Spaces:
Sleeping
Sleeping
from datetime import datetime | |
import shutil | |
import matplotlib | |
matplotlib.use('Agg') | |
from utils.hparams import hparams, set_hparams | |
import random | |
import sys | |
import numpy as np | |
import torch.distributed as dist | |
from pytorch_lightning.loggers import TensorBoardLogger | |
from utils.pl_utils import LatestModelCheckpoint, BaseTrainer, data_loader, DDP | |
from torch import nn | |
import torch.utils.data | |
import utils | |
import logging | |
import os | |
torch.multiprocessing.set_sharing_strategy(os.getenv('TORCH_SHARE_STRATEGY', 'file_system')) | |
log_format = '%(asctime)s %(message)s' | |
logging.basicConfig(stream=sys.stdout, level=logging.INFO, | |
format=log_format, datefmt='%m/%d %I:%M:%S %p') | |
class BaseTask(nn.Module): | |
''' | |
Base class for training tasks. | |
1. *load_ckpt*: | |
load checkpoint; | |
2. *training_step*: | |
record and log the loss; | |
3. *optimizer_step*: | |
run backwards step; | |
4. *start*: | |
load training configs, backup code, log to tensorboard, start training; | |
5. *configure_ddp* and *init_ddp_connection*: | |
start parallel training. | |
Subclasses should define: | |
1. *build_model*, *build_optimizer*, *build_scheduler*: | |
how to build the model, the optimizer and the training scheduler; | |
2. *_training_step*: | |
one training step of the model; | |
3. *validation_end* and *_validation_end*: | |
postprocess the validation output. | |
''' | |
def __init__(self, *args, **kwargs): | |
# dataset configs | |
super(BaseTask, self).__init__(*args, **kwargs) | |
self.current_epoch = 0 | |
self.global_step = 0 | |
self.loaded_optimizer_states_dict = {} | |
self.trainer = None | |
self.logger = None | |
self.on_gpu = False | |
self.use_dp = False | |
self.use_ddp = False | |
self.example_input_array = None | |
self.max_tokens = hparams['max_tokens'] | |
self.max_sentences = hparams['max_sentences'] | |
self.max_eval_tokens = hparams['max_eval_tokens'] | |
if self.max_eval_tokens == -1: | |
hparams['max_eval_tokens'] = self.max_eval_tokens = self.max_tokens | |
self.max_eval_sentences = hparams['max_eval_sentences'] | |
if self.max_eval_sentences == -1: | |
hparams['max_eval_sentences'] = self.max_eval_sentences = self.max_sentences | |
self.model = None | |
self.training_losses_meter = None | |
########### | |
# Training, validation and testing | |
########### | |
def build_model(self): | |
raise NotImplementedError | |
def load_ckpt(self, ckpt_base_dir, current_model_name=None, model_name='model', force=True, strict=True): | |
# This function is updated on 2021.12.13 | |
if current_model_name is None: | |
current_model_name = model_name | |
utils.load_ckpt(self.__getattr__(current_model_name), ckpt_base_dir, current_model_name, force, strict) | |
def on_epoch_start(self): | |
self.training_losses_meter = {'total_loss': utils.AvgrageMeter()} | |
def _training_step(self, sample, batch_idx, optimizer_idx): | |
""" | |
:param sample: | |
:param batch_idx: | |
:return: total loss: torch.Tensor, loss_log: dict | |
""" | |
raise NotImplementedError | |
def training_step(self, sample, batch_idx, optimizer_idx=-1): | |
loss_ret = self._training_step(sample, batch_idx, optimizer_idx) | |
self.opt_idx = optimizer_idx | |
if loss_ret is None: | |
return {'loss': None} | |
total_loss, log_outputs = loss_ret | |
log_outputs = utils.tensors_to_scalars(log_outputs) | |
for k, v in log_outputs.items(): | |
if k not in self.training_losses_meter: | |
self.training_losses_meter[k] = utils.AvgrageMeter() | |
if not np.isnan(v): | |
self.training_losses_meter[k].update(v) | |
self.training_losses_meter['total_loss'].update(total_loss.item()) | |
try: | |
log_outputs['lr'] = self.scheduler.get_lr() | |
if isinstance(log_outputs['lr'], list): | |
log_outputs['lr'] = log_outputs['lr'][0] | |
except: | |
pass | |
# log_outputs['all_loss'] = total_loss.item() | |
progress_bar_log = log_outputs | |
tb_log = {f'tr/{k}': v for k, v in log_outputs.items()} | |
return { | |
'loss': total_loss, | |
'progress_bar': progress_bar_log, | |
'log': tb_log | |
} | |
def optimizer_step(self, epoch, batch_idx, optimizer, optimizer_idx): | |
optimizer.step() | |
optimizer.zero_grad() | |
if self.scheduler is not None: | |
self.scheduler.step(self.global_step // hparams['accumulate_grad_batches']) | |
def on_epoch_end(self): | |
loss_outputs = {k: round(v.avg, 4) for k, v in self.training_losses_meter.items()} | |
print(f"\n==============\n " | |
f"Epoch {self.current_epoch} ended. Steps: {self.global_step}. {loss_outputs}" | |
f"\n==============\n") | |
def validation_step(self, sample, batch_idx): | |
""" | |
:param sample: | |
:param batch_idx: | |
:return: output: dict | |
""" | |
raise NotImplementedError | |
def _validation_end(self, outputs): | |
""" | |
:param outputs: | |
:return: loss_output: dict | |
""" | |
raise NotImplementedError | |
def validation_end(self, outputs): | |
