Spaces:
Sleeping
Sleeping
import torch | |
import utils | |
from utils.hparams import hparams | |
from network.diff.net import DiffNet | |
from network.diff.diffusion import GaussianDiffusion, OfflineGaussianDiffusion | |
from training.task.fs2 import FastSpeech2Task | |
from network.vocoders.base_vocoder import get_vocoder_cls, BaseVocoder | |
from modules.fastspeech.tts_modules import mel2ph_to_dur | |
from network.diff.candidate_decoder import FFT | |
from utils.pitch_utils import denorm_f0 | |
from training.dataset.fs2_utils import FastSpeechDataset | |
import numpy as np | |
import os | |
import torch.nn.functional as F | |
DIFF_DECODERS = { | |
'wavenet': lambda hp: DiffNet(hp['audio_num_mel_bins']), | |
'fft': lambda hp: FFT( | |
hp['hidden_size'], hp['dec_layers'], hp['dec_ffn_kernel_size'], hp['num_heads']), | |
} | |
class SVCDataset(FastSpeechDataset): | |
def collater(self, samples): | |
from preprocessing.process_pipeline import File2Batch | |
return File2Batch.processed_input2batch(samples) | |
class SVCTask(FastSpeech2Task): | |
def __init__(self): | |
super(SVCTask, self).__init__() | |
self.dataset_cls = SVCDataset | |
self.vocoder: BaseVocoder = get_vocoder_cls(hparams)() | |
def build_tts_model(self): | |
# import torch | |
# from tqdm import tqdm | |
# v_min = torch.ones([80]) * 100 | |
# v_max = torch.ones([80]) * -100 | |
# for i, ds in enumerate(tqdm(self.dataset_cls('train'))): | |
# v_max = torch.max(torch.max(ds['mel'].reshape(-1, 80), 0)[0], v_max) | |
# v_min = torch.min(torch.min(ds['mel'].reshape(-1, 80), 0)[0], v_min) | |
# if i % 100 == 0: | |
# print(i, v_min, v_max) | |
# print('final', v_min, v_max) | |
mel_bins = hparams['audio_num_mel_bins'] | |
self.model = GaussianDiffusion( | |
phone_encoder=self.phone_encoder, | |
out_dims=mel_bins, denoise_fn=DIFF_DECODERS[hparams['diff_decoder_type']](hparams), | |
timesteps=hparams['timesteps'], | |
K_step=hparams['K_step'], | |
loss_type=hparams['diff_loss_type'], | |
spec_min=hparams['spec_min'], spec_max=hparams['spec_max'], | |
) | |
def build_optimizer(self, model): | |
self.optimizer = optimizer = torch.optim.AdamW( | |
filter(lambda p: p.requires_grad, model.parameters()), | |
lr=hparams['lr'], | |
betas=(hparams['optimizer_adam_beta1'], hparams['optimizer_adam_beta2']), | |
weight_decay=hparams['weight_decay']) | |
return optimizer | |
def run_model(self, model, sample, return_output=False, infer=False): | |
''' | |
steps: | |
1. run the full model, calc the main loss | |
2. calculate loss for dur_predictor, pitch_predictor, energy_predictor | |
''' | |
hubert = sample['hubert'] # [B, T_t,H] | |
target = sample['mels'] # [B, T_s, 80] | |
mel2ph = sample['mel2ph'] # [B, T_s] | |
f0 = sample['f0'] | |
uv = sample['uv'] | |
energy = sample['energy'] | |
spk_embed = sample.get('spk_embed') if not hparams['use_spk_id'] else sample.get('spk_ids') | |
if hparams['pitch_type'] == 'cwt': | |
# NOTE: this part of script is *isolated* from other scripts, which means | |
# it may not be compatible with the current version. | |
pass | |
