Spaces:
Sleeping
Sleeping
import torch | |
from utils.hparams import hparams | |
import numpy as np | |
import os | |
class BaseDataset(torch.utils.data.Dataset): | |
''' | |
Base class for datasets. | |
1. *ordered_indices*: | |
if self.shuffle == True, shuffle the indices; | |
if self.sort_by_len == True, sort data by length; | |
2. *sizes*: | |
clipped length if "max_frames" is set; | |
3. *num_tokens*: | |
unclipped length. | |
Subclasses should define: | |
1. *collate*: | |
take the longest data, pad other data to the same length; | |
2. *__getitem__*: | |
the index function. | |
''' | |
def __init__(self, shuffle): | |
super().__init__() | |
self.hparams = hparams | |
self.shuffle = shuffle | |
self.sort_by_len = hparams['sort_by_len'] | |
self.sizes = None | |
def _sizes(self): | |
return self.sizes | |
def __getitem__(self, index): | |
raise NotImplementedError | |
def collater(self, samples): | |
raise NotImplementedError | |
def __len__(self): | |
return len(self._sizes) | |
def num_tokens(self, index): | |
return self.size(index) | |
def size(self, index): | |
"""Return an example's size as a float or tuple. This value is used when | |
filtering a dataset with ``--max-positions``.""" | |
size = min(self._sizes[index], hparams['max_frames']) | |
return size | |
def ordered_indices(self): | |
"""Return an ordered list of indices. Batches will be constructed based | |
on this order.""" | |
if self.shuffle: | |
indices = np.random.permutation(len(self)) | |
if self.sort_by_len: | |
indices = indices[np.argsort(np.array(self._sizes)[indices], kind='mergesort')] | |
# 先random, 然后稳定排序, 保证排序后同长度的数据顺序是依照random permutation的 (被其随机打乱). | |
else: | |
indices = np.arange(len(self)) | |
return indices | |
def num_workers(self): | |
return int(os.getenv('NUM_WORKERS', hparams['ds_workers'])) | |