Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import requests | |
import logging | |
from PIL import Image, ImageEnhance | |
import cv2 | |
import numpy as np | |
from preprocess.humanparsing.run_parsing import Parsing | |
from src.image_format_convertor import ImageFormatConvertor | |
REMOVE_BG_KEY = os.getenv('REMOVE_BG_KEY') | |
parsing_model = Parsing(0) | |
class BackgroundProcessor: | |
DeprecationWarning("Created only for testing. Not in use") | |
def add_background(cls, human_img: Image, background_img: Image): | |
human_img = human_img.convert("RGB") | |
width = human_img.width | |
height = human_img.height | |
# Create mask image | |
parsed_img, _ = parsing_model(human_img) | |
mask_img = parsed_img.convert("L") | |
mask_img = mask_img.resize((width, height)) | |
background_img = background_img.convert("RGB") | |
background_img = background_img.resize((width, height)) | |
# Convert to numpy arrays | |
human_np = np.array(human_img) | |
mask_np = np.array(mask_img) | |
background_np = np.array(background_img) | |
# Ensure mask is 3-channel (RGB) for compatibility | |
mask_np = np.stack((mask_np,) * 3, axis=-1) | |
# Apply the mask to human_img | |
human_with_background = np.where(mask_np > 0, human_np, background_np) | |
# Convert back to PIL Image | |
result_img = Image.fromarray(human_with_background.astype('uint8')) | |
# Return or save the result | |
return result_img | |
DeprecationWarning("Created only for testing. Not in use") | |
def add_background_v3(cls, foreground_pil: Image, background_pil: Image): | |
foreground_pil= foreground_pil.convert("RGB") | |
width = foreground_pil.width | |
height = foreground_pil.height | |
# Create mask image | |
parsed_img, _ = parsing_model(foreground_pil) | |
mask_pil = parsed_img.convert("L") | |
# Apply a threshold to convert to binary image | |
# mask_pil = mask_pil.point(lambda p: 1 if p > 127 else 0, mode='1') | |
mask_pil = mask_pil.resize((width, height)) | |
# Resize background image | |
background_pil = background_pil.convert("RGB") | |
background_pil = background_pil.resize((width, height)) | |
# Load the images using PIL | |
#foreground_pil = Image.open(human_img_path).convert("RGB") # The segmented person image | |
#background_pil = Image.open(background_img_path).convert("RGB") # The new background image | |
#mask_pil = Image.open(mask_img_path).convert('L') # The mask image from the human parser model | |
# Resize the background to match the size of the foreground | |
#background_pil = background_pil.resize(foreground_pil.size) | |
# Resize mask | |
#mask_pil = mask_pil.resize(foreground_pil.size) | |
# Convert PIL images to OpenCV format | |
foreground_cv2 = ImageFormatConvertor.pil_to_cv2(foreground_pil) | |
background_cv2 = ImageFormatConvertor.pil_to_cv2(background_pil) | |
#mask_cv2 = pil_to_cv2(mask_pil) | |
mask_cv2 = np.array(mask_pil) # Directly convert to NumPy array without color conversion | |
# Ensure the mask is a single channel image | |
if len(mask_cv2.shape) == 3: | |
mask_cv2 = cv2.cvtColor(mask_cv2, cv2.COLOR_BGR2GRAY) | |
# Threshold the mask to convert it to pure black and white | |
_, mask_cv2 = cv2.threshold(mask_cv2, 0, 255, cv2.THRESH_BINARY) | |
# Ensure the mask is a single channel image | |
#if len(mask_cv2.shape) == 3: | |
# mask_cv2 = cv2.cvtColor(mask_cv2, cv2.COLOR_BGR2GRAY) | |
# Create an inverted mask | |
mask_inv_cv2 = cv2.bitwise_not(mask_cv2) | |
# Convert mask to 3 channels | |
mask_3ch_cv2 = cv2.cvtColor(mask_cv2, cv2.COLOR_GRAY2BGR) | |
mask_inv_3ch_cv2 = cv2.cvtColor(mask_inv_cv2, cv2.COLOR_GRAY2BGR) | |
# Extract the person from the foreground image using the mask | |
person_cv2 = cv2.bitwise_and(foreground_cv2, mask_3ch_cv2) | |
# Extract the background where the person is not present | |
background_extracted_cv2 = cv2.bitwise_and(background_cv2, mask_inv_3ch_cv2) | |
