Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation
|
2 |
+
import gradio as gr
|
3 |
+
import torch
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import cv2
|
6 |
+
|
7 |
+
processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
|
8 |
+
model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined")
|
9 |
+
|
10 |
+
def process_image(image, prompts):
|
11 |
+
inputs = processor(text=prompts, images=[image] * len(prompts), padding="max_length", return_tensors="pt")
|
12 |
+
|
13 |
+
# predict
|
14 |
+
with torch.no_grad():
|
15 |
+
outputs = model(**inputs)
|
16 |
+
preds = outputs.logits.unsqueeze(1)
|
17 |
+
|
18 |
+
filename = f"mask.png"
|
19 |
+
plt.imsave(filename,torch.sigmoid(preds[1][0]))
|
20 |
+
|
21 |
+
img2 = cv2.imread(filename)
|
22 |
+
gray_image = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)
|
23 |
+
|
24 |
+
(thresh, bw_image) = cv2.threshold(gray_image, 100, 255, cv2.THRESH_BINARY)
|
25 |
+
|
26 |
+
# fix color format
|
27 |
+
cv2.cvtColor(bw_image, cv2.COLOR_BGR2RGB)
|
28 |
+
|
29 |
+
return Image.fromarray(bw_image)
|
30 |
+
|
31 |
+
title = "Interactive demo: zero-shot image segmentation with CLIPSeg"
|
32 |
+
description = "Demo for using CLIPSeg, a CLIP-based model for zero- and one-shot image segmentation. To use it, simply upload an image and add a text to mask (identify in the image), or use one of the examples below and click 'submit'. Results will show up in a few seconds."
|
33 |
+
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2112.10003'>CLIPSeg: Image Segmentation Using Text and Image Prompts</a> | <a href='https://huggingface.co/docs/transformers/main/en/model_doc/clipseg'>HuggingFace docs</a></p>"
|
34 |
+
|
35 |
+
examples = [["a glass", "something to fill", "wood", "a jar"]]
|
36 |
+
|
37 |
+
interface = gr.Interface(fn=process_image,
|
38 |
+
inputs=[gr.Image(type="pil"), gr.Textbox(label="What do you want to identify (separated by comma)?")],
|
39 |
+
outputs=gr.Image(type="pil"),
|
40 |
+
title=title,
|
41 |
+
description=description,
|
42 |
+
article=article,
|
43 |
+
examples=examples)
|
44 |
+
|
45 |
+
interface.launch(debug=True)
|