Spaces:
Sleeping
Sleeping
import os | |
import torch | |
import gradio as gr | |
import time | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline | |
codes_as_string = '''Assamese asm_Beng | |
Awadhi awa_Deva | |
Bengali ben_Beng | |
Bhojpuri bho_Deva | |
Standard Tibetan bod_Tibt | |
Dzongkha dzo_Tibt | |
English eng_Latn | |
Gujarati guj_Gujr | |
Hindi hin_Deva | |
Chhattisgarhi hne_Deva | |
Kannada kan_Knda | |
Kashmiri (Arabic script) kas_Arab | |
Kashmiri (Devanagari script) kas_Deva | |
Mizo lus_Latn | |
Magahi mag_Deva | |
Maithili mai_Deva | |
Malayalam mal_Mlym | |
Marathi mar_Deva | |
Meitei (Bengali script) mni_Beng | |
Burmese mya_Mymr | |
Nepali npi_Deva | |
Odia ory_Orya | |
Punjabi pan_Guru | |
Sanskrit san_Deva | |
Santali sat_Olck | |
Sindhi snd_Arab | |
Tamil tam_Taml | |
Telugu tel_Telu | |
Urdu urd_Arab | |
Vietnamese vie_Latn''' | |
def load_models(): | |
# build model and tokenizer | |
model_name_dict = { | |
'nllb-1.3B': "ychenNLP/nllb-200-distilled-1.3B-easyproject", | |
} | |
model_dict = {} | |
for call_name, real_name in model_name_dict.items(): | |
print('\tLoading model: %s' % call_name) | |
model = AutoModelForSeq2SeqLM.from_pretrained(real_name) | |
tokenizer = AutoTokenizer.from_pretrained("facebook/nllb-200-distilled-600M") | |
model_dict[call_name+'_model'] = model | |
model_dict[call_name+'_tokenizer'] = tokenizer | |
return model_dict | |
def translation(source, target, text): | |
if len(model_dict) == 2: | |
model_name = 'nllb-1.3B' | |
start_time = time.time() | |
source = flores_codes[source] | |
target = flores_codes[target] | |
model = model_dict[model_name + '_model'] | |
tokenizer = model_dict[model_name + '_tokenizer'] | |
translator = pipeline('translation', model=model, tokenizer=tokenizer, src_lang=source, tgt_lang=target) | |
output = translator(text, max_length=400) | |
end_time = time.time() | |
full_output = output | |
output = output[0]['translation_text'] | |
# result = {'inference_time': end_time - start_time, | |
# 'source': source, | |
# 'target': target, | |
# 'result': output, | |
# 'full_output': full_output} | |
return output | |
if __name__ == '__main__': | |
print('\tinit models') | |
codes_as_string = codes_as_string.split('\n') | |
flores_codes = {} | |
for code in codes_as_string: | |
lang, lang_code = code.split('\t') | |
flores_codes[lang] = lang_code | |
global model_dict | |
model_dict = load_models() | |
# define gradio demo | |
lang_codes = list(flores_codes.keys()) | |
inputs = [gr.inputs.Dropdown(lang_codes, default='English', label='Source'), | |
gr.inputs.Dropdown(lang_codes, default='Hindi', label='Target'), | |
gr.inputs.Textbox(lines=5, label="Input text"), | |
] | |
outputs = gr.inputs.Textbox(label="Output text") | |
title = "Machine Translation Demo" | |
demo_status = "Machine Translation System." | |
description = f"{demo_status}" | |
gr.Interface(translation, | |
inputs, | |
outputs, | |
title=title, | |
description=description, | |
examples_per_page=50, | |
theme="JohnSmith9982/small_and_pretty" | |
).launch() | |