Spaces:
Runtime error
Runtime error
File size: 15,615 Bytes
df1ad02 3dbfd73 d500e95 3dbfd73 df1ad02 3dbfd73 df1ad02 3dbfd73 df1ad02 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 |
"""
Tacotron + stepwise monotonic attention
"""
import jax
import jax.numpy as jnp
import pax
def conv_block(in_ft, out_ft, kernel_size, activation_fn, use_dropout):
"""
Conv >> LayerNorm >> activation >> Dropout
"""
f = pax.Sequential(
pax.Conv1D(in_ft, out_ft, kernel_size, with_bias=False),
pax.LayerNorm(out_ft, -1, True, True),
)
if activation_fn is not None:
f >>= activation_fn
if use_dropout:
f >>= pax.Dropout(0.5)
return f
class HighwayBlock(pax.Module):
"""
Highway block
"""
def __init__(self, dim: int) -> None:
super().__init__()
self.dim = dim
self.fc = pax.Linear(dim, 2 * dim)
def __call__(self, x: jnp.ndarray) -> jnp.ndarray:
t, h = jnp.split(self.fc(x), 2, axis=-1)
t = jax.nn.sigmoid(t - 1.0) # bias toward keeping x
h = jax.nn.relu(h)
x = x * (1.0 - t) + h * t
return x
class BiGRU(pax.Module):
"""
Bidirectional GRU
"""
def __init__(self, dim):
super().__init__()
self.rnn_fwd = pax.GRU(dim, dim)
self.rnn_bwd = pax.GRU(dim, dim)
def __call__(self, x, reset_masks):
N = x.shape[0]
x_fwd = x
x_bwd = jnp.flip(x, axis=1)
x_fwd_states = self.rnn_fwd.initial_state(N)
x_bwd_states = self.rnn_bwd.initial_state(N)
x_fwd_states, x_fwd = pax.scan(
self.rnn_fwd, x_fwd_states, x_fwd, time_major=False
)
reset_masks = jnp.flip(reset_masks, axis=1)
x_bwd_states0 = x_bwd_states
def rnn_reset_core(prev, inputs):
x, reset_mask = inputs
def reset_state(x0, xt):
return jnp.where(reset_mask, x0, xt)
state, _ = self.rnn_bwd(prev, x)
state = jax.tree_map(reset_state, x_bwd_states0, state)
return state, state.hidden
x_bwd_states, x_bwd = pax.scan(
rnn_reset_core, x_bwd_states, (x_bwd, reset_masks), time_major=False
)
x_bwd = jnp.flip(x_bwd, axis=1)
x = jnp.concatenate((x_fwd, x_bwd), axis=-1)
return x
class CBHG(pax.Module):
"""
Conv Bank >> Highway net >> GRU
"""
def __init__(self, dim):
super().__init__()
self.convs = [conv_block(dim, dim, i, jax.nn.relu, False) for i in range(1, 17)]
self.conv_projection_1 = conv_block(16 * dim, dim, 3, jax.nn.relu, False)
self.conv_projection_2 = conv_block(dim, dim, 3, None, False)
self.highway = pax.Sequential(
HighwayBlock(dim), HighwayBlock(dim), HighwayBlock(dim), HighwayBlock(dim)
)
self.rnn = BiGRU(dim)
def __call__(self, x, x_mask):
conv_input = x * x_mask
fts = [f(conv_input) for f in self.convs]
residual = jnp.concatenate(fts, axis=-1)
residual = pax.max_pool(residual, 2, 1, "SAME", -1)
residual = self.conv_projection_1(residual * x_mask)
residual = self.conv_projection_2(residual * x_mask)
x = x + residual
x = self.highway(x)
x = self.rnn(x * x_mask, reset_masks=1 - x_mask)
return x * x_mask
class PreNet(pax.Module):
"""
Linear >> relu >> dropout >> Linear >> relu >> dropout
"""
def __init__(self, input_dim, hidden_dim, output_dim, always_dropout=True):
super().__init__()
self.fc1 = pax.Linear(input_dim, hidden_dim)
self.fc2 = pax.Linear(hidden_dim, output_dim)
self.rng_seq = pax.RngSeq()
self.always_dropout = always_dropout
def __call__(self, x, k1=None, k2=None):
x = self.fc1(x)
x = jax.nn.relu(x)
if self.always_dropout or self.training:
if k1 is None:
k1 = self.rng_seq.next_rng_key()
x = pax.dropout(k1, 0.5, x)
x = self.fc2(x)
x = jax.nn.relu(x)
if self.always_dropout or self.training:
if k2 is None:
k2 = self.rng_seq.next_rng_key()
x = pax.dropout(k2, 0.5, x)
return x
class Tacotron(pax.Module):
"""
Tacotron TTS model.
