Upload 2 files
Browse files- requirements.txt +3 -0
- run.py +82 -0
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
chromadb
|
2 |
+
huggingface_hub
|
3 |
+
streamlit
|
run.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import chromadb
|
2 |
+
import os
|
3 |
+
import gradio as gr
|
4 |
+
import json
|
5 |
+
from huggingface_hub import InferenceClient
|
6 |
+
|
7 |
+
dbPath='/Users/thiloid/Desktop/LSKI/ole_nest/Chatbot/LLM/chromaTS'
|
8 |
+
if(os.path.exists(dbPath)==False): dbPath="/home/user/app/chromaTS'"
|
9 |
+
|
10 |
+
print(dbPath)
|
11 |
+
#path='chromaTS'
|
12 |
+
#settings = Settings(persist_directory=storage_path)
|
13 |
+
#client = chromadb.Client(settings=settings)
|
14 |
+
client = chromadb.PersistentClient(path=path)
|
15 |
+
print(client.heartbeat())
|
16 |
+
print(client.get_version())
|
17 |
+
print(client.list_collections())
|
18 |
+
from chromadb.utils import embedding_functions
|
19 |
+
default_ef = embedding_functions.DefaultEmbeddingFunction()
|
20 |
+
sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(model_name="T-Systems-onsite/cross-en-de-roberta-sentence-transformer")#"VAGOsolutions/SauerkrautLM-Mixtral-8x7B-Instruct")
|
21 |
+
#instructor_ef = embedding_functions.InstructorEmbeddingFunction(model_name="hkunlp/instructor-large", device="cuda")
|
22 |
+
#print(str(client.list_collections()))
|
23 |
+
collection = client.get_collection(name="chromaTS", embedding_function=sentence_transformer_ef)
|
24 |
+
|
25 |
+
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
|
26 |
+
|
27 |
+
|
28 |
+
def format_prompt(message):
|
29 |
+
prompt = "" #"<s>"
|
30 |
+
#for user_prompt, bot_response in history:
|
31 |
+
# prompt += f"[INST] {user_prompt} [/INST]"
|
32 |
+
# prompt += f" {bot_response}</s> "
|
33 |
+
prompt += f"[INST] {message} [/INST]"
|
34 |
+
return prompt
|
35 |
+
|
36 |
+
def response(
|
37 |
+
prompt, history,temperature=0.9, max_new_tokens=500, top_p=0.95, repetition_penalty=1.0,
|
38 |
+
):
|
39 |
+
temperature = float(temperature)
|
40 |
+
if temperature < 1e-2: temperature = 1e-2
|
41 |
+
top_p = float(top_p)
|
42 |
+
generate_kwargs = dict(
|
43 |
+
temperature=temperature,
|
44 |
+
max_new_tokens=max_new_tokens,
|
45 |
+
top_p=top_p,
|
46 |
+
repetition_penalty=repetition_penalty,
|
47 |
+
do_sample=True,
|
48 |
+
seed=42,
|
49 |
+
)
|
50 |
+
addon=""
|
51 |
+
results=collection.query(
|
52 |
+
query_texts=[prompt],
|
53 |
+
n_results=10,
|
54 |
+
#where={"source": "google-docs"}
|
55 |
+
#where_document={"$contains":"search_string"}
|
56 |
+
)
|
57 |
+
#print("REsults")
|
58 |
+
#print(results)
|
59 |
+
#print("_____")
|
60 |
+
dists=["<br><small>(relevance: "+str(round((1-d)*100)/100)+";" for d in results['distances'][0]]
|
61 |
+
|
62 |
+
#sources=["source: "+s["source"]+")</small>" for s in results['metadatas'][0]]
|
63 |
+
results=results['documents'][0]
|
64 |
+
combination = zip(results,dists)
|
65 |
+
combination = [' '.join(triplets) for triplets in combination]
|
66 |
+
#print(str(prompt)+"\n\n"+str(combination))
|
67 |
+
if(len(results)>1):
|
68 |
+
addon=" Bitte berücksichtige bei deiner Antwort ausschießlich folgende Auszüge aus unserer Datenbank, sofern sie für die Antwort erforderlich sind. Beantworte die Frage knapp und präzise. Ignoriere unpassende Datenbank-Auszüge OHNE sie zu kommentieren, zu erwähnen oder aufzulisten:\n"+"\n".join(results)
|
69 |
+
system="Du bist ein deutschsprachiges KI-basiertes Studienberater Assistenzsystem, das zu jedem Anliegen möglichst geeignete Studieninformationen empfiehlt."+addon+"\n\nUser-Anliegen:"
|
70 |
+
formatted_prompt = format_prompt(system+"\n"+prompt,history)
|
71 |
+
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
|
72 |
+
output = ""
|
73 |
+
for response in stream:
|
74 |
+
output += response.token.text
|
75 |
+
yield output
|
76 |
+
#output=output+"\n\n<br><details open><summary><strong>Sources</strong></summary><br><ul>"+ "".join(["<li>" + s + "</li>" for s in combination])+"</ul></details>"
|
77 |
+
yield output
|
78 |
+
|
79 |
+
gr.ChatInterface(response, chatbot=gr.Chatbot(value=[[None,"Herzlich willkommen! Ich bin Chätti ein KI-basiertes Studienassistenzsystem, das für jede Anfrage die am besten Studieninformationen empfiehlt.<br>Erzähle mir, was du gerne tust!"]],render_markdown=True),title="German BERUFENET-RAG-Interface to the Hugging Face Hub").queue().launch(share=True) #False, server_name="0.0.0.0", server_port=7864)
|
80 |
+
print("Interface up and running!")
|
81 |
+
|
82 |
+
|