# Combine the person and the new background | |
combined_cv2 = cv2.add(person_cv2, background_extracted_cv2) | |
# Refine edges using Gaussian Blur (feathering technique) | |
blurred_combined_cv2 = cv2.GaussianBlur(combined_cv2, (5, 5), 0) | |
# Convert the result back to PIL format | |
combined_pil = ImageFormatConvertor.cv2_to_pil(blurred_combined_cv2) | |
""" | |
# Post-processing: Adjust brightness, contrast, etc. (optional) | |
enhancer = ImageEnhance.Contrast(combined_pil) | |
post_processed_pil = enhancer.enhance(1.2) # Adjust contrast | |
enhancer = ImageEnhance.Brightness(post_processed_pil) | |
post_processed_pil = enhancer.enhance(1.2) # Adjust brightness | |
""" | |
# Save the final image | |
# post_processed_pil.save('path_to_save_final_image_1.png') | |
# Display the images (optional) | |
#foreground_pil.show(title="Foreground") | |
#background_pil.show(title="Background") | |
#mask_pil.show(title="Mask") | |
#combined_pil.show(title="Combined") | |
# post_processed_pil.show(title="Post Processed") | |
return combined_pil | |
DeprecationWarning("Created only for testing. Not in use") | |
def replace_background(cls, foreground_img_path: str, background_img_path: str): | |
# Load the input image (with alpha channel) and the background image | |
#input_image = cv2.imread(foreground_img_path, cv2.IMREAD_UNCHANGED) | |
# background_image = cv2.imread(background_img_path) | |
foreground_img_pil = Image.open(foreground_img_path) | |
width = foreground_img_pil.width | |
height = foreground_img_pil.height | |
background_image_pil = Image.open(background_img_path) | |
background_image_pil = background_image_pil.resize((width, height)) | |
input_image = ImageFormatConvertor.pil_to_cv2(foreground_img_pil) | |
background_image = ImageFormatConvertor.pil_to_cv2(background_image_pil) | |
# Ensure the input image has an alpha channel | |
if input_image.shape[2] != 4: | |
raise ValueError("Input image must have an alpha channel") | |
# Extract the alpha channel | |
alpha_channel = input_image[:, :, 3] | |
# Resize the background image to match the input image dimensions | |
background_image = cv2.resize(background_image, (input_image.shape[1], input_image.shape[0])) | |
# Convert alpha channel to 3 channels | |
alpha_channel_3ch = cv2.cvtColor(alpha_channel, cv2.COLOR_GRAY2BGR) | |
alpha_channel_3ch = alpha_channel_3ch / 255.0 # Normalize to 0-1 | |
# Extract the BGR channels of the input image | |
input_bgr = input_image[:, :, :3] | |
background_bgr = background_image[:,:,:3] | |
# Blend the images using the alpha channel | |
foreground = cv2.multiply(alpha_channel_3ch, input_bgr.astype(float)) | |
background = cv2.multiply(1.0 - alpha_channel_3ch, background_bgr.astype(float)) | |
combined_image = cv2.add(foreground, background).astype(np.uint8) | |
# Save and display the result | |
cv2.imwrite('path_to_save_combined_image.png', combined_image) | |
cv2.imshow('Combined Image', combined_image) | |
cv2.waitKey(0) | |
cv2.destroyAllWindows() | |
def replace_background_with_removebg(cls, foreground_img_pil: Image, background_image_pil: Image): | |
foreground_img_pil= foreground_img_pil.convert("RGB") | |
width = foreground_img_pil.width | |
height = foreground_img_pil.height | |
# Resize background image | |
background_image_pil = background_image_pil.convert("RGB") | |
background_image_pil = background_image_pil.resize((width, height)) | |
#foreground_img_pil = Image.open(foreground_img_path) | |
#width = foreground_img_pil.width | |
#height = foreground_img_pil.height | |
#background_image_pil = Image.open(background_img_path) | |
#background_image_pil = background_image_pil.resize((width, height)) | |
# Do color transfer of background to foreground to adjust lighting condition | |
#foreground_img_pil = cls.color_transfer(foreground_img_pil, background_image_pil) | |