It uses stepwise monotonic attention for robust attention.
"""
def __init__(
self,
mel_dim: int,
attn_bias,
rr,
max_rr,
mel_min,
sigmoid_noise,
pad_token,
prenet_dim,
attn_hidden_dim,
attn_rnn_dim,
rnn_dim,
postnet_dim,
text_dim,
):
"""
New Tacotron model
Args:
mel_dim (int): dimension of log mel-spectrogram features.
attn_bias (float): control how "slow" the attention will
move forward at initialization.
rr (int): the reduction factor.
Number of predicted frame at each time step. Default is 2.
max_rr (int): max value of rr.
mel_min (float): the minimum value of mel features.
The <go> frame is filled by `log(mel_min)` values.
sigmoid_noise (float): the variance of gaussian noise added
to attention scores in training.
pad_token (int): the pad value at the end of text sequences.
prenet_dim (int): dimension of prenet output.
attn_hidden_dim (int): dimension of attention hidden vectors.
attn_rnn_dim (int): number of cells in the attention RNN.
rnn_dim (int): number of cells in the decoder RNNs.
postnet_dim (int): number of features in the postnet convolutions.
text_dim (int): dimension of text embedding vectors.
"""
super().__init__()
self.text_dim = text_dim
assert rr <= max_rr
self.rr = rr
self.max_rr = max_rr
self.mel_dim = mel_dim
self.mel_min = mel_min
self.sigmoid_noise = sigmoid_noise
self.pad_token = pad_token
self.prenet_dim = prenet_dim
# encoder submodules
self.encoder_embed = pax.Embed(256, text_dim)
self.encoder_pre_net = PreNet(text_dim, 256, prenet_dim, always_dropout=True)
self.encoder_cbhg = CBHG(prenet_dim)
# random key generator
self.rng_seq = pax.RngSeq()
# pre-net
self.decoder_pre_net = PreNet(mel_dim, 256, prenet_dim, always_dropout=True)
# decoder submodules
self.attn_rnn = pax.LSTM(prenet_dim + prenet_dim * 2, attn_rnn_dim)
self.text_key_fc = pax.Linear(prenet_dim * 2, attn_hidden_dim, with_bias=True)
self.attn_query_fc = pax.Linear(attn_rnn_dim, attn_hidden_dim, with_bias=False)
self.attn_V = pax.Linear(attn_hidden_dim, 1, with_bias=False)
self.attn_V_weight_norm = jnp.array(1.0 / jnp.sqrt(attn_hidden_dim))
self.attn_V_bias = jnp.array(attn_bias)
self.attn_log = jnp.zeros((1,))
self.decoder_input = pax.Linear(attn_rnn_dim + 2 * prenet_dim, rnn_dim)
self.decoder_rnn1 = pax.LSTM(rnn_dim, rnn_dim)
self.decoder_rnn2 = pax.LSTM(rnn_dim, rnn_dim)
# mel + end-of-sequence token
self.output_fc = pax.Linear(rnn_dim, (mel_dim + 1) * max_rr, with_bias=True)
# post-net
self.post_net = pax.Sequential(
conv_block(mel_dim, postnet_dim, 5, jax.nn.tanh, True),
conv_block(postnet_dim, postnet_dim, 5, jax.nn.tanh, True),
conv_block(postnet_dim, postnet_dim, 5, jax.nn.tanh, True),
conv_block(postnet_dim, postnet_dim, 5, jax.nn.tanh, True),
conv_block(postnet_dim, mel_dim, 5, None, True),
)
parameters = pax.parameters_method("attn_V_weight_norm", "attn_V_bias")
def encode_text(self, text: jnp.ndarray) -> jnp.ndarray:
"""
Encode text to a sequence of real vectors
"""
N, L = text.shape
text_mask = (text != self.pad_token)[..., None]
x = self.encoder_embed(text)
