import type { Tensor, Pipeline } from "@xenova/transformers"; import { pipeline, dot } from "@xenova/transformers"; // see here: https://github.com/nmslib/hnswlib/blob/359b2ba87358224963986f709e593d799064ace6/README.md?plain=1#L34 function innerProduct(tensor1: Tensor, tensor2: Tensor) { return 1.0 - dot(tensor1.data, tensor2.data); } // Use the Singleton pattern to enable lazy construction of the pipeline. class PipelineSingleton { static modelId = "Xenova/gte-small"; static instance: Promise | null = null; static async getInstance() { if (this.instance === null) { this.instance = pipeline("feature-extraction", this.modelId); } return this.instance; } } // see https://huggingface.co/thenlper/gte-small/blob/d8e2604cadbeeda029847d19759d219e0ce2e6d8/README.md?code=true#L2625 export const MAX_SEQ_LEN = 512 as const; export async function findSimilarSentences( query: string, sentences: string[], { topK = 5 }: { topK: number } ) { const input = [query, ...sentences]; const extractor = await PipelineSingleton.getInstance(); const output: Tensor = await extractor(input, { pooling: "mean", normalize: true }); const queryTensor: Tensor = output[0]; const sentencesTensor: Tensor = output.slice([1, input.length - 1]); const distancesFromQuery: { distance: number; index: number }[] = [...sentencesTensor].map( (sentenceTensor: Tensor, index: number) => { return { distance: innerProduct(queryTensor, sentenceTensor), index: index, }; } ); distancesFromQuery.sort((a, b) => { return a.distance - b.distance; }); // Return the indexes of the closest topK sentences return distancesFromQuery.slice(0, topK).map((item) => item.index); }