Spaces:
Runtime error
Runtime error
import random | |
import gradio as gr | |
from datasets import load_dataset | |
import os | |
auth_token = os.environ.get("auth_token") | |
whoops = load_dataset("nlphuji/whoops", use_auth_token=auth_token)['test'] | |
print(f"Loaded WMTIS, first example:") | |
print(whoops[0]) | |
dataset_size = len(whoops) | |
print(f"all dataset size: {dataset_size}") | |
IMAGE = 'image' | |
IMAGE_DESIGNER = 'image_designer' | |
DESIGNER_EXPLANATION = 'designer_explanation' | |
CROWD_CAPTIONS = 'crowd_captions' | |
CROWD_EXPLANATIONS = 'crowd_explanations' | |
CROWD_UNDERSPECIFIED_CAPTIONS = 'crowd_underspecified_captions' | |
SELECTED_CAPTION = 'selected_caption' | |
COMMONSENSE_CATEGORY = 'commonsense_category' | |
QA = 'question_answering_pairs' | |
IMAGE_ID = 'image_id' | |
left_side_columns = [IMAGE] | |
right_side_columns = [x for x in whoops.features.keys() if x not in left_side_columns and x not in [QA]] | |
enumerate_cols = [CROWD_CAPTIONS, CROWD_EXPLANATIONS, CROWD_UNDERSPECIFIED_CAPTIONS] | |
emoji_to_label = {IMAGE_DESIGNER: 'π¨, π§βπ¨, π»', DESIGNER_EXPLANATION: 'π‘, π€, π§βπ¨', | |
CROWD_CAPTIONS: 'π₯, π¬, π', CROWD_EXPLANATIONS: 'π₯, π‘, π€', CROWD_UNDERSPECIFIED_CAPTIONS: 'π₯, π¬, π', | |
QA: 'β, π€, π‘', IMAGE_ID: 'π, π, πΎ', COMMONSENSE_CATEGORY: 'π€, π, π‘', SELECTED_CAPTION: 'π, π, π¬'} | |
target_size = (1024, 1024) | |
def get_instance_values(example): | |
values = [] | |
for k in left_side_columns + right_side_columns: | |
if k in enumerate_cols: | |
value = list_to_string(example[k]) | |
elif k == QA: | |
qa_list = [f"Q: {x[0]} A: {x[1]}" for x in example[k]] | |
value = list_to_string(qa_list) | |
else: | |
value = example[k] | |
values.append(value) | |
return values | |
def list_to_string(lst): | |
return '\n'.join(['{}. {}'.format(i + 1, item) for i, item in enumerate(lst)]) | |
def plot_image(index): | |
example = whoops_sample[index] | |
instance_values = get_instance_values(example) | |
assert len(left_side_columns) == len( | |
instance_values[:len(left_side_columns)]) # excluding the image & designer | |
for key, value in zip(left_side_columns, instance_values[:len(left_side_columns)]): | |
if key == IMAGE: | |
img = whoops_sample[index]["image"] | |
img_resized = img.resize(target_size) | |
gr.Image(value=img_resized, label=whoops_sample[index]['commonsense_category']) | |
else: | |
label = key.capitalize().replace("_", " ") | |
gr.Textbox(value=value, label=f"{label} {emoji_to_label[key]}") | |
with gr.Accordion("Click for details", open=False): | |
assert len(right_side_columns) == len( | |
instance_values[len(left_side_columns):]) # excluding the image & designer | |
for key, value in zip(right_side_columns, instance_values[len(left_side_columns):]): | |
label = key.capitalize().replace("_", " ") | |
gr.Textbox(value=value, label=f"{label} {emoji_to_label[key]}") | |
columns_number = 3 | |
# rows_number = int(dataset_size / columns_number) | |
rows_number = 25 | |
whoops_sample = whoops.shuffle().select(range(0, columns_number * rows_number)) | |
index = 0 | |
with gr.Blocks() as demo: | |
gr.Markdown(f"# WHOOPS! Dataset Explorer") | |
for row_num in range(0, rows_number): | |
with gr.Row(): | |
for col_num in range(0, columns_number): | |
with gr.Column(): | |
plot_image(index) | |
index += 1 | |
demo.launch() | |