Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn.functional as F | |
import torch.nn as nn | |
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d | |
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm | |
from modules.parallel_wavegan.layers import UpsampleNetwork, ConvInUpsampleNetwork | |
from modules.parallel_wavegan.models.source import SourceModuleHnNSF | |
import numpy as np | |
LRELU_SLOPE = 0.1 | |
def init_weights(m, mean=0.0, std=0.01): | |
classname = m.__class__.__name__ | |
if classname.find("Conv") != -1: | |
m.weight.data.normal_(mean, std) | |
def apply_weight_norm(m): | |
classname = m.__class__.__name__ | |
if classname.find("Conv") != -1: | |
weight_norm(m) | |
def get_padding(kernel_size, dilation=1): | |
return int((kernel_size * dilation - dilation) / 2) | |
class ResBlock1(torch.nn.Module): | |
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3, 5)): | |
super(ResBlock1, self).__init__() | |
self.h = h | |
self.convs1 = nn.ModuleList([ | |
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0], | |
padding=get_padding(kernel_size, dilation[0]))), | |
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1], | |
padding=get_padding(kernel_size, dilation[1]))), | |
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2], | |
padding=get_padding(kernel_size, dilation[2]))) | |
]) | |
self.convs1.apply(init_weights) | |
self.convs2 = nn.ModuleList([ | |
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, | |
padding=get_padding(kernel_size, 1))), | |
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, | |
padding=get_padding(kernel_size, 1))), | |
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, | |
padding=get_padding(kernel_size, 1))) | |
]) | |
self.convs2.apply(init_weights) | |
def forward(self, x): | |
for c1, c2 in zip(self.convs1, self.convs2): | |
xt = F.leaky_relu(x, LRELU_SLOPE) | |
xt = c1(xt) | |
xt = F.leaky_relu(xt, LRELU_SLOPE) | |
xt = c2(xt) | |
x = xt + x | |
return x | |
def remove_weight_norm(self): | |
for l in self.convs1: | |
remove_weight_norm(l) | |
for l in self.convs2: | |
remove_weight_norm(l) | |
class ResBlock2(torch.nn.Module): | |
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3)): | |
super(ResBlock2, self).__init__() | |
self.h = h | |
self.convs = nn.ModuleList([ | |
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0], | |
padding=get_padding(kernel_size, dilation[0]))), | |
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1], | |
padding=get_padding(kernel_size, dilation[1]))) | |
]) | |
self.convs.apply(init_weights) | |
def forward(self, x): | |
for c in self.convs: | |
xt = F.leaky_relu(x, LRELU_SLOPE) | |
xt = c(xt) | |
x = xt + x | |
return x | |
def remove_weight_norm(self): | |
for l in self.convs: | |
remove_weight_norm(l) | |
class Conv1d1x1(Conv1d): | |
"""1x1 Conv1d with customized initialization.""" | |
def __init__(self, in_channels, out_channels, bias): | |
"""Initialize 1x1 Conv1d module.""" | |
super(Conv1d1x1, self).__init__(in_channels, out_channels, | |
kernel_size=1, padding=0, | |
dilation=1, bias=bias) | |
class HifiGanGenerator(torch.nn.Module): | |
def __init__(self, h, c_out=1): | |
super(HifiGanGenerator, self).__init__() | |
self.h = h | |
self.num_kernels = len(h['resblock_kernel_sizes']) | |
self.num_upsamples = len(h['upsample_rates']) | |
if h['use_pitch_embed']: | |
self.harmonic_num = 8 | |
self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(h['upsample_rates'])) | |
self.m_source = SourceModuleHnNSF( | |
sampling_rate=h['audio_sample_rate'], | |
harmonic_num=self.harmonic_num) | |
self.noise_convs = nn.ModuleList() | |
self.conv_pre = weight_norm(Conv1d(80, h['upsample_initial_channel'], 7, 1, padding=3)) | |
resblock = ResBlock1 if h['resblock'] == '1' else ResBlock2 | |
self.ups = nn.ModuleList() | |