foreground_binary = ImageFormatConvertor.pil_image_to_binary_data(foreground_img_pil) | |
background_binary = ImageFormatConvertor.pil_image_to_binary_data(background_image_pil) | |
combined_img_pil = cls.remove_bg(foreground_binary, background_binary) | |
return combined_img_pil | |
def remove_bg(cls, foreground_binary: str, background_binary: str): | |
# ref: https://www.remove.bg/api#api-reference | |
url = "https://api.remove.bg/v1.0/removebg" | |
# using form-data as passing binary data is not supported in application/json | |
files = { | |
"image_file": ('foreground.png', foreground_binary, 'image/png'), | |
"bg_image_file": ('background.png', background_binary, 'image/png') | |
} | |
# get output image in same resolution as input | |
payload = { | |
"size": "full", | |
"shadow_type": "3D" | |
} | |
headers = { | |
"accept": "image/*", | |
'X-Api-Key': REMOVE_BG_KEY | |
} | |
remove_bg_request = requests.post(url, files=files, data=payload, headers=headers, timeout=20) | |
if remove_bg_request.status_code == 200: | |
image_content = remove_bg_request.content | |
pil_image = ImageFormatConvertor.binary_data_to_pil_image(image_content) | |
return pil_image | |
logging.error(f"failed to use remove bg. Status: {remove_bg_request.status_code}. Resp: {remove_bg_request.content}") | |
return None | |
def create_mask(cls, foreground_path: str, mask_path: str): | |
""" | |
Given foreground image path with background removed, create a maska and save it in mask_path | |
""" | |
# Load the foreground image with alpha channel | |
foreground = Image.open(foreground_path) | |
# Convert to RGBA if not already | |
foreground = foreground.convert("RGBA") | |
# Create the mask from the alpha channel | |
alpha_channel = np.array(foreground.split()[-1]) | |
# Create a binary mask where alpha > 0 is white (255) and alpha == 0 is black (0) | |
mask = np.where(alpha_channel > 0, 255, 0).astype(np.uint8) | |
# Save the mask to a file | |
Image.fromarray(mask).save(mask_path) | |
def get_minimal_bounding_box(cls, foreground_pil: Image): | |
""" | |
Result x1,y1,x2,y2 ie cordinate of bottom left and top right | |
""" | |
# convert to cv2 | |
foreground = ImageFormatConvertor.pil_to_cv2(foreground_pil) | |
# Ensure the image has an alpha channel (transparency) | |
if foreground.shape[2] == 4: | |
# Extract the alpha channel | |
alpha_channel = foreground[:, :, 3] | |
# Create a binary image from the alpha channel | |
_, binary_image = cv2.threshold(alpha_channel, 1, 255, cv2.THRESH_BINARY) | |
else: | |
# If there is no alpha channel, convert the image to grayscale | |
gray_image = cv2.cvtColor(foreground, cv2.COLOR_BGR2GRAY) | |
# Apply binary thresholding | |
_, binary_image = cv2.threshold(gray_image, 1, 255, cv2.THRESH_BINARY) | |
# Find all non-zero points (non-background) | |
non_zero_points = cv2.findNonZero(binary_image) | |
# Get the minimal bounding rectangle | |
if non_zero_points is not None: | |
x, y, w, h = cv2.boundingRect(non_zero_points) | |
""" | |
# Optionally, draw the bounding box on the image for visualization | |
output_image = foreground.copy() | |
cv2.rectangle(output_image, (x, y), (x+w, y+h), (0, 255, 0, 255), 2) | |
# Save or display the output image | |
output_image_pil = ImageFormatConvertor.cv2_to_pil(output_image) | |
output_image_pil.save('output_with_bounding_box.png') | |
""" | |
return (x, y, x + w, y + h) | |
else: | |
return 0,0,w,h | |
def color_transfer(cls, source_pil: Image, target_pil: Image) -> Image: | |
# NOT IN USE as output color was not good | |
source = ImageFormatConvertor.pil_to_cv2(source_pil) | |
# Resize background image | |
width, height = source_pil.width, source_pil.height | |
target_pil = target_pil.convert("RGB") | |
target_pil = target_pil.resize((width, height)) | |
target = ImageFormatConvertor.pil_to_cv2(target_pil) | |
