File size: 15,615 Bytes
df1ad02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3dbfd73
 
d500e95
3dbfd73
 
df1ad02
 
 
 
 
 
 
 
 
3dbfd73
df1ad02
 
 
 
 
 
 
 
 
 
 
 
3dbfd73
df1ad02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
"""
Tacotron + stepwise monotonic attention
"""

import jax
import jax.numpy as jnp
import pax


def conv_block(in_ft, out_ft, kernel_size, activation_fn, use_dropout):
    """
    Conv >> LayerNorm >> activation >> Dropout
    """
    f = pax.Sequential(
        pax.Conv1D(in_ft, out_ft, kernel_size, with_bias=False),
        pax.LayerNorm(out_ft, -1, True, True),
    )
    if activation_fn is not None:
        f >>= activation_fn
    if use_dropout:
        f >>= pax.Dropout(0.5)
    return f


class HighwayBlock(pax.Module):
    """
    Highway block
    """

    def __init__(self, dim: int) -> None:
        super().__init__()
        self.dim = dim
        self.fc = pax.Linear(dim, 2 * dim)

    def __call__(self, x: jnp.ndarray) -> jnp.ndarray:
        t, h = jnp.split(self.fc(x), 2, axis=-1)
        t = jax.nn.sigmoid(t - 1.0)  # bias toward keeping x
        h = jax.nn.relu(h)
        x = x * (1.0 - t) + h * t
        return x


class BiGRU(pax.Module):
    """
    Bidirectional GRU
    """

    def __init__(self, dim):
        super().__init__()

        self.rnn_fwd = pax.GRU(dim, dim)
        self.rnn_bwd = pax.GRU(dim, dim)

    def __call__(self, x, reset_masks):
        N = x.shape[0]
        x_fwd = x
        x_bwd = jnp.flip(x, axis=1)
        x_fwd_states = self.rnn_fwd.initial_state(N)
        x_bwd_states = self.rnn_bwd.initial_state(N)
        x_fwd_states, x_fwd = pax.scan(
            self.rnn_fwd, x_fwd_states, x_fwd, time_major=False
        )

        reset_masks = jnp.flip(reset_masks, axis=1)
        x_bwd_states0 = x_bwd_states

        def rnn_reset_core(prev, inputs):
            x, reset_mask = inputs

            def reset_state(x0, xt):
                return jnp.where(reset_mask, x0, xt)

            state, _ = self.rnn_bwd(prev, x)
            state = jax.tree_map(reset_state, x_bwd_states0, state)
            return state, state.hidden

        x_bwd_states, x_bwd = pax.scan(
            rnn_reset_core, x_bwd_states, (x_bwd, reset_masks), time_major=False
        )
        x_bwd = jnp.flip(x_bwd, axis=1)
        x = jnp.concatenate((x_fwd, x_bwd), axis=-1)
        return x


class CBHG(pax.Module):
    """
    Conv Bank >> Highway net >> GRU
    """

    def __init__(self, dim):
        super().__init__()
        self.convs = [conv_block(dim, dim, i, jax.nn.relu, False) for i in range(1, 17)]
        self.conv_projection_1 = conv_block(16 * dim, dim, 3, jax.nn.relu, False)
        self.conv_projection_2 = conv_block(dim, dim, 3, None, False)

        self.highway = pax.Sequential(
            HighwayBlock(dim), HighwayBlock(dim), HighwayBlock(dim), HighwayBlock(dim)
        )
        self.rnn = BiGRU(dim)

    def __call__(self, x, x_mask):
        conv_input = x * x_mask
        fts = [f(conv_input) for f in self.convs]
        residual = jnp.concatenate(fts, axis=-1)
        residual = pax.max_pool(residual, 2, 1, "SAME", -1)
        residual = self.conv_projection_1(residual * x_mask)
        residual = self.conv_projection_2(residual * x_mask)
        x = x + residual
        x = self.highway(x)
        x = self.rnn(x * x_mask, reset_masks=1 - x_mask)
        return x * x_mask


class PreNet(pax.Module):
    """
    Linear >> relu >> dropout >> Linear >> relu >> dropout
    """

    def __init__(self, input_dim, hidden_dim, output_dim, always_dropout=True):
        super().__init__()
        self.fc1 = pax.Linear(input_dim, hidden_dim)
        self.fc2 = pax.Linear(hidden_dim, output_dim)
        self.rng_seq = pax.RngSeq()
        self.always_dropout = always_dropout