for i, (u, k) in enumerate(zip(h['upsample_rates'], h['upsample_kernel_sizes'])): | |
c_cur = h['upsample_initial_channel'] // (2 ** (i + 1)) | |
self.ups.append(weight_norm( | |
ConvTranspose1d(c_cur * 2, c_cur, k, u, padding=(k - u) // 2))) | |
if h['use_pitch_embed']: | |
if i + 1 < len(h['upsample_rates']): | |
stride_f0 = np.prod(h['upsample_rates'][i + 1:]) | |
self.noise_convs.append(Conv1d( | |
1, c_cur, kernel_size=stride_f0 * 2, stride=stride_f0, padding=stride_f0 // 2)) | |
else: | |
self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1)) | |
self.resblocks = nn.ModuleList() | |
for i in range(len(self.ups)): | |
ch = h['upsample_initial_channel'] // (2 ** (i + 1)) | |
for j, (k, d) in enumerate(zip(h['resblock_kernel_sizes'], h['resblock_dilation_sizes'])): | |
self.resblocks.append(resblock(h, ch, k, d)) | |
self.conv_post = weight_norm(Conv1d(ch, c_out, 7, 1, padding=3)) | |
self.ups.apply(init_weights) | |
self.conv_post.apply(init_weights) | |
def forward(self, x, f0=None): | |
if f0 is not None: | |
# harmonic-source signal, noise-source signal, uv flag | |
f0 = self.f0_upsamp(f0[:, None]).transpose(1, 2) | |
har_source, noi_source, uv = self.m_source(f0) | |
har_source = har_source.transpose(1, 2) | |
x = self.conv_pre(x) | |
for i in range(self.num_upsamples): | |
x = F.leaky_relu(x, LRELU_SLOPE) | |
x = self.ups[i](x) | |
if f0 is not None: | |
x_source = self.noise_convs[i](har_source) | |
x = x + x_source | |
xs = None | |
for j in range(self.num_kernels): | |
if xs is None: | |
xs = self.resblocks[i * self.num_kernels + j](x) | |
else: | |
xs += self.resblocks[i * self.num_kernels + j](x) | |
x = xs / self.num_kernels | |
x = F.leaky_relu(x) | |
x = self.conv_post(x) | |
x = torch.tanh(x) | |
return x | |
def remove_weight_norm(self): | |
print('Removing weight norm...') | |
for l in self.ups: | |
remove_weight_norm(l) | |
for l in self.resblocks: | |
l.remove_weight_norm() | |
remove_weight_norm(self.conv_pre) | |
remove_weight_norm(self.conv_post) | |
class DiscriminatorP(torch.nn.Module): | |
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False, use_cond=False, c_in=1): | |
super(DiscriminatorP, self).__init__() | |
self.use_cond = use_cond | |
if use_cond: | |
from utils.hparams import hparams | |
t = hparams['hop_size'] | |
self.cond_net = torch.nn.ConvTranspose1d(80, 1, t * 2, stride=t, padding=t // 2) | |
c_in = 2 | |
self.period = period | |
norm_f = weight_norm if use_spectral_norm == False else spectral_norm | |
self.convs = nn.ModuleList([ | |
norm_f(Conv2d(c_in, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), | |
norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), | |
norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), | |
norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), | |
norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(2, 0))), | |
]) | |
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0))) | |
def forward(self, x, mel): | |
fmap = [] | |
if self.use_cond: | |
x_mel = self.cond_net(mel) | |
x = torch.cat([x_mel, x], 1) | |
# 1d to 2d | |
b, c, t = x.shape | |
if t % self.period != 0: # pad first | |
n_pad = self.period - (t % self.period) | |
x = F.pad(x, (0, n_pad), "reflect") | |
t = t + n_pad | |
x = x.view(b, c, t // self.period, self.period) | |
for l in self.convs: | |
x = l(x) | |
x = F.leaky_relu(x, LRELU_SLOPE) | |
fmap.append(x) | |
x = self.conv_post(x) | |
fmap.append(x) | |
x = torch.flatten(x, 1, -1) | |
return x, fmap | |
class MultiPeriodDiscriminator(torch.nn.Module): | |
def __init__(self, use_cond=False, c_in=1): | |
super(MultiPeriodDiscriminator, self).__init__() | |
self.discriminators = nn.ModuleList([ | |
DiscriminatorP(2, use_cond=use_cond, c_in=c_in), | |
DiscriminatorP(3, use_cond=use_cond, c_in=c_in), | |
DiscriminatorP(5, use_cond=use_cond, c_in=c_in), | |
