Inference / training /dataset /base_dataset.py
nekomiro's picture
Duplicate from DIFF-SVCModel/Inference
79f7f06
raw
history blame
2.08 kB
import torch
from utils.hparams import hparams
import numpy as np
import os
class BaseDataset(torch.utils.data.Dataset):
'''
Base class for datasets.
1. *ordered_indices*:
if self.shuffle == True, shuffle the indices;
if self.sort_by_len == True, sort data by length;
2. *sizes*:
clipped length if "max_frames" is set;
3. *num_tokens*:
unclipped length.
Subclasses should define:
1. *collate*:
take the longest data, pad other data to the same length;
2. *__getitem__*:
the index function.
'''
def __init__(self, shuffle):
super().__init__()
self.hparams = hparams
self.shuffle = shuffle
self.sort_by_len = hparams['sort_by_len']
self.sizes = None
@property
def _sizes(self):
return self.sizes
def __getitem__(self, index):
raise NotImplementedError
def collater(self, samples):
raise NotImplementedError
def __len__(self):
return len(self._sizes)
def num_tokens(self, index):
return self.size(index)
def size(self, index):
"""Return an example's size as a float or tuple. This value is used when
filtering a dataset with ``--max-positions``."""
size = min(self._sizes[index], hparams['max_frames'])
return size
def ordered_indices(self):
"""Return an ordered list of indices. Batches will be constructed based
on this order."""
if self.shuffle:
indices = np.random.permutation(len(self))
if self.sort_by_len:
indices = indices[np.argsort(np.array(self._sizes)[indices], kind='mergesort')]
# 先random, 然后稳定排序, 保证排序后同长度的数据顺序是依照random permutation的 (被其随机打乱).
else:
indices = np.arange(len(self))
return indices
@property
def num_workers(self):
return int(os.getenv('NUM_WORKERS', hparams['ds_workers']))