nyuuzyou
examples
ae2bb64
#!/usr/bin/env python
import os
from threading import Thread
from typing import Iterator
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "8192"))
model_id = "utter-project/EuroLLM-1.7B-Instruct"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)
def generate(
message: str,
chat_history: list[tuple[str, str]],
max_new_tokens: int = 1024,
temperature: float = 0.06,
top_p: float = 0.95,
top_k: int = 40,
repetition_penalty: float = 1.2,
) -> Iterator[str]:
conversation = []
for user, assistant in chat_history:
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
{"input_ids": input_ids},
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_beams=1,
repetition_penalty=repetition_penalty,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
chat_interface = gr.ChatInterface(
fn=generate,
chatbot=gr.Chatbot(height=450,
label="utter-project/EuroLLM-1.7B-Instruct",
show_share_button=True,
),
cache_examples=False,
additional_inputs=[
gr.Slider(
label="Max new tokens",
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
),
gr.Slider(
label="Temperature",
minimum=0.05,
maximum=1.2,
step=0.05,
value=0.2,
),
gr.Slider(
label="Top-p (nucleus sampling)",
minimum=0.05,
maximum=1.0,
step=0.05,
value=0.9,
),
gr.Slider(
label="Top-k",
minimum=1,
maximum=1000,
step=1,
value=50,
),
gr.Slider(
label="Repetition penalty",
minimum=1.0,
maximum=2.0,
step=0.05,
value=1.2,
),
],
examples=[
["Describe the significance of the Eiffel Tower in French culture and history."],
["Что такое 'загадочная русская душа' и как это понятие отражается в русской литературе?"], # Russian: What is the "mysterious Russian soul" and how is this concept reflected in Russian literature?
["Jakie są najbardziej znane polskie tradycje bożonarodzeniowe?"], # Polish: What are the most well-known Polish Christmas traditions?
["Welche Rolle spielte die Hanse im mittelalterlichen Europa?"], # German: What role did the Hanseatic League play in medieval Europe?
["日本の茶道の精神と作法について説明してください。"] # Japanese: Please explain the spirit and etiquette of Japanese tea ceremony.
],
title="utter-project/EuroLLM-1.7B-Instruct",
description="""utter-project/EuroLLM-1.7B-Instruct quick demo""",
submit_btn="Generate",
stop_btn="Stop",
retry_btn="🔄 Retry",
undo_btn="↩️ Undo",
clear_btn="🗑️ Clear",
)
with gr.Blocks(css="style.css") as demo:
chat_interface.render()
if __name__ == "__main__":
demo.queue(max_size=20).launch()