x = self.encoder_pre_net(x)
x = self.encoder_cbhg(x, text_mask)
return x
def go_frame(self, batch_size: int) -> jnp.ndarray:
"""
return the go frame
"""
return jnp.ones((batch_size, self.mel_dim)) * jnp.log(self.mel_min)
def decoder_initial_state(self, N: int, L: int):
"""
setup decoder initial state
"""
attn_context = jnp.zeros((N, self.prenet_dim * 2))
attn_pr = jax.nn.one_hot(
jnp.zeros((N,), dtype=jnp.int32), num_classes=L, axis=-1
)
attn_state = (self.attn_rnn.initial_state(N), attn_context, attn_pr)
decoder_rnn_states = (
self.decoder_rnn1.initial_state(N),
self.decoder_rnn2.initial_state(N),
)
return attn_state, decoder_rnn_states
def monotonic_attention(self, prev_state, inputs, envs):
"""
Stepwise monotonic attention
"""
attn_rnn_state, attn_context, prev_attn_pr = prev_state
x, attn_rng_key = inputs
text, text_key = envs
attn_rnn_input = jnp.concatenate((x, attn_context), axis=-1)
attn_rnn_state, attn_rnn_output = self.attn_rnn(attn_rnn_state, attn_rnn_input)
attn_query_input = attn_rnn_output
attn_query = self.attn_query_fc(attn_query_input)
attn_hidden = jnp.tanh(attn_query[:, None, :] + text_key)
score = self.attn_V(attn_hidden)
score = jnp.squeeze(score, axis=-1)
weight_norm = jnp.linalg.norm(self.attn_V.weight)
score = score * (self.attn_V_weight_norm / weight_norm)
score = score + self.attn_V_bias
noise = jax.random.normal(attn_rng_key, score.shape) * self.sigmoid_noise
pr_stay = jax.nn.sigmoid(score + noise)
pr_move = 1.0 - pr_stay
pr_new_location = pr_move * prev_attn_pr
pr_new_location = jnp.pad(
pr_new_location[:, :-1], ((0, 0), (1, 0)), constant_values=0
)
attn_pr = pr_stay * prev_attn_pr + pr_new_location
attn_context = jnp.einsum("NL,NLD->ND", attn_pr, text)
new_state = (attn_rnn_state, attn_context, attn_pr)
return new_state, attn_rnn_output
def zoneout_lstm(self, lstm_core, rng_key, zoneout_pr=0.1):
"""
Return a zoneout lstm core.
It will zoneout the new hidden states and keep the new cell states unchanged.
"""
def core(state, x):
new_state, _ = lstm_core(state, x)
h_old = state.hidden
h_new = new_state.hidden
mask = jax.random.bernoulli(rng_key, zoneout_pr, h_old.shape)
h_new = h_old * mask + h_new * (1.0 - mask)
return pax.LSTMState(h_new, new_state.cell), h_new
return core
def decoder_step(
self,
attn_state,
decoder_rnn_states,
rng_key,
mel,
text,
text_key,
call_pre_net=False,
):
"""
One decoder step
"""
if call_pre_net:
k1, k2, zk1, zk2, rng_key, rng_key_next = jax.random.split(rng_key, 6)
mel = self.decoder_pre_net(mel, k1, k2)
else:
zk1, zk2, rng_key, rng_key_next = jax.random.split(rng_key, 4)
attn_inputs = (mel, rng_key)
attn_envs = (text, text_key)
attn_state, attn_rnn_output = self.monotonic_attention(
attn_state, attn_inputs, attn_envs
)
(_, attn_context, attn_pr) = attn_state
(decoder_rnn_state1, decoder_rnn_state2) = decoder_rnn_states
decoder_rnn1_input = jnp.concatenate((attn_rnn_output, attn_context), axis=-1)
decoder_rnn1_input = self.decoder_input(decoder_rnn1_input)
decoder_rnn1 = self.zoneout_lstm(self.decoder_rnn1, zk1)