source = cv2.cvtColor(source, cv2.COLOR_BGR2LAB) | |
target = cv2.cvtColor(target, cv2.COLOR_BGR2LAB) | |
# Compute the mean and standard deviation of the source and target images | |
source_mean, source_std = cv2.meanStdDev(source) | |
target_mean, target_std = cv2.meanStdDev(target) | |
#Reshape the mean and std to (1, 1, 3) so they can be broadcast correctly | |
source_mean = source_mean.reshape((1, 1, 3)) | |
source_std = source_std.reshape((1, 1, 3)) | |
target_mean = target_mean.reshape((1, 1, 3)) | |
target_std = target_std.reshape((1, 1, 3)) | |
# Subtract the mean from the source image | |
result = (source - source_mean) * (target_std / source_std) + target_mean | |
result = np.clip(result, 0, 255).astype(np.uint8) | |
res = cv2.cvtColor(result, cv2.COLOR_LAB2BGR) | |
res_pil = ImageFormatConvertor.cv2_to_pil(res) | |
return res_pil | |
def intensity_transfer(cls, source_pil: Image, target_pil: Image) -> Image: | |
""" | |
Transfers the intensity distribution from the target image to the source image. | |
Parameters: | |
source (np.ndarray): The source image (foreground) to be harmonized. | |
target (np.ndarray): The target image (background) whose intensity distribution is to be matched. | |
eps (float): A small value to avoid division by zero. | |
Returns: | |
np.ndarray: The intensity-transferred source image. | |
""" | |
source = ImageFormatConvertor.pil_to_cv2(source_pil) | |
# Resize background image | |
width, height = source_pil.width, source_pil.height | |
target_pil = target_pil.convert("RGB") | |
target_pil = target_pil.resize((width, height)) | |
target = ImageFormatConvertor.pil_to_cv2(target_pil) | |
source_lab = cv2.cvtColor(source, cv2.COLOR_BGR2LAB) | |
target_lab = cv2.cvtColor(target, cv2.COLOR_BGR2LAB) | |
# Compute the mean and standard deviation of the L channel (intensity) of the source and target images | |
source_mean, source_std = cv2.meanStdDev(source_lab[:, :, 0]) | |
target_mean, target_std = cv2.meanStdDev(target_lab[:, :, 0]) | |
# Reshape the mean and std to (1, 1, 1) so they can be broadcast correctly | |
source_mean = source_mean.reshape((1, 1, 1)) | |
source_std = source_std.reshape((1, 1, 1)) | |
target_mean = target_mean.reshape((1, 1, 1)) | |
target_std = target_std.reshape((1, 1, 1)) | |
# Transfer the intensity (L channel) | |
result_l = (source_lab[:, :, 0] - source_mean) * (target_std / source_std) + target_mean | |
result_l = np.clip(result_l, 0, 255).astype(np.uint8) | |
# Combine the transferred L channel with the original A and B channels | |
result_lab = np.copy(source_lab) | |
result_lab[:, :, 0] = result_l | |
# return cv2.cvtColor(result_lab, cv2.COLOR_LAB2BGR) | |
res = cv2.cvtColor(result_lab, cv2.COLOR_LAB2BGR) | |
res_pil = ImageFormatConvertor.cv2_to_pil(res) | |
return res_pil | |
def match_color(cls, source_pil: Image, target_pil: Image): | |
source = ImageFormatConvertor.pil_to_cv2(source_pil) | |
# Resize background image | |
width, height = source_pil.width, source_pil.height | |
target_pil = target_pil.convert("RGB") | |
target_pil = target_pil.resize((width, height)) | |
target = ImageFormatConvertor.pil_to_cv2(target_pil) | |
matched_foreground = cv2.cvtColor(source, cv2.COLOR_BGR2LAB) | |
matched_background = cv2.cvtColor(target, cv2.COLOR_BGR2LAB) | |
# Match the histograms | |
for i in range(3): | |
matched_foreground[:, :, i] = cv2.equalizeHist(matched_foreground[:, :, i]) | |
matched_background[:, :, i] = cv2.equalizeHist(matched_background[:, :, i]) | |
matched_foreground = cv2.cvtColor(matched_foreground, cv2.COLOR_LAB2BGR) | |
matched_background = cv2.cvtColor(matched_background, cv2.COLOR_LAB2BGR) | |
matched_foreground_pil = ImageFormatConvertor.cv2_to_pil(matched_foreground) | |
matched_background_pil = ImageFormatConvertor.cv2_to_pil(matched_background) | |
return matched_foreground_pil, matched_background_pil | |