Spaces:
Sleeping
Sleeping
oscarwang2
commited on
Commit
•
dbc69f1
1
Parent(s):
c5963a7
Update app.py
Browse files
app.py
CHANGED
@@ -1,94 +1,79 @@
|
|
1 |
-
import
|
|
|
|
|
|
|
2 |
import pandas as pd
|
3 |
import logging
|
4 |
-
import matplotlib.pyplot as plt
|
5 |
-
from statsmodels.tsa.arima.model import ARIMA
|
6 |
-
import yfinance as yf
|
7 |
-
import gradio as gr
|
8 |
|
9 |
logging.basicConfig(level=logging.INFO)
|
10 |
|
11 |
-
def
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
def make_predictions(data, predict_steps, freq):
|
21 |
if data is None or data.empty:
|
22 |
-
logging.error("No data available for
|
23 |
-
return
|
24 |
|
25 |
logging.info(f"Starting model training with {len(data)} data points...")
|
26 |
-
|
27 |
-
|
28 |
-
if data['Close'].isna().any():
|
29 |
-
logging.error("Data contains NaN values. Please clean the data before model training.")
|
30 |
-
return None
|
31 |
-
|
32 |
-
try:
|
33 |
-
model = ARIMA(data['Close'], order=(5, 1, 0))
|
34 |
-
model_fit = model.fit()
|
35 |
-
logging.info(model_fit.summary())
|
36 |
-
except Exception as e:
|
37 |
-
logging.error(f"Model training failed: {e}")
|
38 |
-
return None
|
39 |
-
|
40 |
logging.info("Model training completed.")
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
forecast = model_fit.forecast(steps=predict_steps)
|
45 |
-
if np.isnan(forecast).any():
|
46 |
-
logging.error("Generated predictions contain NaN values. Model might be improperly configured.")
|
47 |
-
return None
|
48 |
-
except Exception as e:
|
49 |
-
logging.error(f"Prediction generation failed: {e}")
|
50 |
-
return None
|
51 |
-
|
52 |
-
future_dates = pd.date_range(start=data.index[-1], periods=predict_steps + 1, freq=freq, inclusive='right')
|
53 |
forecast_df = pd.DataFrame(forecast, index=future_dates[1:], columns=['Prediction'])
|
54 |
-
|
55 |
-
logging.info(f"Forecast Data:\n{forecast_df.head()}")
|
56 |
logging.info("Predictions generated successfully.")
|
57 |
-
|
58 |
return forecast_df
|
59 |
|
60 |
-
def plot_eth(period
|
61 |
-
data =
|
62 |
-
predict_steps = 5 # Modify as needed
|
63 |
-
freq = 'T' # 'T' stands for minutes
|
64 |
-
|
65 |
forecast_df = make_predictions(data, predict_steps, freq)
|
66 |
-
if forecast_df is None:
|
67 |
-
logging.error("Failed to generate predictions.")
|
68 |
-
return None
|
69 |
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
plt.xlabel('Time')
|
75 |
-
plt.ylabel('Price (USD)')
|
76 |
-
plt.legend()
|
77 |
-
plt.grid(True)
|
78 |
-
plt.tight_layout()
|
79 |
-
|
80 |
-
# Save the plot to a file
|
81 |
-
plot_filename = '/home/user/app/eth_price_prediction.png'
|
82 |
-
plt.savefig(plot_filename)
|
83 |
-
logging.info("Plotting completed.")
|
84 |
|
85 |
-
|
|
|
86 |
|
87 |
def refresh_predictions(period):
|
88 |
-
|
89 |
-
if plot_filename is None:
|
90 |
-
return "Error in generating plot."