decoder_rnn_state1, decoder_rnn_output1 = decoder_rnn1(
decoder_rnn_state1, decoder_rnn1_input
)
decoder_rnn2_input = decoder_rnn1_input + decoder_rnn_output1
decoder_rnn2 = self.zoneout_lstm(self.decoder_rnn2, zk2)
decoder_rnn_state2, decoder_rnn_output2 = decoder_rnn2(
decoder_rnn_state2, decoder_rnn2_input
)
x = decoder_rnn1_input + decoder_rnn_output1 + decoder_rnn_output2
decoder_rnn_states = (decoder_rnn_state1, decoder_rnn_state2)
return attn_state, decoder_rnn_states, rng_key_next, x, attn_pr[0]
@jax.jit
def inference_step(
self, attn_state, decoder_rnn_states, rng_key, mel, text, text_key
):
"""one inference step"""
attn_state, decoder_rnn_states, rng_key, x, _ = self.decoder_step(
attn_state,
decoder_rnn_states,
rng_key,
mel,
text,
text_key,
call_pre_net=True,
)
x = self.output_fc(x)
N, D2 = x.shape
x = jnp.reshape(x, (N, self.max_rr, D2 // self.max_rr))
x = x[:, : self.rr, :]
x = jnp.reshape(x, (N, self.rr, -1))
mel = x[..., :-1]
eos_logit = x[..., -1]
eos_pr = jax.nn.sigmoid(eos_logit[0, -1])
eos_pr = jnp.where(eos_pr < 0.1, 0.0, eos_pr)
rng_key, eos_rng_key = jax.random.split(rng_key)
eos = jax.random.bernoulli(eos_rng_key, p=eos_pr)
return attn_state, decoder_rnn_states, rng_key, (mel, eos)
def inference(self, text, seed=42, max_len=1000):
"""
text to mel
"""
text = self.encode_text(text)
text_key = self.text_key_fc(text)
N, L, D = text.shape
assert N == 1
mel = self.go_frame(N)
attn_state, decoder_rnn_states = self.decoder_initial_state(N, L)
rng_key = jax.random.PRNGKey(seed)
mels = []
count = 0
while True:
count = count + 1
attn_state, decoder_rnn_states, rng_key, (mel, eos) = self.inference_step(
attn_state, decoder_rnn_states, rng_key, mel, text, text_key
)
mels.append(mel)
if eos.item() or count > max_len:
break
mel = mel[:, -1, :]
mels = jnp.concatenate(mels, axis=1)
mel = mel + self.post_net(mel)
return mels
def decode(self, mel, text):
"""
Attention mechanism + Decoder
"""
text_key = self.text_key_fc(text)
def scan_fn(prev_states, inputs):
attn_state, decoder_rnn_states = prev_states
x, rng_key = inputs
attn_state, decoder_rnn_states, _, output, attn_pr = self.decoder_step(
attn_state, decoder_rnn_states, rng_key, x, text, text_key
)
states = (attn_state, decoder_rnn_states)
return states, (output, attn_pr)
N, L, D = text.shape
decoder_states = self.decoder_initial_state(N, L)
rng_keys = self.rng_seq.next_rng_key(mel.shape[1])
rng_keys = jnp.stack(rng_keys, axis=1)
decoder_states, (x, attn_log) = pax.scan(
scan_fn,
decoder_states,
(mel, rng_keys),
time_major=False,
)
self.attn_log = attn_log
del decoder_states
x = self.output_fc(x)
N, T2, D2 = x.shape
x = jnp.reshape(x, (N, T2, self.max_rr, D2 // self.max_rr))
x = x[:, :, : self.rr, :]
x = jnp.reshape(x, (N, T2 * self.rr, -1))
mel = x[..., :-1]
eos = x[..., -1]
return mel, eos
def __call__(self, mel: jnp.ndarray, text: jnp.ndarray):
text = self.encode_text(text)
mel = self.decoder_pre_net(mel)
mel, eos = self.decode(mel, text)
return mel, mel + self.post_net(mel), eos
|