Spaces:
Running
on
Zero
Running
on
Zero
File size: 17,018 Bytes
cbe97f0 1dddd5f f65f11f cbe97f0 5b0a64b f65f11f cbe97f0 f65f11f 1dddd5f cbe97f0 1dddd5f cbe97f0 1dddd5f cbe97f0 1dddd5f cbe97f0 1dddd5f cbe97f0 1dddd5f cbe97f0 1dddd5f cbe97f0 1dddd5f cbe97f0 1dddd5f cbe97f0 658ee20 d3da15b cbe97f0 6093a65 cbe97f0 1dddd5f cbe97f0 b608c7b ce7b1a5 b608c7b cbe97f0 b608c7b cbe97f0 0c774a3 1993dd0 658ee20 1993dd0 658ee20 5ca0873 658ee20 5ca0873 1993dd0 5ca0873 1993dd0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 |
import os
import requests
import logging
from PIL import Image, ImageEnhance
import cv2
import numpy as np
from preprocess.humanparsing.run_parsing import Parsing
from src.image_format_convertor import ImageFormatConvertor
REMOVE_BG_KEY = os.getenv('REMOVE_BG_KEY')
parsing_model = Parsing(0)
class BackgroundProcessor:
DeprecationWarning("Created only for testing. Not in use")
@classmethod
def add_background(cls, human_img: Image, background_img: Image):
human_img = human_img.convert("RGB")
width = human_img.width
height = human_img.height
# Create mask image
parsed_img, _ = parsing_model(human_img)
mask_img = parsed_img.convert("L")
mask_img = mask_img.resize((width, height))
background_img = background_img.convert("RGB")
background_img = background_img.resize((width, height))
# Convert to numpy arrays
human_np = np.array(human_img)
mask_np = np.array(mask_img)
background_np = np.array(background_img)
# Ensure mask is 3-channel (RGB) for compatibility
mask_np = np.stack((mask_np,) * 3, axis=-1)
# Apply the mask to human_img
human_with_background = np.where(mask_np > 0, human_np, background_np)
# Convert back to PIL Image
result_img = Image.fromarray(human_with_background.astype('uint8'))
# Return or save the result
return result_img
DeprecationWarning("Created only for testing. Not in use")
@classmethod
def add_background_v3(cls, foreground_pil: Image, background_pil: Image):
foreground_pil= foreground_pil.convert("RGB")
width = foreground_pil.width
height = foreground_pil.height
# Create mask image
parsed_img, _ = parsing_model(foreground_pil)
mask_pil = parsed_img.convert("L")
# Apply a threshold to convert to binary image
# mask_pil = mask_pil.point(lambda p: 1 if p > 127 else 0, mode='1')
mask_pil = mask_pil.resize((width, height))
# Resize background image
background_pil = background_pil.convert("RGB")
background_pil = background_pil.resize((width, height))
# Load the images using PIL
#foreground_pil = Image.open(human_img_path).convert("RGB") # The segmented person image
#background_pil = Image.open(background_img_path).convert("RGB") # The new background image
#mask_pil = Image.open(mask_img_path).convert('L') # The mask image from the human parser model
# Resize the background to match the size of the foreground
#background_pil = background_pil.resize(foreground_pil.size)
# Resize mask
#mask_pil = mask_pil.resize(foreground_pil.size)
# Convert PIL images to OpenCV format
foreground_cv2 = ImageFormatConvertor.pil_to_cv2(foreground_pil)
background_cv2 = ImageFormatConvertor.pil_to_cv2(background_pil)
#mask_cv2 = pil_to_cv2(mask_pil)
mask_cv2 = np.array(mask_pil) # Directly convert to NumPy array without color conversion
# Ensure the mask is a single channel image
if len(mask_cv2.shape) == 3:
mask_cv2 = cv2.cvtColor(mask_cv2, cv2.COLOR_BGR2GRAY)
# Threshold the mask to convert it to pure black and white
_, mask_cv2 = cv2.threshold(mask_cv2, 0, 255, cv2.THRESH_BINARY)
# Ensure the mask is a single channel image
#if len(mask_cv2.shape) == 3:
# mask_cv2 = cv2.cvtColor(mask_cv2, cv2.COLOR_BGR2GRAY)
# Create an inverted mask
mask_inv_cv2 = cv2.bitwise_not(mask_cv2)
# Convert mask to 3 channels
mask_3ch_cv2 = cv2.cvtColor(mask_cv2, cv2.COLOR_GRAY2BGR)
mask_inv_3ch_cv2 = cv2.cvtColor(mask_inv_cv2, cv2.COLOR_GRAY2BGR)
# Extract the person from the foreground image using the mask
person_cv2 = cv2.bitwise_and(foreground_cv2, mask_3ch_cv2)
# Extract the background where the person is not present
background_extracted_cv2 = cv2.bitwise_and(background_cv2, mask_inv_3ch_cv2)
