Spaces:
Sleeping
Sleeping
import librosa | |
import numpy as np | |
from pycwt import wavelet | |
from scipy.interpolate import interp1d | |
def load_wav(wav_file, sr): | |
wav, _ = librosa.load(wav_file, sr=sr, mono=True) | |
return wav | |
def convert_continuos_f0(f0): | |
'''CONVERT F0 TO CONTINUOUS F0 | |
Args: | |
f0 (ndarray): original f0 sequence with the shape (T) | |
Return: | |
(ndarray): continuous f0 with the shape (T) | |
''' | |
# get uv information as binary | |
f0 = np.copy(f0) | |
uv = np.float32(f0 != 0) | |
# get start and end of f0 | |
if (f0 == 0).all(): | |
print("| all of the f0 values are 0.") | |
return uv, f0 | |
start_f0 = f0[f0 != 0][0] | |
end_f0 = f0[f0 != 0][-1] | |
# padding start and end of f0 sequence | |
start_idx = np.where(f0 == start_f0)[0][0] | |
end_idx = np.where(f0 == end_f0)[0][-1] | |
f0[:start_idx] = start_f0 | |
f0[end_idx:] = end_f0 | |
# get non-zero frame index | |
nz_frames = np.where(f0 != 0)[0] | |
# perform linear interpolation | |
f = interp1d(nz_frames, f0[nz_frames]) | |
cont_f0 = f(np.arange(0, f0.shape[0])) | |
return uv, cont_f0 | |
def get_cont_lf0(f0, frame_period=5.0): | |
uv, cont_f0_lpf = convert_continuos_f0(f0) | |
# cont_f0_lpf = low_pass_filter(cont_f0_lpf, int(1.0 / (frame_period * 0.001)), cutoff=20) | |
cont_lf0_lpf = np.log(cont_f0_lpf) | |
return uv, cont_lf0_lpf | |
def get_lf0_cwt(lf0): | |
''' | |
input: | |
signal of shape (N) | |
output: | |
Wavelet_lf0 of shape(10, N), scales of shape(10) | |
''' | |
mother = wavelet.MexicanHat() | |
dt = 0.005 | |
dj = 1 | |
s0 = dt * 2 | |
J = 9 | |
Wavelet_lf0, scales, _, _, _, _ = wavelet.cwt(np.squeeze(lf0), dt, dj, s0, J, mother) | |
# Wavelet.shape => (J + 1, len(lf0)) | |
Wavelet_lf0 = np.real(Wavelet_lf0).T | |
return Wavelet_lf0, scales | |
def norm_scale(Wavelet_lf0): | |
Wavelet_lf0_norm = np.zeros((Wavelet_lf0.shape[0], Wavelet_lf0.shape[1])) | |
mean = Wavelet_lf0.mean(0)[None, :] | |
std = Wavelet_lf0.std(0)[None, :] | |
Wavelet_lf0_norm = (Wavelet_lf0 - mean) / std | |
return Wavelet_lf0_norm, mean, std | |
def normalize_cwt_lf0(f0, mean, std): | |
uv, cont_lf0_lpf = get_cont_lf0(f0) | |
cont_lf0_norm = (cont_lf0_lpf - mean) / std | |
Wavelet_lf0, scales = get_lf0_cwt(cont_lf0_norm) | |
Wavelet_lf0_norm, _, _ = norm_scale(Wavelet_lf0) | |
return Wavelet_lf0_norm | |
def get_lf0_cwt_norm(f0s, mean, std): | |
uvs = list() | |
cont_lf0_lpfs = list() | |
cont_lf0_lpf_norms = list() | |
Wavelet_lf0s = list() | |
Wavelet_lf0s_norm = list() | |
scaless = list() | |
means = list() | |
stds = list() | |
for f0 in f0s: | |
uv, cont_lf0_lpf = get_cont_lf0(f0) | |
cont_lf0_lpf_norm = (cont_lf0_lpf - mean) / std | |
Wavelet_lf0, scales = get_lf0_cwt(cont_lf0_lpf_norm) # [560,10] | |
Wavelet_lf0_norm, mean_scale, std_scale = norm_scale(Wavelet_lf0) # [560,10],[1,10],[1,10] | |
Wavelet_lf0s_norm.append(Wavelet_lf0_norm) | |
uvs.append(uv) | |
cont_lf0_lpfs.append(cont_lf0_lpf) | |
cont_lf0_lpf_norms.append(cont_lf0_lpf_norm) | |
Wavelet_lf0s.append(Wavelet_lf0) | |
scaless.append(scales) | |
means.append(mean_scale) | |
stds.append(std_scale) | |
return Wavelet_lf0s_norm, scaless, means, stds | |
def inverse_cwt_torch(Wavelet_lf0, scales): | |
import torch | |
b = ((torch.arange(0, len(scales)).float().to(Wavelet_lf0.device)[None, None, :] + 1 + 2.5) ** (-2.5)) | |
lf0_rec = Wavelet_lf0 * b | |
lf0_rec_sum = lf0_rec.sum(-1) | |
lf0_rec_sum = (lf0_rec_sum - lf0_rec_sum.mean(-1, keepdim=True)) / lf0_rec_sum.std(-1, keepdim=True) | |
return lf0_rec_sum | |
def inverse_cwt(Wavelet_lf0, scales): | |
b = ((np.arange(0, len(scales))[None, None, :] + 1 + 2.5) ** (-2.5)) | |
lf0_rec = Wavelet_lf0 * b | |
lf0_rec_sum = lf0_rec.sum(-1) | |
lf0_rec_sum = (lf0_rec_sum - lf0_rec_sum.mean(-1, keepdims=True)) / lf0_rec_sum.std(-1, keepdims=True) | |
return lf0_rec_sum | |
def cwt2f0(cwt_spec, mean, std, cwt_scales): | |
assert len(mean.shape) == 1 and len(std.shape) == 1 and len(cwt_spec.shape) == 3 | |
import torch | |
if isinstance(cwt_spec, torch.Tensor): | |
f0 = inverse_cwt_torch(cwt_spec, cwt_scales) | |
f0 = f0 * std[:, None] + mean[:, None] | |
f0 = f0.exp() # [B, T] | |
else: | |
f0 = inverse_cwt(cwt_spec, cwt_scales) | |
f0 = f0 * std[:, None] + mean[:, None] | |
f0 = np.exp(f0) # [B, T] | |
return f0 | |