face-swap-gpu / app.py
nsfwalex's picture
Update app.py
9be7c33 verified
# -*- coding:UTF-8 -*-
# !/usr/bin/env python
import spaces
import numpy as np
import gradio as gr
import gradio.exceptions
import roop.globals
from roop.core import (
start,
decode_execution_providers,
)
from roop.processors.frame.core import get_frame_processors_modules
from roop.utilities import normalize_output_path
import os
from PIL import Image
import uuid
import onnxruntime as ort
import cv2
from roop.face_analyser import get_one_face
from cryptography.hazmat.primitives.asymmetric import rsa, padding
from cryptography.hazmat.primitives import serialization, hashes
from cryptography.hazmat.backends import default_backend
from cryptography.hazmat.primitives.asymmetric import utils
import base64
import json
import datetime
def load_public_key_from_file(file_path):
with open(file_path, "rb") as key_file:
public_key = serialization.load_pem_public_key(
key_file.read(),
backend=default_backend()
)
return public_key
def verify_signature(public_key, data, signature):
"""
Verify a signature with a public key.
Converts the data to bytes if it's not already in byte format.
"""
# Ensure the data is in bytes. If it's a string, encode it to UTF-8.
if isinstance(data, str):
data = data.encode('utf-8')
try:
# Verify the signature
public_key.verify(
signature,
data,
padding.PSS(
mgf=padding.MGF1(hashes.SHA256()),
salt_length=padding.PSS.MAX_LENGTH
),
hashes.SHA256()
)
return True
except Exception as e:
print("Verification failed:", e)
return False
public_key = load_public_key_from_file("./nsfwais.pubkey.pem")
@spaces.GPU
def swap_face(source_file, target_file, doFaceEnhancer, skey):
skey = json.loads(skey)
#first validate skey
signature = base64.b64decode(skey["s"])
if not verify_signature(public_key, skey["t"], signature):
raise Exception("verify authkey failed.")
timestamp_requested = int(skey["t"])
timestamp_now = int(datetime.datetime.utcnow().replace(tzinfo=datetime.timezone.utc).timestamp())
if timestamp_now - timestamp_requested > 600:
raise Exception(f"authkey timeout, {timestamp_now - timestamp_requested}")
print(f"authkey pass, {timestamp_now - timestamp_requested}")
session_id = str(uuid.uuid4()) # Tạo một UUID duy nhất cho mỗi phiên làm việc
session_dir = f"temp/{session_id}"
os.makedirs(session_dir, exist_ok=True)
source_path = os.path.join(session_dir, "input.jpg")
target_path = os.path.join(session_dir, "target.jpg")
source_image = Image.fromarray(source_file)
source_image.save(source_path)
target_image = Image.fromarray(target_file)
target_image.save(target_path)
print("source_path: ", source_path)
print("target_path: ", target_path)
# Check if a face is detected in the source image
source_face = get_one_face(cv2.imread(source_path))
if source_face is None:
raise gradio.exceptions.Error("No face in source path detected.")
# Check if a face is detected in the target image
target_face = get_one_face(cv2.imread(target_path))
if target_face is None:
raise gradio.exceptions.Error("No face in target path detected.")
output_path = os.path.join(session_dir, "output.jpg")
normalized_output_path = normalize_output_path(source_path, target_path, output_path)
frame_processors = ["face_swapper", "face_enhancer"] if doFaceEnhancer else ["face_swapper"]
for frame_processor in get_frame_processors_modules(frame_processors):
if not frame_processor.pre_check():
print(f"Pre-check failed for {frame_processor}")
raise gradio.exceptions.Error(f"Pre-check failed for {frame_processor}")
roop.globals.source_path = source_path
roop.globals.target_path = target_path
roop.globals.output_path = normalized_output_path
roop.globals.frame_processors = frame_processors
roop.globals.headless = True
roop.globals.keep_fps = True
roop.globals.keep_audio = True
roop.globals.keep_frames = False
roop.globals.many_faces = False
roop.globals.video_encoder = "libx264"
roop.globals.video_quality = 18
roop.globals.execution_providers = ["CUDAExecutionProvider"]
roop.globals.reference_face_position = 0
roop.globals.similar_face_distance = 0.6
roop.globals.max_memory = 60
roop.globals.execution_threads = 50
start()
return normalized_output_path
app = gr.Interface(
fn=swap_face,
inputs=[
gr.Image(),
gr.Image(),
gr.Checkbox(label="Face Enhancer?", info="Do face enhancement?"),
gr.Textbox(visible=False)
],
outputs="image"
)
app.launch()