    def __call__(self, x, k1=None, k2=None):
        x = self.fc1(x)
        x = jax.nn.relu(x)
        if self.always_dropout or self.training:
            if k1 is None:
                k1 = self.rng_seq.next_rng_key()
            x = pax.dropout(k1, 0.5, x)
        x = self.fc2(x)
        x = jax.nn.relu(x)
        if self.always_dropout or self.training:
            if k2 is None:
                k2 = self.rng_seq.next_rng_key()
            x = pax.dropout(k2, 0.5, x)
        return x


class Tacotron(pax.Module):
    """
    Tacotron TTS model.

    It uses stepwise monotonic attention for robust attention.
    """

    def __init__(
        self,
        mel_dim: int,
        attn_bias,
        rr,
        max_rr,
        mel_min,
        sigmoid_noise,
        pad_token,
        prenet_dim,
        attn_hidden_dim,
        attn_rnn_dim,
        rnn_dim,
        postnet_dim,
        text_dim,
    ):
        """
        New Tacotron model

        Args:
            mel_dim (int): dimension of log mel-spectrogram features.
            attn_bias (float): control how "slow" the attention will
                move forward at initialization.
            rr (int): the reduction factor.
                Number of predicted frame at each time step. Default is 2.
            max_rr (int): max value of rr.
            mel_min (float): the minimum value of mel features.
                The <go> frame is filled by `log(mel_min)` values.
            sigmoid_noise (float): the variance of gaussian noise added
                to attention scores in training.
            pad_token (int): the pad value at the end of text sequences.
            prenet_dim (int): dimension of prenet output.
            attn_hidden_dim (int): dimension of attention hidden vectors.
            attn_rnn_dim (int): number of cells in the attention RNN.
            rnn_dim (int): number of cells in the decoder RNNs.
            postnet_dim (int): number of features in the postnet convolutions.
            text_dim (int): dimension of text embedding vectors.
        """
        super().__init__()
        self.text_dim = text_dim
        assert rr <= max_rr
        self.rr = rr
        self.max_rr = max_rr
        self.mel_dim = mel_dim
        self.mel_min = mel_min
        self.sigmoid_noise = sigmoid_noise
        self.pad_token = pad_token
        self.prenet_dim = prenet_dim

        # encoder submodules
        self.encoder_embed = pax.Embed(256, text_dim)
        self.encoder_pre_net = PreNet(text_dim, 256, prenet_dim, always_dropout=True)
        self.encoder_cbhg = CBHG(prenet_dim)

        # random key generator
        self.rng_seq = pax.RngSeq()

        # pre-net
        self.decoder_pre_net = PreNet(mel_dim, 256, prenet_dim, always_dropout=True)

        # decoder submodules
        self.attn_rnn = pax.LSTM(prenet_dim + prenet_dim * 2, attn_rnn_dim)
        self.text_key_fc = pax.Linear(prenet_dim * 2, attn_hidden_dim, with_bias=True)
        self.attn_query_fc = pax.Linear(attn_rnn_dim, attn_hidden_dim, with_bias=False)

        self.attn_V = pax.Linear(attn_hidden_dim, 1, with_bias=False)
        self.attn_V_weight_norm = jnp.array(1.0 / jnp.sqrt(attn_hidden_dim))
        self.attn_V_bias = jnp.array(attn_bias)
        self.attn_log = jnp.zeros((1,))
        self.decoder_input = pax.Linear(attn_rnn_dim + 2 * prenet_dim, rnn_dim)
        self.decoder_rnn1 = pax.LSTM(rnn_dim, rnn_dim)
        self.decoder_rnn2 = pax.LSTM(rnn_dim, rnn_dim)
        # mel + end-of-sequence token
        self.output_fc = pax.Linear(rnn_dim, (mel_dim + 1) * max_rr, with_bias=True)

