victor HF staff mishig HF staff Mishig commited on
Commit
8e300b6
1 Parent(s): e5afba2

Update README.md (#435)

Browse files

* Update README.md

* add description of websearch on readme

* Apply suggestions from code review

Co-authored-by: Victor Muštar <[email protected]>

* Update README.md

---------

Co-authored-by: Mishig Davaadorj <[email protected]>
Co-authored-by: Mishig <[email protected]>

Files changed (1) hide show
  1. README.md +15 -4
README.md CHANGED
@@ -12,16 +12,17 @@ app_port: 3000
12
 
13
  # Chat UI
14
 
15
- ![Chat UI repository thumbnail](https://huggingface.co/datasets/huggingface/documentation-images/raw/f038917dd40d711a72d654ab1abfc03ae9f177e6/chat-ui-repo-thumbnail.svg)
16
 
17
  A chat interface using open source models, eg OpenAssistant or Llama. It is a SvelteKit app and it powers the [HuggingChat app on hf.co/chat](https://huggingface.co/chat).
18
 
19
  0. [No Setup Deploy](#no-setup-deploy)
20
  1. [Setup](#setup)
21
  2. [Launch](#launch)
22
- 3. [Extra parameters](#extra-parameters)
23
- 4. [Deploying to a HF Space](#deploying-to-a-hf-space)
24
- 5. [Building](#building)
 
25
 
26
  ##  No Setup Deploy
27
 
@@ -70,6 +71,16 @@ npm install
70
  npm run dev
71
  ```
72
 
 
 
 
 
 
 
 
 
 
 
73
  ## Extra parameters
74
 
75
  ### OpenID connect
 
12
 
13
  # Chat UI
14
 
15
+ ![Chat UI repository thumbnail](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/chatui-websearch.png)
16
 
17
  A chat interface using open source models, eg OpenAssistant or Llama. It is a SvelteKit app and it powers the [HuggingChat app on hf.co/chat](https://huggingface.co/chat).
18
 
19
  0. [No Setup Deploy](#no-setup-deploy)
20
  1. [Setup](#setup)
21
  2. [Launch](#launch)
22
+ 3. [Web Search](#web-search)
23
+ 4. [Extra parameters](#extra-parameters)
24
+ 5. [Deploying to a HF Space](#deploying-to-a-hf-space)
25
+ 6. [Building](#building)
26
 
27
  ##  No Setup Deploy
28
 
 
71
  npm run dev
72
  ```
73
 
74
+ ## Web Search
75
+
76
+ Chat UI features a powerful Web Search feature. It works by:
77
+
78
+ 1. Generating an appropriate Google query from the user prompt.
79
+ 2. Performing Google search and extracting content from webpages.
80
+ 3. Creating embeddings from texts using [transformers.js](https://huggingface.co/docs/transformers.js). Specifically, using [Xenova/e5-small-v2](https://huggingface.co/Xenova/e5-small-v2) model.
81
+ 4. From these embeddings, find the ones that are closest to the user query using vector similarity search. Specifically, we use `inner product` distance.
82
+ 5. Get the corresponding texts to those closest embeddings and perform [Retrieval-Augmented Generation](https://huggingface.co/papers/2005.11401) (i.e. expand user prompt by adding those texts so that a LLM can use this information).
83
+
84
  ## Extra parameters
85
 
86
  ### OpenID connect