
source_mean = source_mean.reshape((1, 1, 1))
source_std = source_std.reshape((1, 1, 1))
target_mean = target_mean.reshape((1, 1, 1))
target_std = target_std.reshape((1, 1, 1))
# Transfer the intensity (L channel)
result_l = (source_lab[:, :, 0] - source_mean) * (target_std / source_std) + target_mean
result_l = np.clip(result_l, 0, 255).astype(np.uint8)
# Combine the transferred L channel with the original A and B channels
result_lab = np.copy(source_lab)
result_lab[:, :, 0] = result_l
# return cv2.cvtColor(result_lab, cv2.COLOR_LAB2BGR)
res = cv2.cvtColor(result_lab, cv2.COLOR_LAB2BGR)
res_pil = ImageFormatConvertor.cv2_to_pil(res)
return res_pil
@classmethod
def match_color(cls, source_pil: Image, target_pil: Image):
source = ImageFormatConvertor.pil_to_cv2(source_pil)
# Resize background image
width, height = source_pil.width, source_pil.height
target_pil = target_pil.convert("RGB")
target_pil = target_pil.resize((width, height))
target = ImageFormatConvertor.pil_to_cv2(target_pil)
matched_foreground = cv2.cvtColor(source, cv2.COLOR_BGR2LAB)
matched_background = cv2.cvtColor(target, cv2.COLOR_BGR2LAB)
# Match the histograms
for i in range(3):
matched_foreground[:, :, i] = cv2.equalizeHist(matched_foreground[:, :, i])
matched_background[:, :, i] = cv2.equalizeHist(matched_background[:, :, i])
matched_foreground = cv2.cvtColor(matched_foreground, cv2.COLOR_LAB2BGR)
matched_background = cv2.cvtColor(matched_background, cv2.COLOR_LAB2BGR)
matched_foreground_pil = ImageFormatConvertor.cv2_to_pil(matched_foreground)
matched_background_pil = ImageFormatConvertor.cv2_to_pil(matched_background)
return matched_foreground_pil, matched_background_pil