Spaces:
Runtime error
Runtime error
import IPython | |
import sys | |
import subprocess | |
import os | |
subprocess.check_call([sys.executable, "-m", "pip", "install", "--upgrade", "--force-reinstall", "git+https://github.com/osanseviero/tortoise-tts.git"]) | |
# entmax could not be installed at same time as torch | |
subprocess.check_call([sys.executable, "-m", "pip", "install", "entmax"]) | |
from tortoise_tts.api import TextToSpeech | |
from tortoise_tts.utils.audio import load_audio, get_voices | |
import torch | |
import torchaudio | |
import numpy as np | |
import gradio as gr | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
os.environ['CUDA_LAUNCH_BLOCKING'] = "1" | |
# This will download all the models used by Tortoise from the HF hub | |
tts = TextToSpeech(device="cuda") | |
voices = [ | |
"angie", | |
"daniel", | |
"deniro", | |
"emma", | |
"freeman", | |
"geralt", | |
"halle", | |
"jlaw", | |
"lj", | |
"snakes", | |
"William", | |
] | |
voice_paths = get_voices() | |
print(voice_paths) | |
preset = "fast" | |
def inference(text, voice): | |
text = text[:256] | |
cond_paths = voice_paths[voice] | |
conds = [] | |
print(voice_paths, voice, cond_paths) | |
for cond_path in cond_paths: | |
c = load_audio(cond_path, 22050) | |
conds.append(c) | |
print(text, conds, preset) | |
gen = tts.tts_with_preset(text, conds, preset) | |
print("gen") | |
torchaudio.save('generated.wav', gen.squeeze(0).cpu(), 24000) | |
return "generated.wav" | |
def load_audio_special(sr, data): | |
if data.dtype == np.int32: | |
norm_fix = 2 ** 31 | |
elif data.dtype == np.int16: | |
norm_fix = 2 ** 15 | |
elif data.dtype == np.float16 or data.dtype == np.float32: | |
norm_fix = 1. | |
audio = torch.FloatTensor(data.astype(np.float32)) / norm_fix | |
# Remove any channel data. | |
if len(audio.shape) > 1: | |
if audio.shape[0] < 5: | |
audio = audio[0] | |
else: | |
assert audio.shape[1] < 5 | |
audio = audio[:, 0] | |
# Check some assumptions about audio range. This should be automatically fixed in load_wav_to_torch, but might not be in some edge cases, where we should squawk. | |
# '2' is arbitrarily chosen since it seems like audio will often "overdrive" the [-1,1] bounds. | |
if torch.any(audio > 2) or not torch.any(audio < 0): | |
print(f"Error with {audiopath}. Max={audio.max()} min={audio.min()}") | |
audio.clip_(-1, 1) | |
return audio.unsqueeze(0) | |
def inference_own_voice(text, voice_1, voice_2, voice_3): | |
text = text[:256] | |
print(voice_1) | |
conds = [ | |
load_audio_special(voice_1[0], voice_1[1]), | |
load_audio_special(voice_2[0], voice_2[1]), | |
load_audio_special(voice_3[0], voice_3[1]), | |
] | |
print(text, conds, preset) | |
gen = tts.tts_with_preset(text, conds, preset) | |
print("gen") | |
torchaudio.save('generated.wav', gen.squeeze(0).cpu(), 24000) | |
return "generated.wav" | |
text = "Joining two modalities results in a surprising increase in generalization! What would happen if we combined them all?" | |
examples = [ | |
[text, "angie"], | |
[text, "emma"], | |
["how are you doing this day", "freeman"] | |
] | |
block = gr.Blocks(enable_queue=True) | |
with block: | |
gr.Markdown("# TorToiSe") | |
gr.Markdown("A multi-voice TTS system trained with an emphasis on quality") | |
with gr.Tabs(): | |
with gr.TabItem("Pre-recorded voices"): | |
iface = gr.Interface( | |
inference, | |
inputs=[ | |
gr.inputs.Textbox(type="str", default=text, label="Text", lines=3), | |
gr.inputs.Dropdown(voices), | |
], | |
outputs="audio", | |
examples=examples, | |
) | |
with gr.TabItem("Record your voice (experimental, might not work well)"): | |
iface = gr.Interface( | |
inference_own_voice, | |
inputs=[ | |
gr.inputs.Textbox(type="str", default=text, label="Text", lines=3), | |
gr.inputs.Audio(source="microphone", label="Record yourself reading something out loud (audio 1)", type="numpy"), | |
gr.inputs.Audio(source="microphone", label="Record yourself reading something out loud (audio 2)", type="numpy"), | |
gr.inputs.Audio(source="microphone", label="Record yourself reading something out loud (audio 3)", type="numpy"), | |
], | |
outputs="audio", | |
) | |
gr.Markdown("This demo shows the ultra fast option in the TorToiSe system. For more info check the <a href='https://github.com/neonbjb/tortoise-tts' target='_blank'>Repository</a>.",) | |
block.launch(debug=True) |