Spaces:
Sleeping
Sleeping
File size: 5,594 Bytes
79f7f06 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
from modules.commons.common_layers import *
from utils.hparams import hparams
from modules.fastspeech.tts_modules import PitchPredictor
from utils.pitch_utils import denorm_f0
class Prenet(nn.Module):
def __init__(self, in_dim=80, out_dim=256, kernel=5, n_layers=3, strides=None):
super(Prenet, self).__init__()
padding = kernel // 2
self.layers = []
self.strides = strides if strides is not None else [1] * n_layers
for l in range(n_layers):
self.layers.append(nn.Sequential(
nn.Conv1d(in_dim, out_dim, kernel_size=kernel, padding=padding, stride=self.strides[l]),
nn.ReLU(),
nn.BatchNorm1d(out_dim)
))
in_dim = out_dim
self.layers = nn.ModuleList(self.layers)
self.out_proj = nn.Linear(out_dim, out_dim)
def forward(self, x):
"""
:param x: [B, T, 80]
:return: [L, B, T, H], [B, T, H]
"""
# padding_mask = x.abs().sum(-1).eq(0).data # [B, T]
padding_mask = x.abs().sum(-1).eq(0).detach()
nonpadding_mask_TB = 1 - padding_mask.float()[:, None, :] # [B, 1, T]
x = x.transpose(1, 2)
hiddens = []
for i, l in enumerate(self.layers):
nonpadding_mask_TB = nonpadding_mask_TB[:, :, ::self.strides[i]]
x = l(x) * nonpadding_mask_TB
hiddens.append(x)
hiddens = torch.stack(hiddens, 0) # [L, B, H, T]
hiddens = hiddens.transpose(2, 3) # [L, B, T, H]
x = self.out_proj(x.transpose(1, 2)) # [B, T, H]
x = x * nonpadding_mask_TB.transpose(1, 2)
return hiddens, x
class ConvBlock(nn.Module):
def __init__(self, idim=80, n_chans=256, kernel_size=3, stride=1, norm='gn', dropout=0):
super().__init__()
self.conv = ConvNorm(idim, n_chans, kernel_size, stride=stride)
self.norm = norm
if self.norm == 'bn':
self.norm = nn.BatchNorm1d(n_chans)
elif self.norm == 'in':
self.norm = nn.InstanceNorm1d(n_chans, affine=True)
elif self.norm == 'gn':
self.norm = nn.GroupNorm(n_chans // 16, n_chans)
elif self.norm == 'ln':
self.norm = LayerNorm(n_chans // 16, n_chans)
elif self.norm == 'wn':
self.conv = torch.nn.utils.weight_norm(self.conv.conv)
self.dropout = nn.Dropout(dropout)
self.relu = nn.ReLU()
def forward(self, x):
"""
:param x: [B, C, T]
:return: [B, C, T]
"""
x = self.conv(x)
if not isinstance(self.norm, str):
if self.norm == 'none':
pass
elif self.norm == 'ln':
x = self.norm(x.transpose(1, 2)).transpose(1, 2)
else:
x = self.norm(x)
x = self.relu(x)
x = self.dropout(x)
return x
class ConvStacks(nn.Module):
def __init__(self, idim=80, n_layers=5, n_chans=256, odim=32, kernel_size=5, norm='gn',
dropout=0, strides=None, res=True):
super().__init__()
self.conv = torch.nn.ModuleList()
self.kernel_size = kernel_size
self.res = res
self.in_proj = Linear(idim, n_chans)
if strides is None:
strides = [1] * n_layers
else:
assert len(strides) == n_layers
for idx in range(n_layers):
self.conv.append(ConvBlock(
n_chans, n_chans, kernel_size, stride=strides[idx], norm=norm, dropout=dropout))
self.out_proj = Linear(n_chans, odim)
def forward(self, x, return_hiddens=False):
"""
:param x: [B, T, H]
:return: [B, T, H]
"""
x = self.in_proj(x)
x = x.transpose(1, -1) # (B, idim, Tmax)
hiddens = []
for f in self.conv:
x_ = f(x)
x = x + x_ if self.res else x_ # (B, C, Tmax)
hiddens.append(x)
x = x.transpose(1, -1)
x = self.out_proj(x) # (B, Tmax, H)
if return_hiddens:
hiddens = torch.stack(hiddens, 1) # [B, L, C, T]
return x, hiddens
return x
class PitchExtractor(nn.Module):
def __init__(self, n_mel_bins=80, conv_layers=2):
super().__init__()
self.hidden_size = hparams['hidden_size']
self.predictor_hidden = hparams['predictor_hidden'] if hparams['predictor_hidden'] > 0 else self.hidden_size
self.conv_layers = conv_layers
self.mel_prenet = Prenet(n_mel_bins, self.hidden_size, strides=[1, 1, 1])
if self.conv_layers > 0:
self.mel_encoder = ConvStacks(
idim=self.hidden_size, n_chans=self.hidden_size, odim=self.hidden_size, n_layers=self.conv_layers)
self.pitch_predictor = PitchPredictor(
self.hidden_size, n_chans=self.predictor_hidden,
n_layers=5, dropout_rate=0.1, odim=2,
padding=hparams['ffn_padding'], kernel_size=hparams['predictor_kernel'])
def forward(self, mel_input=None):
ret = {}
mel_hidden = self.mel_prenet(mel_input)[1]
if self.conv_layers > 0:
mel_hidden = self.mel_encoder(mel_hidden)
ret['pitch_pred'] = pitch_pred = self.pitch_predictor(mel_hidden)
pitch_padding = mel_input.abs().sum(-1) == 0
use_uv = hparams['pitch_type'] == 'frame' #and hparams['use_uv']
ret['f0_denorm_pred'] = denorm_f0(
pitch_pred[:, :, 0], (pitch_pred[:, :, 1] > 0) if use_uv else None,
hparams, pitch_padding=pitch_padding)
return ret |