|
91 |
-
return plot_filename
|
92 |
|
93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
iface.launch()
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import yfinance as yf
|
3 |
+
import plotly.graph_objects as go
|
4 |
+
from statsmodels.tsa.arima.model import ARIMA
|
5 |
import pandas as pd
|
6 |
import logging
|
|
|
|
|
|
|
|
|
7 |
|
8 |
logging.basicConfig(level=logging.INFO)
|
9 |
|
10 |
+
def fetch_eth_price(period):
|
11 |
+
eth = yf.Ticker("ETH-USD")
|
12 |
+
if period == '1d':
|
13 |
+
data = eth.history(period="1d", interval="1m")
|
14 |
+
predict_steps = 60 # Next 60 minutes
|
15 |
+
freq = 'min' # Minute frequency
|
16 |
+
elif period == '5d':
|
17 |
+
data = eth.history(period="5d", interval="15m")
|
18 |
+
predict_steps = 96 # Next 24 hours
|
19 |
+
freq = '15min' # 15 minutes frequency
|
20 |
+
elif period == '1wk':
|
21 |
+
data = eth.history(period="1wk", interval="30m")
|
22 |
+
predict_steps = 336 # Next 7 days
|
23 |
+
freq = '30min' # 30 minutes frequency
|
24 |
+
elif period == '1mo':
|
25 |
+
data = eth.history(period="1mo", interval="1h")
|
26 |
+
predict_steps = 720 # Next 30 days
|
27 |
+
freq = 'H' # Hourly frequency
|
28 |
+
else:
|
29 |
+
return None, None, None
|
30 |
+
|
31 |
+
data.index = pd.DatetimeIndex(data.index)
|
32 |
+
data = data.asfreq(freq) # Ensure the data has a consistent frequency
|
33 |
+
|
34 |
+
# Limit the data to the last 200 points to reduce prediction time
|
35 |
+
data = data[-200:]
|
36 |
+
|
37 |
+
return data, predict_steps, freq
|
38 |
|
39 |
def make_predictions(data, predict_steps, freq):
|
40 |
if data is None or data.empty:
|
41 |
+
logging.error("No data available for prediction.")
|
42 |
+
return pd.DataFrame(index=pd.date_range(start=pd.Timestamp.now(), periods=predict_steps+1, freq=freq)[1:])
|
43 |
|
44 |
logging.info(f"Starting model training with {len(data)} data points...")
|
45 |
+
model = ARIMA(data['Close'], order=(5, 1, 0))
|
46 |
+
model_fit = model.fit()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
logging.info("Model training completed.")
|
48 |
+
|
49 |
+
forecast = model_fit.forecast(steps=predict_steps)
|
50 |
+
future_dates = pd.date_range(start=data.index[-1], periods=predict_steps+1, freq=freq, inclusive='right')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
forecast_df = pd.DataFrame(forecast, index=future_dates[1:], columns=['Prediction'])
|
52 |
+
|
|
|
53 |
logging.info("Predictions generated successfully.")
|
|
|
54 |
return forecast_df
|
55 |
|
56 |
+
def plot_eth(period):
|
57 |
+
data, predict_steps, freq = fetch_eth_price(period)
|
|
|
|
|
|
|
58 |
forecast_df = make_predictions(data, predict_steps, freq)
|
|
|
|
|
|
|
59 |
|
60 |
+
fig = go.Figure()
|
61 |
+
fig.add_trace(go.Scatter(x=data.index, y=data['Close'], mode='lines', name='ETH Price'))
|
62 |
+
fig.add_trace(go.Scatter(x=forecast_df.index, y=forecast_df['Prediction'], mode='lines', name='Prediction', line=dict(dash='dash', color='orange')))
|
63 |
+
fig.update_layout(title=f"ETH Price and Predictions ({period})", xaxis_title="Date", yaxis_title="Price (USD)")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
+
logging.info("Plotting completed.")
|
66 |
+
return fig
|
67 |
|
68 |
def refresh_predictions(period):
|
69 |
+
return plot_eth(period)
|
|
|
|
|
|
|
70 |
|
71 |
+
with gr.Blocks() as iface:
|
72 |
+
period = gr.Radio(["1d", "5d", "1wk", "1mo"], label="Select Period")
|
73 |
+
plot = gr.Plot()
|
74 |
+
refresh_button = gr.Button("Refresh Predictions and Prices")
|
75 |
+
|
76 |
+
period.change(fn=plot_eth, inputs=period, outputs=plot)
|
77 |
+
refresh_button.click(fn=refresh_predictions, inputs=period, outputs=plot)
|
78 |
+
|
79 |
iface.launch()
|