Spaces:
Runtime error
Runtime error
NTT123
commited on
Commit
•
012ab0b
1
Parent(s):
267755a
new 1024 gru unit model
Browse files- app.py +1 -1
- inference.py +1 -0
- wavegru.ckpt +2 -2
- wavegru.py +42 -10
- wavegru.yaml +1 -1
app.py
CHANGED
@@ -49,4 +49,4 @@ gr.Interface(
|
|
49 |
theme="default",
|
50 |
allow_screenshot=False,
|
51 |
allow_flagging="never",
|
52 |
-
).launch(debug=True,
|
|
|
49 |
theme="default",
|
50 |
allow_screenshot=False,
|
51 |
allow_flagging="never",
|
52 |
+
).launch(server_port=5000, debug=True, show_error=True)
|
inference.py
CHANGED
@@ -51,6 +51,7 @@ def load_wavegru_net(config_file, model_file):
|
|
51 |
mel_dim=config["mel_dim"],
|
52 |
rnn_dim=config["rnn_dim"],
|
53 |
upsample_factors=config["upsample_factors"],
|
|
|
54 |
)
|
55 |
_, net, _ = load_wavegru_ckpt(net, None, model_file)
|
56 |
net = net.eval()
|
|
|
51 |
mel_dim=config["mel_dim"],
|
52 |
rnn_dim=config["rnn_dim"],
|
53 |
upsample_factors=config["upsample_factors"],
|
54 |
+
has_linear_output=True,
|
55 |
)
|
56 |
_, net, _ = load_wavegru_ckpt(net, None, model_file)
|
57 |
net = net.eval()
|
wavegru.ckpt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1af9c38d0fffcf41942e4bd8d6c88f6b33f52695619d7e42359b267857019081
|
3 |
+
size 69717674
|
wavegru.py
CHANGED
@@ -62,21 +62,34 @@ class Upsample(pax.Module):
|
|
62 |
Upsample melspectrogram to match raw audio sample rate.
|
63 |
"""
|
64 |
|
65 |
-
def __init__(
|
|
|
|
|
66 |
super().__init__()
|
67 |
self.input_conv = pax.Sequential(
|
68 |
-
pax.Conv1D(input_dim,
|
69 |
-
pax.LayerNorm(
|
70 |
)
|
71 |
self.upsample_factors = upsample_factors
|
72 |
self.dilated_convs = [
|
73 |
-
dilated_residual_conv_block(
|
74 |
]
|
75 |
self.up_factors = upsample_factors[:-1]
|
76 |
-
self.up_blocks = [
|
|
|
|
|
77 |
self.up_blocks.append(
|
78 |
-
up_block(
|
|
|
|
|
|
|
|
|
|
|
79 |
)
|
|
|
|
|
|
|
|
|
80 |
self.final_tile = upsample_factors[-1]
|
81 |
|
82 |
def __call__(self, x, no_repeat=False):
|
@@ -89,6 +102,9 @@ class Upsample(pax.Module):
|
|
89 |
for f in self.up_blocks:
|
90 |
x = f(x)
|
91 |
|
|
|
|
|
|
|
92 |
if no_repeat:
|
93 |
return x
|
94 |
x = tile_1d(x, self.final_tile)
|
@@ -106,7 +122,13 @@ class GRU(pax.Module):
|
|
106 |
def __init__(self, hidden_dim: int):
|
107 |
super().__init__()
|
108 |
self.hidden_dim = hidden_dim
|
109 |
-
self.h_zrh_fc = pax.Linear(
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
|
111 |
def initial_state(self, batch_size: int) -> GRUState:
|
112 |
"""Create an all zeros initial state."""
|
@@ -137,7 +159,7 @@ class Pruner(pax.Module):
|
|
137 |
|
138 |
def compute_sparsity(self, step):
|
139 |
t = jnp.power(1 - (step * 1.0 - 1_000) / 200_000, 3)
|
140 |
-
z = 0.
|
141 |
return z
|
142 |
|
143 |
def prune(self, step, weights):
|
@@ -204,11 +226,21 @@ class WaveGRU(pax.Module):
|
|
204 |
WaveGRU vocoder model.
|
205 |
"""
|
206 |
|
207 |
-
def __init__(
|
|
|
|
|
|
|
|
|
|
|
|
|
208 |
super().__init__()
|
209 |
self.embed = pax.Embed(256, 3 * rnn_dim)
|
210 |
self.upsample = Upsample(
|
211 |
-
input_dim=mel_dim,
|
|
|
|
|
|
|
|
|
212 |
)
|
213 |
self.rnn = GRU(rnn_dim)
|
214 |
self.o1 = pax.Linear(rnn_dim, rnn_dim)
|
|
|
62 |
Upsample melspectrogram to match raw audio sample rate.
