Spaces:
Running
Running
fix: use AutoImageProcessor
Browse files
app.py
CHANGED
@@ -5,7 +5,7 @@ import numpy as np
|
|
5 |
import torch
|
6 |
|
7 |
from transformers import (
|
8 |
-
|
9 |
)
|
10 |
|
11 |
import gradio as gr
|
@@ -20,7 +20,7 @@ EXAMPLES = [["./images/sample.jpg"], ["./images/sample2.webp"]]
|
|
20 |
|
21 |
model = SiglipForImageClassification.from_pretrained(MODEL_NAME, token=HF_TOKEN)
|
22 |
# model = torch.compile(model)
|
23 |
-
processor =
|
24 |
|
25 |
|
26 |
def compose_text(results: dict[str, float], threshold: float = 0.3):
|
@@ -35,7 +35,7 @@ def compose_text(results: dict[str, float], threshold: float = 0.3):
|
|
35 |
|
36 |
@torch.no_grad()
|
37 |
def predict_tags(image: Image.Image, threshold: float):
|
38 |
-
inputs = processor(
|
39 |
|
40 |
logits = model(**inputs.to(model.device, model.dtype)).logits.detach().cpu()
|
41 |
|
|
|
5 |
import torch
|
6 |
|
7 |
from transformers import (
|
8 |
+
AutoImageProcessor,
|
9 |
)
|
10 |
|
11 |
import gradio as gr
|
|
|
20 |
|
21 |
model = SiglipForImageClassification.from_pretrained(MODEL_NAME, token=HF_TOKEN)
|
22 |
# model = torch.compile(model)
|
23 |
+
processor = AutoImageProcessor.from_pretrained(PROCESSOR_NAME, token=HF_TOKEN)
|
24 |
|
25 |
|
26 |
def compose_text(results: dict[str, float], threshold: float = 0.3):
|
|
|
35 |
|
36 |
@torch.no_grad()
|
37 |
def predict_tags(image: Image.Image, threshold: float):
|
38 |
+
inputs = processor(image, return_tensors="pt")
|
39 |
|
40 |
logits = model(**inputs.to(model.device, model.dtype)).logits.detach().cpu()
|
41 |
|