# cwt_spec = sample[f'cwt_spec'] | |
# f0_mean = sample['f0_mean'] | |
# f0_std = sample['f0_std'] | |
# sample['f0_cwt'] = f0 = model.cwt2f0_norm(cwt_spec, f0_mean, f0_std, mel2ph) | |
# output == ret | |
# model == src.diff.diffusion.GaussianDiffusion | |
output = model(hubert, mel2ph=mel2ph, spk_embed=spk_embed, | |
ref_mels=target, f0=f0, uv=uv, energy=energy, infer=infer) | |
losses = {} | |
if 'diff_loss' in output: | |
losses['mel'] = output['diff_loss'] | |
#self.add_dur_loss(output['dur'], mel2ph, txt_tokens, sample['word_boundary'], losses=losses) | |
# if hparams['use_pitch_embed']: | |
# self.add_pitch_loss(output, sample, losses) | |
# if hparams['use_energy_embed']: | |
# self.add_energy_loss(output['energy_pred'], energy, losses) | |
if not return_output: | |
return losses | |
else: | |
return losses, output | |
def _training_step(self, sample, batch_idx, _): | |
log_outputs = self.run_model(self.model, sample) | |
total_loss = sum([v for v in log_outputs.values() if isinstance(v, torch.Tensor) and v.requires_grad]) | |
log_outputs['batch_size'] = sample['hubert'].size()[0] | |
log_outputs['lr'] = self.scheduler.get_lr()[0] | |
return total_loss, log_outputs | |
def build_scheduler(self, optimizer): | |
return torch.optim.lr_scheduler.StepLR(optimizer, hparams['decay_steps'], gamma=0.5) | |
def optimizer_step(self, epoch, batch_idx, optimizer, optimizer_idx): | |
if optimizer is None: | |
return | |
optimizer.step() | |
optimizer.zero_grad() | |
if self.scheduler is not None: | |
self.scheduler.step(self.global_step // hparams['accumulate_grad_batches']) | |
def validation_step(self, sample, batch_idx): | |
outputs = {} | |
hubert = sample['hubert'] # [B, T_t] | |
target = sample['mels'] # [B, T_s, 80] | |
energy = sample['energy'] | |
# fs2_mel = sample['fs2_mels'] | |
spk_embed = sample.get('spk_embed') if not hparams['use_spk_id'] else sample.get('spk_ids') | |
mel2ph = sample['mel2ph'] | |
outputs['losses'] = {} | |
outputs['losses'], model_out = self.run_model(self.model, sample, return_output=True, infer=False) | |
outputs['total_loss'] = sum(outputs['losses'].values()) | |
outputs['nsamples'] = sample['nsamples'] | |
outputs = utils.tensors_to_scalars(outputs) | |
if batch_idx < hparams['num_valid_plots']: | |
model_out = self.model( | |
hubert, spk_embed=spk_embed, mel2ph=mel2ph, f0=sample['f0'], uv=sample['uv'], energy=energy, ref_mels=None, infer=True | |
) | |
if hparams.get('pe_enable') is not None and hparams['pe_enable']: | |
gt_f0 = self.pe(sample['mels'])['f0_denorm_pred'] # pe predict from GT mel | |
pred_f0 = self.pe(model_out['mel_out'])['f0_denorm_pred'] # pe predict from Pred mel | |
else: | |
gt_f0 = denorm_f0(sample['f0'], sample['uv'], hparams) | |
pred_f0 = model_out.get('f0_denorm') | |
self.plot_wav(batch_idx, sample['mels'], model_out['mel_out'], is_mel=True, gt_f0=gt_f0, f0=pred_f0) | |
self.plot_mel(batch_idx, sample['mels'], model_out['mel_out'], name=f'diffmel_{batch_idx}') | |