        # post-net
        self.post_net = pax.Sequential(
            conv_block(mel_dim, postnet_dim, 5, jax.nn.tanh, True),
            conv_block(postnet_dim, postnet_dim, 5, jax.nn.tanh, True),
            conv_block(postnet_dim, postnet_dim, 5, jax.nn.tanh, True),
            conv_block(postnet_dim, postnet_dim, 5, jax.nn.tanh, True),
            conv_block(postnet_dim, mel_dim, 5, None, True),
        )

    parameters = pax.parameters_method("attn_V_weight_norm", "attn_V_bias")

    def encode_text(self, text: jnp.ndarray) -> jnp.ndarray:
        """
        Encode text to a sequence of real vectors
        """
        N, L = text.shape
        text_mask = (text != self.pad_token)[..., None]
        x = self.encoder_embed(text)
        x = self.encoder_pre_net(x)
        x = self.encoder_cbhg(x, text_mask)
        return x

    def go_frame(self, batch_size: int) -> jnp.ndarray:
        """
        return the go frame
        """
        return jnp.ones((batch_size, self.mel_dim)) * jnp.log(self.mel_min)

    def decoder_initial_state(self, N: int, L: int):
        """
        setup decoder initial state
        """
        attn_context = jnp.zeros((N, self.prenet_dim * 2))
        attn_pr = jax.nn.one_hot(
            jnp.zeros((N,), dtype=jnp.int32), num_classes=L, axis=-1
        )

        attn_state = (self.attn_rnn.initial_state(N), attn_context, attn_pr)
        decoder_rnn_states = (
            self.decoder_rnn1.initial_state(N),
            self.decoder_rnn2.initial_state(N),
        )
        return attn_state, decoder_rnn_states

    def monotonic_attention(self, prev_state, inputs, envs):
        """
        Stepwise monotonic attention
        """
        attn_rnn_state, attn_context, prev_attn_pr = prev_state
        x, attn_rng_key = inputs
        text, text_key = envs
        attn_rnn_input = jnp.concatenate((x, attn_context), axis=-1)
        attn_rnn_state, attn_rnn_output = self.attn_rnn(attn_rnn_state, attn_rnn_input)
        attn_query_input = attn_rnn_output
        attn_query = self.attn_query_fc(attn_query_input)
        attn_hidden = jnp.tanh(attn_query[:, None, :] + text_key)
        score = self.attn_V(attn_hidden)
        score = jnp.squeeze(score, axis=-1)
        weight_norm = jnp.linalg.norm(self.attn_V.weight)
        score = score * (self.attn_V_weight_norm / weight_norm)
        score = score + self.attn_V_bias
        noise = jax.random.normal(attn_rng_key, score.shape) * self.sigmoid_noise
        pr_stay = jax.nn.sigmoid(score + noise)
        pr_move = 1.0 - pr_stay
        pr_new_location = pr_move * prev_attn_pr
        pr_new_location = jnp.pad(
            pr_new_location[:, :-1], ((0, 0), (1, 0)), constant_values=0
        )
        attn_pr = pr_stay * prev_attn_pr + pr_new_location
        attn_context = jnp.einsum("NL,NLD->ND", attn_pr, text)
        new_state = (attn_rnn_state, attn_context, attn_pr)
        return new_state, attn_rnn_output

    def zoneout_lstm(self, lstm_core, rng_key, zoneout_pr=0.1):
        """
        Return a zoneout lstm core.

        It will zoneout the new hidden states and keep the new cell states unchanged.
        """

        def core(state, x):
            new_state, _ = lstm_core(state, x)
            h_old = state.hidden
            h_new = new_state.hidden
            mask = jax.random.bernoulli(rng_key, zoneout_pr, h_old.shape)
            h_new = h_old * mask + h_new * (1.0 - mask)
            return pax.LSTMState(h_new, new_state.cell), h_new

        return core

    def decoder_step(
        self,
        attn_state,
        decoder_rnn_states,
        rng_key,
        mel,
        text,
        text_key,
        call_pre_net=False,
    ):
        """
        One decoder step
        """
        if call_pre_net:
            k1, k2, zk1, zk2, rng_key, rng_key_next = jax.random.split(rng_key, 6)
            mel = self.decoder_pre_net(mel, k1, k2)
        else:
            zk1, zk2, rng_key, rng_key_next = jax.random.split(rng_key, 4)
        attn_inputs = (mel, rng_key)
        attn_envs = (text, text_key)
        attn_state, attn_rnn_output = self.monotonic_attention(
            attn_state, attn_inputs, attn_envs
        )
        (_, attn_context, attn_pr) = attn_state
        (decoder_rnn_state1, decoder_rnn_state2) = decoder_rnn_states
        decoder_rnn1_input = jnp.concatenate((attn_rnn_output, attn_context), axis=-1)
        decoder_rnn1_input = self.decoder_input(decoder_rnn1_input)
        decoder_rnn1 = self.zoneout_lstm(self.decoder_rnn1, zk1)
        decoder_rnn_state1, decoder_rnn_output1 = decoder_rnn1(
            decoder_rnn_state1, decoder_rnn1_input
        )
        decoder_rnn2_input = decoder_rnn1_input + decoder_rnn_output1
        decoder_rnn2 = self.zoneout_lstm(self.decoder_rnn2, zk2)
        decoder_rnn_state2, decoder_rnn_output2 = decoder_rnn2(
            decoder_rnn_state2, decoder_rnn2_input
        )
        x = decoder_rnn1_input + decoder_rnn_output1 + decoder_rnn_output2
        decoder_rnn_states = (decoder_rnn_state1, decoder_rnn_state2)
        return attn_state, decoder_rnn_states, rng_key_next, x, attn_pr[0]