# Combine the person and the new background
combined_cv2 = cv2.add(person_cv2, background_extracted_cv2)
# Refine edges using Gaussian Blur (feathering technique)
blurred_combined_cv2 = cv2.GaussianBlur(combined_cv2, (5, 5), 0)
# Convert the result back to PIL format
combined_pil = ImageFormatConvertor.cv2_to_pil(blurred_combined_cv2)
"""
# Post-processing: Adjust brightness, contrast, etc. (optional)
enhancer = ImageEnhance.Contrast(combined_pil)
post_processed_pil = enhancer.enhance(1.2) # Adjust contrast
enhancer = ImageEnhance.Brightness(post_processed_pil)
post_processed_pil = enhancer.enhance(1.2) # Adjust brightness
"""
# Save the final image
# post_processed_pil.save('path_to_save_final_image_1.png')
# Display the images (optional)
#foreground_pil.show(title="Foreground")
#background_pil.show(title="Background")
#mask_pil.show(title="Mask")
#combined_pil.show(title="Combined")
# post_processed_pil.show(title="Post Processed")
return combined_pil
DeprecationWarning("Created only for testing. Not in use")
@classmethod
def replace_background(cls, foreground_img_path: str, background_img_path: str):
# Load the input image (with alpha channel) and the background image
#input_image = cv2.imread(foreground_img_path, cv2.IMREAD_UNCHANGED)
# background_image = cv2.imread(background_img_path)
foreground_img_pil = Image.open(foreground_img_path)
width = foreground_img_pil.width
height = foreground_img_pil.height
background_image_pil = Image.open(background_img_path)
background_image_pil = background_image_pil.resize((width, height))
input_image = ImageFormatConvertor.pil_to_cv2(foreground_img_pil)
background_image = ImageFormatConvertor.pil_to_cv2(background_image_pil)
# Ensure the input image has an alpha channel
if input_image.shape[2] != 4:
raise ValueError("Input image must have an alpha channel")
# Extract the alpha channel
alpha_channel = input_image[:, :, 3]
# Resize the background image to match the input image dimensions
background_image = cv2.resize(background_image, (input_image.shape[1], input_image.shape[0]))
# Convert alpha channel to 3 channels
alpha_channel_3ch = cv2.cvtColor(alpha_channel, cv2.COLOR_GRAY2BGR)
alpha_channel_3ch = alpha_channel_3ch / 255.0 # Normalize to 0-1
# Extract the BGR channels of the input image
input_bgr = input_image[:, :, :3]
background_bgr = background_image[:,:,:3]
# Blend the images using the alpha channel
foreground = cv2.multiply(alpha_channel_3ch, input_bgr.astype(float))
background = cv2.multiply(1.0 - alpha_channel_3ch, background_bgr.astype(float))
combined_image = cv2.add(foreground, background).astype(np.uint8)
# Save and display the result
cv2.imwrite('path_to_save_combined_image.png', combined_image)
cv2.imshow('Combined Image', combined_image)
cv2.waitKey(0)
cv2.destroyAllWindows()
@classmethod
def replace_background_with_removebg(cls, foreground_img_pil: Image, background_image_pil: Image):
foreground_img_pil= foreground_img_pil.convert("RGB")
width = foreground_img_pil.width
height = foreground_img_pil.height
# Resize background image
background_image_pil = background_image_pil.convert("RGB")
background_image_pil = background_image_pil.resize((width, height))
#foreground_img_pil = Image.open(foreground_img_path)
#width = foreground_img_pil.width
#height = foreground_img_pil.height
#background_image_pil = Image.open(background_img_path)
#background_image_pil = background_image_pil.resize((width, height))
# Do color transfer of background to foreground to adjust lighting condition
#foreground_img_pil = cls.color_transfer(foreground_img_pil, background_image_pil)
foreground_binary = ImageFormatConvertor.pil_image_to_binary_data(foreground_img_pil)
background_binary = ImageFormatConvertor.pil_image_to_binary_data(background_image_pil)
combined_img_pil = cls.remove_bg(foreground_binary, background_binary)
return combined_img_pil
@classmethod
def remove_bg(cls, foreground_binary: str, background_binary: str):
# ref: https://www.remove.bg/api#api-reference
url = "https://api.remove.bg/v1.0/removebg"