|
63 |
"""
|
64 |
|
65 |
+
def __init__(
|
66 |
+
self, input_dim, hidden_dim, rnn_dim, upsample_factors, has_linear_output=False
|
67 |
+
):
|
68 |
super().__init__()
|
69 |
self.input_conv = pax.Sequential(
|
70 |
+
pax.Conv1D(input_dim, hidden_dim, 1, with_bias=False),
|
71 |
+
pax.LayerNorm(hidden_dim, -1, True, True),
|
72 |
)
|
73 |
self.upsample_factors = upsample_factors
|
74 |
self.dilated_convs = [
|
75 |
+
dilated_residual_conv_block(hidden_dim, 3, 1, 2**i) for i in range(5)
|
76 |
]
|
77 |
self.up_factors = upsample_factors[:-1]
|
78 |
+
self.up_blocks = [
|
79 |
+
up_block(hidden_dim, hidden_dim, x) for x in self.up_factors[:-1]
|
80 |
+
]
|
81 |
self.up_blocks.append(
|
82 |
+
up_block(
|
83 |
+
hidden_dim,
|
84 |
+
hidden_dim if has_linear_output else 3 * rnn_dim,
|
85 |
+
self.up_factors[-1],
|
86 |
+
relu=False,
|
87 |
+
)
|
88 |
)
|
89 |
+
if has_linear_output:
|
90 |
+
self.x2zrh_fc = pax.Linear(hidden_dim, rnn_dim * 3)
|
91 |
+
self.has_linear_output = has_linear_output
|
92 |
+
|
93 |
self.final_tile = upsample_factors[-1]
|
94 |
|
95 |
def __call__(self, x, no_repeat=False):
|
|
|
102 |
for f in self.up_blocks:
|
103 |
x = f(x)
|
104 |
|
105 |
+
if self.has_linear_output:
|
106 |
+
x = self.x2zrh_fc(x)
|
107 |
+
|
108 |
if no_repeat:
|
109 |
return x
|
110 |
x = tile_1d(x, self.final_tile)
|
|
|
122 |
def __init__(self, hidden_dim: int):
|
123 |
super().__init__()
|
124 |
self.hidden_dim = hidden_dim
|
125 |
+
self.h_zrh_fc = pax.Linear(
|
126 |
+
hidden_dim,
|
127 |
+
hidden_dim * 3,
|
128 |
+
w_init=jax.nn.initializers.variance_scaling(
|
129 |
+
1, "fan_out", "truncated_normal"
|
130 |
+
),
|
131 |
+
)
|
132 |
|
133 |
def initial_state(self, batch_size: int) -> GRUState:
|
134 |
"""Create an all zeros initial state."""
|
|
|
159 |
|
160 |
def compute_sparsity(self, step):
|
161 |
t = jnp.power(1 - (step * 1.0 - 1_000) / 200_000, 3)
|
162 |
+
z = 0.95 * jnp.clip(1.0 - t, a_min=0, a_max=1)
|
163 |
return z
|
164 |
|
165 |
def prune(self, step, weights):
|
|
|
226 |
WaveGRU vocoder model.
|
227 |
"""
|
228 |
|
229 |
+
def __init__(
|
230 |
+
self,
|
231 |
+
mel_dim=80,
|
232 |
+
rnn_dim=1024,
|
233 |
+
upsample_factors=(5, 3, 20),
|
234 |
+
has_linear_output=False,
|
235 |
+
):
|
236 |
super().__init__()
|
237 |
self.embed = pax.Embed(256, 3 * rnn_dim)
|
238 |
self.upsample = Upsample(
|
239 |
+
input_dim=mel_dim,
|
240 |
+
hidden_dim=512,
|
241 |
+
rnn_dim=rnn_dim,
|
242 |
+
upsample_factors=upsample_factors,
|
243 |
+
has_linear_output=has_linear_output,
|
244 |
)
|
245 |
self.rnn = GRU(rnn_dim)
|
246 |
self.o1 = pax.Linear(rnn_dim, rnn_dim)
|
wavegru.yaml
CHANGED
@@ -8,7 +8,7 @@ n_fft: 2048
|
|
8 |
|
9 |
## wavegru
|
10 |
embed_dim: 32
|
11 |
-
rnn_dim:
|
12 |
frames_per_sequence: 67
|
13 |
num_pad_frames: 62
|
14 |
upsample_factors: [5, 3, 20]
|
|
|
8 |
|
9 |
## wavegru
|
10 |
embed_dim: 32
|
11 |
+
rnn_dim: 1024
|
12 |
frames_per_sequence: 67
|
13 |
num_pad_frames: 62
|
14 |
upsample_factors: [5, 3, 20]
|