Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -14,20 +14,22 @@ def process_image(image, prompt):
|
|
14 |
# predict
|
15 |
with torch.no_grad():
|
16 |
outputs = model(**inputs)
|
17 |
-
preds = outputs.logits
|
18 |
|
19 |
filename = f"mask.png"
|
20 |
-
plt.imsave(filename,torch.sigmoid(preds
|
21 |
|
22 |
-
img2 = cv2.imread(filename)
|
23 |
-
gray_image = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)
|
24 |
|
25 |
-
(thresh, bw_image) = cv2.threshold(gray_image, 100, 255, cv2.THRESH_BINARY)
|
26 |
|
27 |
-
# fix color format
|
28 |
-
cv2.cvtColor(bw_image, cv2.COLOR_BGR2RGB)
|
29 |
|
30 |
-
return Image.fromarray(bw_image)
|
|
|
|
|
31 |
|
32 |
title = "Interactive demo: zero-shot image segmentation with CLIPSeg"
|
33 |
description = "Demo for using CLIPSeg, a CLIP-based model for zero- and one-shot image segmentation. To use it, simply upload an image and add a text to mask (identify in the image), or use one of the examples below and click 'submit'. Results will show up in a few seconds."
|
@@ -36,7 +38,7 @@ article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2112.100
|
|
36 |
examples = [["example_image.png", "wood"]]
|
37 |
|
38 |
interface = gr.Interface(fn=process_image,
|
39 |
-
inputs=[gr.Image(type="pil"), gr.Textbox(label="
|
40 |
outputs=gr.Image(type="pil"),
|
41 |
title=title,
|
42 |
description=description,
|
|
|
14 |
# predict
|
15 |
with torch.no_grad():
|
16 |
outputs = model(**inputs)
|
17 |
+
preds = outputs.logits
|
18 |
|
19 |
filename = f"mask.png"
|
20 |
+
plt.imsave(filename, torch.sigmoid(preds))
|
21 |
|
22 |
+
# # img2 = cv2.imread(filename)
|
23 |
+
# # gray_image = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)
|
24 |
|
25 |
+
# # (thresh, bw_image) = cv2.threshold(gray_image, 100, 255, cv2.THRESH_BINARY)
|
26 |
|
27 |
+
# # # fix color format
|
28 |
+
# # cv2.cvtColor(bw_image, cv2.COLOR_BGR2RGB)
|
29 |
|
30 |
+
# # return Image.fromarray(bw_image)
|
31 |
+
|
32 |
+
# return Image.open("mask.png").convert("RGB")
|
33 |
|
34 |
title = "Interactive demo: zero-shot image segmentation with CLIPSeg"
|
35 |
description = "Demo for using CLIPSeg, a CLIP-based model for zero- and one-shot image segmentation. To use it, simply upload an image and add a text to mask (identify in the image), or use one of the examples below and click 'submit'. Results will show up in a few seconds."
|
|
|
38 |
examples = [["example_image.png", "wood"]]
|
39 |
|
40 |
interface = gr.Interface(fn=process_image,
|
41 |
+
inputs=[gr.Image(type="pil"), gr.Textbox(label="Please describe what you want to identify")],
|
42 |
outputs=gr.Image(type="pil"),
|
43 |
title=title,
|
44 |
description=description,
|