# using form-data as passing binary data is not supported in application/json
files = {
"image_file": ('foreground.png', foreground_binary, 'image/png'),
"bg_image_file": ('background.png', background_binary, 'image/png')
}
# get output image in same resolution as input
payload = {
"size": "full",
"shadow_type": "3D"
}
headers = {
"accept": "image/*",
'X-Api-Key': REMOVE_BG_KEY
}
remove_bg_request = requests.post(url, files=files, data=payload, headers=headers, timeout=20)
if remove_bg_request.status_code == 200:
image_content = remove_bg_request.content
pil_image = ImageFormatConvertor.binary_data_to_pil_image(image_content)
return pil_image
logging.error(f"failed to use remove bg. Status: {remove_bg_request.status_code}. Resp: {remove_bg_request.content}")
return None
@classmethod
def create_mask(cls, foreground_path: str, mask_path: str):
"""
Given foreground image path with background removed, create a maska and save it in mask_path
"""
# Load the foreground image with alpha channel
foreground = Image.open(foreground_path)
# Convert to RGBA if not already
foreground = foreground.convert("RGBA")
# Create the mask from the alpha channel
alpha_channel = np.array(foreground.split()[-1])
# Create a binary mask where alpha > 0 is white (255) and alpha == 0 is black (0)
mask = np.where(alpha_channel > 0, 255, 0).astype(np.uint8)
# Save the mask to a file
Image.fromarray(mask).save(mask_path)
@classmethod
def get_minimal_bounding_box(cls, foreground_pil: Image):
"""
Result x1,y1,x2,y2 ie cordinate of bottom left and top right
"""
# convert to cv2
foreground = ImageFormatConvertor.pil_to_cv2(foreground_pil)
# Ensure the image has an alpha channel (transparency)
if foreground.shape[2] == 4:
# Extract the alpha channel
alpha_channel = foreground[:, :, 3]
# Create a binary image from the alpha channel
_, binary_image = cv2.threshold(alpha_channel, 1, 255, cv2.THRESH_BINARY)
else:
# If there is no alpha channel, convert the image to grayscale
gray_image = cv2.cvtColor(foreground, cv2.COLOR_BGR2GRAY)
# Apply binary thresholding
_, binary_image = cv2.threshold(gray_image, 1, 255, cv2.THRESH_BINARY)
# Find all non-zero points (non-background)
non_zero_points = cv2.findNonZero(binary_image)
# Get the minimal bounding rectangle
if non_zero_points is not None:
x, y, w, h = cv2.boundingRect(non_zero_points)
"""
# Optionally, draw the bounding box on the image for visualization
output_image = foreground.copy()
cv2.rectangle(output_image, (x, y), (x+w, y+h), (0, 255, 0, 255), 2)
# Save or display the output image
output_image_pil = ImageFormatConvertor.cv2_to_pil(output_image)
output_image_pil.save('output_with_bounding_box.png')
"""
return (x, y, x + w, y + h)
else:
return 0,0,w,h
@classmethod
def color_transfer(cls, source_pil: Image, target_pil: Image) -> Image:
# NOT IN USE as output color was not good
source = ImageFormatConvertor.pil_to_cv2(source_pil)
# Resize background image
width, height = source_pil.width, source_pil.height
target_pil = target_pil.convert("RGB")
target_pil = target_pil.resize((width, height))
target = ImageFormatConvertor.pil_to_cv2(target_pil)
source = cv2.cvtColor(source, cv2.COLOR_BGR2LAB)
target = cv2.cvtColor(target, cv2.COLOR_BGR2LAB)
# Compute the mean and standard deviation of the source and target images
source_mean, source_std = cv2.meanStdDev(source)
target_mean, target_std = cv2.meanStdDev(target)
#Reshape the mean and std to (1, 1, 3) so they can be broadcast correctly
source_mean = source_mean.reshape((1, 1, 3))
source_std = source_std.reshape((1, 1, 3))
target_mean = target_mean.reshape((1, 1, 3))
target_std = target_std.reshape((1, 1, 3))
# Subtract the mean from the source image
result = (source - source_mean) * (target_std / source_std) + target_mean
result = np.clip(result, 0, 255).astype(np.uint8)
res = cv2.cvtColor(result, cv2.COLOR_LAB2BGR)
res_pil = ImageFormatConvertor.cv2_to_pil(res)
return res_pil
@classmethod
def intensity_transfer(cls, source_pil: Image, target_pil: Image) -> Image:
"""
Transfers the intensity distribution from the target image to the source image.