DiscriminatorP(7, use_cond=use_cond, c_in=c_in), | |
DiscriminatorP(11, use_cond=use_cond, c_in=c_in), | |
]) | |
def forward(self, y, y_hat, mel=None): | |
y_d_rs = [] | |
y_d_gs = [] | |
fmap_rs = [] | |
fmap_gs = [] | |
for i, d in enumerate(self.discriminators): | |
y_d_r, fmap_r = d(y, mel) | |
y_d_g, fmap_g = d(y_hat, mel) | |
y_d_rs.append(y_d_r) | |
fmap_rs.append(fmap_r) | |
y_d_gs.append(y_d_g) | |
fmap_gs.append(fmap_g) | |
return y_d_rs, y_d_gs, fmap_rs, fmap_gs | |
class DiscriminatorS(torch.nn.Module): | |
def __init__(self, use_spectral_norm=False, use_cond=False, upsample_rates=None, c_in=1): | |
super(DiscriminatorS, self).__init__() | |
self.use_cond = use_cond | |
if use_cond: | |
t = np.prod(upsample_rates) | |
self.cond_net = torch.nn.ConvTranspose1d(80, 1, t * 2, stride=t, padding=t // 2) | |
c_in = 2 | |
norm_f = weight_norm if use_spectral_norm == False else spectral_norm | |
self.convs = nn.ModuleList([ | |
norm_f(Conv1d(c_in, 128, 15, 1, padding=7)), | |
norm_f(Conv1d(128, 128, 41, 2, groups=4, padding=20)), | |
norm_f(Conv1d(128, 256, 41, 2, groups=16, padding=20)), | |
norm_f(Conv1d(256, 512, 41, 4, groups=16, padding=20)), | |
norm_f(Conv1d(512, 1024, 41, 4, groups=16, padding=20)), | |
norm_f(Conv1d(1024, 1024, 41, 1, groups=16, padding=20)), | |
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)), | |
]) | |
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1)) | |
def forward(self, x, mel): | |
if self.use_cond: | |
x_mel = self.cond_net(mel) | |
x = torch.cat([x_mel, x], 1) | |
fmap = [] | |
for l in self.convs: | |
x = l(x) | |
x = F.leaky_relu(x, LRELU_SLOPE) | |
fmap.append(x) | |
x = self.conv_post(x) | |
fmap.append(x) | |
x = torch.flatten(x, 1, -1) | |
return x, fmap | |
class MultiScaleDiscriminator(torch.nn.Module): | |
def __init__(self, use_cond=False, c_in=1): | |
super(MultiScaleDiscriminator, self).__init__() | |
from utils.hparams import hparams | |
self.discriminators = nn.ModuleList([ | |
DiscriminatorS(use_spectral_norm=True, use_cond=use_cond, | |
upsample_rates=[4, 4, hparams['hop_size'] // 16], | |
c_in=c_in), | |
DiscriminatorS(use_cond=use_cond, | |
upsample_rates=[4, 4, hparams['hop_size'] // 32], | |
c_in=c_in), | |
DiscriminatorS(use_cond=use_cond, | |
upsample_rates=[4, 4, hparams['hop_size'] // 64], | |
c_in=c_in), | |
]) | |
self.meanpools = nn.ModuleList([ | |
AvgPool1d(4, 2, padding=1), | |
AvgPool1d(4, 2, padding=1) | |
]) | |
def forward(self, y, y_hat, mel=None): | |
y_d_rs = [] | |
y_d_gs = [] | |
fmap_rs = [] | |
fmap_gs = [] | |
for i, d in enumerate(self.discriminators): | |
if i != 0: | |
y = self.meanpools[i - 1](y) | |
y_hat = self.meanpools[i - 1](y_hat) | |
y_d_r, fmap_r = d(y, mel) | |
y_d_g, fmap_g = d(y_hat, mel) | |
y_d_rs.append(y_d_r) | |
fmap_rs.append(fmap_r) | |
y_d_gs.append(y_d_g) | |
fmap_gs.append(fmap_g) | |
return y_d_rs, y_d_gs, fmap_rs, fmap_gs | |
def feature_loss(fmap_r, fmap_g): | |
loss = 0 | |
for dr, dg in zip(fmap_r, fmap_g): | |
for rl, gl in zip(dr, dg): | |
loss += torch.mean(torch.abs(rl - gl)) | |
return loss * 2 | |
def discriminator_loss(disc_real_outputs, disc_generated_outputs): | |
r_losses = 0 | |
g_losses = 0 | |
for dr, dg in zip(disc_real_outputs, disc_generated_outputs): | |
r_loss = torch.mean((1 - dr) ** 2) | |
g_loss = torch.mean(dg ** 2) | |
r_losses += r_loss | |
g_losses += g_loss | |
r_losses = r_losses / len(disc_real_outputs) | |
g_losses = g_losses / len(disc_real_outputs) | |
return r_losses, g_losses | |
def cond_discriminator_loss(outputs): | |
loss = 0 | |
for dg in outputs: | |
g_loss = torch.mean(dg ** 2) | |
loss += g_loss | |
loss = loss / len(outputs) | |
return loss | |
def generator_loss(disc_outputs): | |
loss = 0 | |
for dg in disc_outputs: | |
l = torch.mean((1 - dg) ** 2) | |
loss += l | |
loss = loss / len(disc_outputs) | |
return loss | |