import torch # from PIL import Image import gradio as gr import pytube as pt from transformers import pipeline MODEL_NAME = "openai/whisper-large-v3" device = 0 if torch.cuda.is_available() else "cpu" pipe = pipeline( task="automatic-speech-recognition", model=MODEL_NAME, chunk_length_s=30, device=device, ) all_special_ids = pipe.tokenizer.all_special_ids transcribe_token_id = all_special_ids[-5] translate_token_id = all_special_ids[-6] def transcribe(microphone, file_upload, task): warn_output = "" if (microphone is not None) and (file_upload is not None): warn_output = ( "警告:您已经上传了一个音频文件并使用了麦克录制。" "录制文件将被使用上传的音频将被丢弃。\n" ) elif (microphone is None) and (file_upload is None): return "错误: 您必须使用麦克风录制或上传音频文件" file = microphone if microphone is not None else file_upload pipe.model.config.forced_decoder_ids = [[2, transcribe_token_id if task=="transcribe" else translate_token_id]] # text = pipe(file, return_timestamps=True)["text"] text = pipe(file, return_timestamps=True) #trans to SRT text= convert_to_srt(text) return warn_output + text def _return_yt_html_embed(yt_url): video_id = yt_url.split("?v=")[-1] HTML_str = ( f'
' "
" ) return HTML_str def yt_transcribe(yt_url, task): yt = pt.YouTube(yt_url) html_embed_str = _return_yt_html_embed(yt_url) stream = yt.streams.filter(only_audio=True)[0] stream.download(filename="audio.mp3") pipe.model.config.forced_decoder_ids = [[2, transcribe_token_id if task=="transcribe" else translate_token_id]] text = pipe("audio.mp3",return_timestamps=True) # text = pipe("audio.mp3",return_timestamps=True)["text"] #trans to SRT text= convert_to_srt(text) return html_embed_str, text # Assuming srt format is a sequence of subtitles with index, time range and text def convert_to_srt(input): output = "" index = 1 for chunk in input["chunks"]: start, end = chunk["timestamp"] text = chunk["text"] if end is None: end = "None" # Convert seconds to hours:minutes:seconds,milliseconds format start = format_time(start) end = format_time(end) output += f"{index}\n{start} --> {end}\n{text}\n\n" index += 1 return output # Helper function to format time def format_time(seconds): if seconds == "None": return seconds hours = int(seconds // 3600) minutes = int((seconds % 3600) // 60) seconds = int(seconds % 60) milliseconds = int((seconds % 1) * 1000) return f"{hours:02}:{minutes:02}:{seconds:02},{milliseconds:03}" demo = gr.Blocks() mf_transcribe = gr.Interface( fn=transcribe, inputs=[ gr.inputs.Audio(source="microphone", type="filepath", optional=True), gr.inputs.Audio(source="upload", type="filepath", optional=True), gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe"), ], outputs="text", layout="horizontal", theme="huggingface", title="Audio-to-Text-SRT 自动生成字幕", description=( "直接在网页录音或上传音频文件,加入Youtube连接,轻松转换为文字和字幕格式! 本演示采用" f" 模型 [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) 和 🤗 Transformers 转换任意长度的" "音视频文件!使用GPU转换效率会大幅提高,大约每小时 $0.6 约相当于人民币 5 元。如果您有较长内容,需要更快的转换速度,请私信作者微信 1259388,并备注“语音转文字”。" ), allow_flagging="never", ) yt_transcribe = gr.Interface( fn=yt_transcribe, inputs=[ gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"), gr.inputs.Radio(["转译", "翻译"], label="Task", default="transcribe") ], outputs=["html", "text"], layout="horizontal", theme="huggingface", title="Audio-to-Text-SRT 自动生成字幕", description=( "直接在网页录音或上传音频文件,加入Youtube连接,轻松转换为文字和字幕格式! 本演示采用" f" 模型 [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) 和 🤗 Transformers 转换任意长度的" "音视频文件!使用GPU转换效率会大幅提高,大约每小时 $0.6 约相当于人民币 5 元。如果您有较长内容,需要更快的转换速度,请私信作者微信 1259388,并备注“语音转文字”。" ), allow_flagging="never", ) # # Load the images # image1 = Image("wechatqrcode.jpg") # image2 = Image("paypalqrcode.png") # # Define a function that returns the images and captions # def display_images(): # return image1, "WeChat Pay", image2, "PayPal" with demo: gr.TabbedInterface([mf_transcribe, yt_transcribe], ["转译音频成文字", "YouTube转字幕"]) # Create a gradio interface with no inputs and four outputs # gr.Interface(display_images, [], [gr.outputs.Image(), gr.outputs.Textbox(), gr.outputs.Image(), gr.outputs.Textbox()], layout="horizontal").launch() demo.launch(enable_queue=True)