#self.plot_mel(batch_idx, sample['mels'], model_out['fs2_mel'], name=f'fs2mel_{batch_idx}') | |
if hparams['use_pitch_embed']: | |
self.plot_pitch(batch_idx, sample, model_out) | |
return outputs | |
def add_dur_loss(self, dur_pred, mel2ph, txt_tokens, wdb, losses=None): | |
""" | |
the effect of each loss component: | |
hparams['dur_loss'] : align each phoneme | |
hparams['lambda_word_dur']: align each word | |
hparams['lambda_sent_dur']: align each sentence | |
:param dur_pred: [B, T], float, log scale | |
:param mel2ph: [B, T] | |
:param txt_tokens: [B, T] | |
:param losses: | |
:return: | |
""" | |
B, T = txt_tokens.shape | |
nonpadding = (txt_tokens != 0).float() | |
dur_gt = mel2ph_to_dur(mel2ph, T).float() * nonpadding | |
is_sil = torch.zeros_like(txt_tokens).bool() | |
for p in self.sil_ph: | |
is_sil = is_sil | (txt_tokens == self.phone_encoder.encode(p)[0]) | |
is_sil = is_sil.float() # [B, T_txt] | |
# phone duration loss | |
if hparams['dur_loss'] == 'mse': | |
losses['pdur'] = F.mse_loss(dur_pred, (dur_gt + 1).log(), reduction='none') | |
losses['pdur'] = (losses['pdur'] * nonpadding).sum() / nonpadding.sum() | |
losses['pdur'] = losses['pdur'] * hparams['lambda_ph_dur'] | |
dur_pred = (dur_pred.exp() - 1).clamp(min=0) | |
else: | |
raise NotImplementedError | |
# use linear scale for sent and word duration | |
if hparams['lambda_word_dur'] > 0: | |
#idx = F.pad(wdb.cumsum(axis=1), (1, 0))[:, :-1] | |
idx = wdb.cumsum(axis=1) | |
# word_dur_g = dur_gt.new_zeros([B, idx.max() + 1]).scatter_(1, idx, midi_dur) # midi_dur can be implied by add gt-ph_dur | |
word_dur_p = dur_pred.new_zeros([B, idx.max() + 1]).scatter_add(1, idx, dur_pred) | |
word_dur_g = dur_gt.new_zeros([B, idx.max() + 1]).scatter_add(1, idx, dur_gt) | |
wdur_loss = F.mse_loss((word_dur_p + 1).log(), (word_dur_g + 1).log(), reduction='none') | |
word_nonpadding = (word_dur_g > 0).float() | |
wdur_loss = (wdur_loss * word_nonpadding).sum() / word_nonpadding.sum() | |
losses['wdur'] = wdur_loss * hparams['lambda_word_dur'] | |
if hparams['lambda_sent_dur'] > 0: | |
sent_dur_p = dur_pred.sum(-1) | |
sent_dur_g = dur_gt.sum(-1) | |
sdur_loss = F.mse_loss((sent_dur_p + 1).log(), (sent_dur_g + 1).log(), reduction='mean') | |
losses['sdur'] = sdur_loss.mean() * hparams['lambda_sent_dur'] | |
############ | |
# validation plots | |
############ | |
def plot_wav(self, batch_idx, gt_wav, wav_out, is_mel=False, gt_f0=None, f0=None, name=None): | |
gt_wav = gt_wav[0].cpu().numpy() | |
wav_out = wav_out[0].cpu().numpy() | |
gt_f0 = gt_f0[0].cpu().numpy() | |
f0 = f0[0].cpu().numpy() | |
if is_mel: | |
gt_wav = self.vocoder.spec2wav(gt_wav, f0=gt_f0) | |
wav_out = self.vocoder.spec2wav(wav_out, f0=f0) | |
self.logger.experiment.add_audio(f'gt_{batch_idx}', gt_wav, sample_rate=hparams['audio_sample_rate'], global_step=self.global_step) | |
self.logger.experiment.add_audio(f'wav_{batch_idx}', wav_out, sample_rate=hparams['audio_sample_rate'], global_step=self.global_step) | |