loss_output = self._validation_end(outputs) | |
print(f"\n==============\n " | |
f"valid results: {loss_output}" | |
f"\n==============\n") | |
return { | |
'log': {f'val/{k}': v for k, v in loss_output.items()}, | |
'val_loss': loss_output['total_loss'] | |
} | |
def build_scheduler(self, optimizer): | |
raise NotImplementedError | |
def build_optimizer(self, model): | |
raise NotImplementedError | |
def configure_optimizers(self): | |
optm = self.build_optimizer(self.model) | |
self.scheduler = self.build_scheduler(optm) | |
return [optm] | |
def test_start(self): | |
pass | |
def test_step(self, sample, batch_idx): | |
return self.validation_step(sample, batch_idx) | |
def test_end(self, outputs): | |
return self.validation_end(outputs) | |
########### | |
# Running configuration | |
########### | |
def start(cls): | |
set_hparams() | |
os.environ['MASTER_PORT'] = str(random.randint(15000, 30000)) | |
random.seed(hparams['seed']) | |
np.random.seed(hparams['seed']) | |
task = cls() | |
work_dir = hparams['work_dir'] | |
trainer = BaseTrainer(checkpoint_callback=LatestModelCheckpoint( | |
filepath=work_dir, | |
verbose=True, | |
monitor='val_loss', | |
mode='min', | |
num_ckpt_keep=hparams['num_ckpt_keep'], | |
save_best=hparams['save_best'], | |
period=1 if hparams['save_ckpt'] else 100000 | |
), | |
logger=TensorBoardLogger( | |
save_dir=work_dir, | |
name='lightning_logs', | |
version='lastest' | |
), | |
gradient_clip_val=hparams['clip_grad_norm'], | |
val_check_interval=hparams['val_check_interval'], | |
row_log_interval=hparams['log_interval'], | |
max_updates=hparams['max_updates'], | |
num_sanity_val_steps=hparams['num_sanity_val_steps'] if not hparams[ | |
'validate'] else 10000, | |
accumulate_grad_batches=hparams['accumulate_grad_batches']) | |
if not hparams['infer']: # train | |
# copy_code = input(f'{hparams["save_codes"]} code backup? y/n: ') == 'y' | |
# copy_code = True # backup code every time | |
# if copy_code: | |
# t = datetime.now().strftime('%Y%m%d%H%M%S') | |
# code_dir = f'{work_dir}/codes/{t}' | |
# # TODO: test filesystem calls | |
# os.makedirs(code_dir, exist_ok=True) | |
# # subprocess.check_call(f'mkdir "{code_dir}"', shell=True) | |
# for c in hparams['save_codes']: | |
# shutil.copytree(c, code_dir, dirs_exist_ok=True) | |
# # subprocess.check_call(f'xcopy "{c}" "{code_dir}/" /s /e /y', shell=True) | |
# print(f"| Copied codes to {code_dir}.") | |
trainer.checkpoint_callback.task = task | |
trainer.fit(task) | |
else: | |
trainer.test(task) | |
def configure_ddp(self, model, device_ids): | |
model = DDP( | |
model, | |
device_ids=device_ids, | |
find_unused_parameters=True | |
) | |
if dist.get_rank() != 0 and not hparams['debug']: | |
sys.stdout = open(os.devnull, "w") | |
sys.stderr = open(os.devnull, "w") | |
random.seed(hparams['seed']) | |
np.random.seed(hparams['seed']) | |
return model | |
def training_end(self, *args, **kwargs): | |
return None | |
def init_ddp_connection(self, proc_rank, world_size): | |
set_hparams(print_hparams=False) | |
# guarantees unique ports across jobs from same grid search | |
default_port = 12910 | |
# if user gave a port number, use that one instead | |
try: | |
default_port = os.environ['MASTER_PORT'] | |
except Exception: | |
os.environ['MASTER_PORT'] = str(default_port) | |
# figure out the root node addr | |
root_node = '127.0.0.2' | |
root_node = self.trainer.resolve_root_node_address(root_node) | |
os.environ['MASTER_ADDR'] = root_node | |
dist.init_process_group('nccl', rank=proc_rank, world_size=world_size) | |
def train_dataloader(self): | |
return None | |
def test_dataloader(self): | |
return None | |
def val_dataloader(self): | |
return None | |
def on_load_checkpoint(self, checkpoint): | |
pass | |
def on_save_checkpoint(self, checkpoint): | |
pass | |
def on_sanity_check_start(self): | |
pass | |
def on_train_start(self): | |
pass | |
def on_train_end(self): | |
pass | |
def on_batch_start(self, batch): | |
pass | |
def on_batch_end(self): | |
pass | |
def on_pre_performance_check(self): | |
pass | |
def on_post_performance_check(self): | |
pass | |
def on_before_zero_grad(self, optimizer): | |
pass | |
def on_after_backward(self): | |
pass | |
def backward(self, loss, optimizer): | |
loss.backward() | |
def grad_norm(self, norm_type): | |
results = {} | |
total_norm = 0 | |
for name, p in self.named_parameters(): | |
if p.requires_grad: | |
try: | |
param_norm = p.grad.data.norm(norm_type) | |
total_norm += param_norm ** norm_type | |
norm = param_norm ** (1 / norm_type) | |
grad = round(norm.data.cpu().numpy().flatten()[0], 3) | |
results['grad_{}_norm_{}'.format(norm_type, name)] = grad | |
except Exception: | |
# this param had no grad | |
pass | |
total_norm = total_norm ** (1. / norm_type) | |
grad = round(total_norm.data.cpu().numpy().flatten()[0], 3) | |
results['grad_{}_norm_total'.format(norm_type)] = grad | |
return results | |