Update app.py
Browse files
app.py
CHANGED
@@ -5,6 +5,11 @@ import spaces
|
|
5 |
from transformers import AutoModelForImageSegmentation
|
6 |
import torch
|
7 |
from torchvision import transforms
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
torch.set_float32_matmul_precision(["high", "highest"][0])
|
10 |
|
@@ -20,13 +25,33 @@ transform_image = transforms.Compose(
|
|
20 |
]
|
21 |
)
|
22 |
|
|
|
23 |
def fn(vid):
|
24 |
-
#
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
@spaces.GPU
|
32 |
def process(image):
|
@@ -38,24 +63,32 @@ def process(image):
|
|
38 |
pred = preds[0].squeeze()
|
39 |
pred_pil = transforms.ToPILImage()(pred)
|
40 |
mask = pred_pil.resize(image_size)
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
return image
|
43 |
-
|
|
|
44 |
def process_file(f):
|
45 |
-
name_path = f.rsplit(".",1)[0]+".png"
|
46 |
im = load_img(f, output_type="pil")
|
47 |
im = im.convert("RGB")
|
48 |
transparent = process(im)
|
49 |
transparent.save(name_path)
|
50 |
return name_path
|
51 |
|
|
|
52 |
in_video = gr.Video(label="birefnet")
|
53 |
out_video = gr.Video()
|
54 |
|
55 |
|
56 |
url = "https://hips.hearstapps.com/hmg-prod/images/gettyimages-1229892983-square.jpg"
|
57 |
demo = gr.Interface(
|
58 |
-
fn, inputs=in_video, outputs=out_video, api_name="
|
59 |
)
|
60 |
|
61 |
|
|
|
5 |
from transformers import AutoModelForImageSegmentation
|
6 |
import torch
|
7 |
from torchvision import transforms
|
8 |
+
import moviepy.editor as mp
|
9 |
+
from pydub import AudioSegment
|
10 |
+
from PIL import Image
|
11 |
+
import numpy as np
|
12 |
+
|
13 |
|
14 |
torch.set_float32_matmul_precision(["high", "highest"][0])
|
15 |
|
|
|
25 |
]
|
26 |
)
|
27 |
|
28 |
+
|
29 |
def fn(vid):
|
30 |
+
# Load the video using moviepy
|
31 |
+
video = mp.VideoFileClip(vid)
|
32 |
+
|
33 |
+
# Extract audio from the video
|
34 |
+
audio = video.audio
|
35 |
+
|
36 |
+
# Extract frames at 12 fps
|
37 |
+
frames = video.iter_frames(fps=12)
|
38 |
+
|
39 |
+
# Process each frame for background removal
|
40 |
+
processed_frames = []
|
41 |
+
for frame in frames:
|
42 |
+
pil_image = Image.fromarray(frame)
|
43 |
+
processed_image = process(pil_image)
|
44 |
+
processed_frames.append(np.array(processed_image))
|
45 |
+
|
46 |
+
# Create a new video from the processed frames
|
47 |
+
processed_video = mp.ImageSequenceClip(processed_frames, fps=12)
|
48 |
+
|
49 |
+
# Add the original audio back to the processed video
|
50 |
+
processed_video = processed_video.set_audio(audio)
|
51 |
+
|
52 |
+
# Return the processed video
|
53 |
+
return processed_video
|
54 |
+
|
55 |
|
56 |
@spaces.GPU
|
57 |
def process(image):
|
|
|
63 |
pred = preds[0].squeeze()
|
64 |
pred_pil = transforms.ToPILImage()(pred)
|
65 |
mask = pred_pil.resize(image_size)
|
66 |
+
|
67 |
+
# Create a green screen image
|
68 |
+
green_screen = Image.new("RGBA", image_size, (0, 255, 0, 255))
|
69 |
+
|
70 |
+
# Composite the image onto the green screen using the mask
|
71 |
+
image = Image.composite(image, green_screen, mask)
|
72 |
+
|
73 |
return image
|
74 |
+
|
75 |
+
|
76 |
def process_file(f):
|
77 |
+
name_path = f.rsplit(".", 1)[0] + ".png"
|
78 |
im = load_img(f, output_type="pil")
|
79 |
im = im.convert("RGB")
|
80 |
transparent = process(im)
|
81 |
transparent.save(name_path)
|
82 |
return name_path
|
83 |
|
84 |
+
|
85 |
in_video = gr.Video(label="birefnet")
|
86 |
out_video = gr.Video()
|
87 |
|
88 |
|
89 |
url = "https://hips.hearstapps.com/hmg-prod/images/gettyimages-1229892983-square.jpg"
|
90 |
demo = gr.Interface(
|
91 |
+
fn, inputs=in_video, outputs=out_video, api_name="video"
|
92 |
)
|
93 |
|
94 |
|