Parameters:
source (np.ndarray): The source image (foreground) to be harmonized.
target (np.ndarray): The target image (background) whose intensity distribution is to be matched.
eps (float): A small value to avoid division by zero.
Returns:
np.ndarray: The intensity-transferred source image.
"""
source = ImageFormatConvertor.pil_to_cv2(source_pil)
# Resize background image
width, height = source_pil.width, source_pil.height
target_pil = target_pil.convert("RGB")
target_pil = target_pil.resize((width, height))
target = ImageFormatConvertor.pil_to_cv2(target_pil)
source_lab = cv2.cvtColor(source, cv2.COLOR_BGR2LAB)
target_lab = cv2.cvtColor(target, cv2.COLOR_BGR2LAB)
# Compute the mean and standard deviation of the L channel (intensity) of the source and target images
source_mean, source_std = cv2.meanStdDev(source_lab[:, :, 0])
target_mean, target_std = cv2.meanStdDev(target_lab[:, :, 0])
# Reshape the mean and std to (1, 1, 1) so they can be broadcast correctly
source_mean = source_mean.reshape((1, 1, 1))
source_std = source_std.reshape((1, 1, 1))
target_mean = target_mean.reshape((1, 1, 1))
target_std = target_std.reshape((1, 1, 1))
# Transfer the intensity (L channel)
result_l = (source_lab[:, :, 0] - source_mean) * (target_std / source_std) + target_mean
result_l = np.clip(result_l, 0, 255).astype(np.uint8)
# Combine the transferred L channel with the original A and B channels
result_lab = np.copy(source_lab)
result_lab[:, :, 0] = result_l
# return cv2.cvtColor(result_lab, cv2.COLOR_LAB2BGR)
res = cv2.cvtColor(result_lab, cv2.COLOR_LAB2BGR)
res_pil = ImageFormatConvertor.cv2_to_pil(res)
return res_pil
@classmethod
def match_color(cls, source_pil: Image, target_pil: Image):
source = ImageFormatConvertor.pil_to_cv2(source_pil)
# Resize background image
width, height = source_pil.width, source_pil.height
target_pil = target_pil.convert("RGB")
target_pil = target_pil.resize((width, height))
target = ImageFormatConvertor.pil_to_cv2(target_pil)
matched_foreground = cv2.cvtColor(source, cv2.COLOR_BGR2LAB)
matched_background = cv2.cvtColor(target, cv2.COLOR_BGR2LAB)
# Match the histograms
for i in range(3):
matched_foreground[:, :, i] = cv2.equalizeHist(matched_foreground[:, :, i])
matched_background[:, :, i] = cv2.equalizeHist(matched_background[:, :, i])
matched_foreground = cv2.cvtColor(matched_foreground, cv2.COLOR_LAB2BGR)
matched_background = cv2.cvtColor(matched_background, cv2.COLOR_LAB2BGR)
matched_foreground_pil = ImageFormatConvertor.cv2_to_pil(matched_foreground)
matched_background_pil = ImageFormatConvertor.cv2_to_pil(matched_background)
return matched_foreground_pil, matched_background_pil
|