    @jax.jit
    def inference_step(
        self, attn_state, decoder_rnn_states, rng_key, mel, text, text_key
    ):
        """one inference step"""
        attn_state, decoder_rnn_states, rng_key, x, _ = self.decoder_step(
            attn_state,
            decoder_rnn_states,
            rng_key,
            mel,
            text,
            text_key,
            call_pre_net=True,
        )
        x = self.output_fc(x)
        N, D2 = x.shape
        x = jnp.reshape(x, (N, self.max_rr, D2 // self.max_rr))
        x = x[:, : self.rr, :]
        x = jnp.reshape(x, (N, self.rr, -1))
        mel = x[..., :-1]
        eos_logit = x[..., -1]
        eos_pr = jax.nn.sigmoid(eos_logit[0, -1])
        eos_pr = jnp.where(eos_pr < 0.1, 0.0, eos_pr)
        rng_key, eos_rng_key = jax.random.split(rng_key)
        eos = jax.random.bernoulli(eos_rng_key, p=eos_pr)
        return attn_state, decoder_rnn_states, rng_key, (mel, eos)

    def inference(self, text, seed=42, max_len=1000):
        """
        text to mel
        """
        text = self.encode_text(text)
        text_key = self.text_key_fc(text)
        N, L, D = text.shape
        assert N == 1
        mel = self.go_frame(N)

        attn_state, decoder_rnn_states = self.decoder_initial_state(N, L)
        rng_key = jax.random.PRNGKey(seed)
        mels = []
        count = 0
        while True:
            count = count + 1
            attn_state, decoder_rnn_states, rng_key, (mel, eos) = self.inference_step(
                attn_state, decoder_rnn_states, rng_key, mel, text, text_key
            )
            mels.append(mel)
            if eos.item() or count > max_len:
                break

            mel = mel[:, -1, :]

        mels = jnp.concatenate(mels, axis=1)
        mel = mel + self.post_net(mel)
        return mels

    def decode(self, mel, text):
        """
        Attention mechanism + Decoder
        """
        text_key = self.text_key_fc(text)

        def scan_fn(prev_states, inputs):
            attn_state, decoder_rnn_states = prev_states
            x, rng_key = inputs
            attn_state, decoder_rnn_states, _, output, attn_pr = self.decoder_step(
                attn_state, decoder_rnn_states, rng_key, x, text, text_key
            )
            states = (attn_state, decoder_rnn_states)
            return states, (output, attn_pr)

        N, L, D = text.shape
        decoder_states = self.decoder_initial_state(N, L)
        rng_keys = self.rng_seq.next_rng_key(mel.shape[1])
        rng_keys = jnp.stack(rng_keys, axis=1)
        decoder_states, (x, attn_log) = pax.scan(
            scan_fn,
            decoder_states,
            (mel, rng_keys),
            time_major=False,
        )
        self.attn_log = attn_log
        del decoder_states
        x = self.output_fc(x)

        N, T2, D2 = x.shape
        x = jnp.reshape(x, (N, T2, self.max_rr, D2 // self.max_rr))
        x = x[:, :, : self.rr, :]
        x = jnp.reshape(x, (N, T2 * self.rr, -1))
        mel = x[..., :-1]
        eos = x[..., -1]
        return mel, eos

    def __call__(self, mel: jnp.ndarray, text: jnp.ndarray):
        text = self.encode_text(text)
        mel = self.decoder_pre_net(mel)
        mel, eos = self.decode(mel, text)
        return mel, mel + self.post_net(mel), eos