apolinario's picture
upload clipseg
48fa639
raw
history blame
5.01 kB
from os.path import expanduser
import torch
import json
from general_utils import get_from_repository
from datasets.lvis_oneshot3 import blend_image_segmentation
from general_utils import log
PASCAL_CLASSES = {a['id']: a['synonyms'] for a in json.load(open('datasets/pascal_classes.json'))}
class PFEPascalWrapper(object):
def __init__(self, mode, split, mask='separate', image_size=473, label_support=None, size=None, p_negative=0, aug=None):
import sys
# sys.path.append(expanduser('~/projects/new_one_shot'))
from third_party.PFENet.util.dataset import SemData
get_from_repository('PascalVOC2012', ['Pascal5i.tar'])
self.p_negative = p_negative
self.size = size
self.mode = mode
self.image_size = image_size
if label_support in {True, False}:
log.warning('label_support argument is deprecated. Use mask instead.')
#raise ValueError()
self.mask = mask
value_scale = 255
mean = [0.485, 0.456, 0.406]
mean = [item * value_scale for item in mean]
std = [0.229, 0.224, 0.225]
std = [item * value_scale for item in std]
import third_party.PFENet.util.transform as transform
if mode == 'val':
data_list = expanduser('~/projects/old_one_shot/PFENet/lists/pascal/val.txt')
data_transform = [transform.test_Resize(size=image_size)] if image_size != 'original' else []
data_transform += [
transform.ToTensor(),
transform.Normalize(mean=mean, std=std)
]
elif mode == 'train':
data_list = expanduser('~/projects/old_one_shot/PFENet/lists/pascal/voc_sbd_merge_noduplicate.txt')
assert image_size != 'original'
data_transform = [
transform.RandScale([0.9, 1.1]),
transform.RandRotate([-10, 10], padding=mean, ignore_label=255),
transform.RandomGaussianBlur(),
transform.RandomHorizontalFlip(),
transform.Crop((image_size, image_size), crop_type='rand', padding=mean, ignore_label=255),
transform.ToTensor(),
transform.Normalize(mean=mean, std=std)
]
data_transform = transform.Compose(data_transform)
self.dataset = SemData(split=split, mode=mode, data_root=expanduser('~/datasets/PascalVOC2012/VOC2012'),
data_list=data_list, shot=1, transform=data_transform, use_coco=False, use_split_coco=False)
self.class_list = self.dataset.sub_val_list if mode == 'val' else self.dataset.sub_list
# verify that subcls_list always has length 1
# assert len(set([len(d[4]) for d in self.dataset])) == 1
print('actual length', len(self.dataset.data_list))
def __len__(self):
if self.mode == 'val':
return len(self.dataset.data_list)
else:
return len(self.dataset.data_list)
def __getitem__(self, index):
if self.dataset.mode == 'train':
image, label, s_x, s_y, subcls_list = self.dataset[index % len(self.dataset.data_list)]
elif self.dataset.mode == 'val':
image, label, s_x, s_y, subcls_list, ori_label = self.dataset[index % len(self.dataset.data_list)]
ori_label = torch.from_numpy(ori_label).unsqueeze(0)
if self.image_size != 'original':
longerside = max(ori_label.size(1), ori_label.size(2))
backmask = torch.ones(ori_label.size(0), longerside, longerside).cuda()*255
backmask[0, :ori_label.size(1), :ori_label.size(2)] = ori_label
label = backmask.clone().long()
else:
label = label.unsqueeze(0)
# assert label.shape == (473, 473)
if self.p_negative > 0:
if torch.rand(1).item() < self.p_negative:
while True:
idx = torch.randint(0, len(self.dataset.data_list), (1,)).item()
_, _, s_x, s_y, subcls_list_tmp, _ = self.dataset[idx]
if subcls_list[0] != subcls_list_tmp[0]:
break
s_x = s_x[0]
s_y = (s_y == 1)[0]
label_fg = (label == 1).float()
val_mask = (label != 255).float()
class_id = self.class_list[subcls_list[0]]
label_name = PASCAL_CLASSES[class_id][0]
label_add = ()
mask = self.mask
if mask == 'text':
support = ('a photo of a ' + label_name + '.',)
elif mask == 'separate':
support = (s_x, s_y)
else:
if mask.startswith('text_and_'):
label_add = (label_name,)
mask = mask[9:]
support = (blend_image_segmentation(s_x, s_y.float(), mask)[0],)
return (image,) + label_add + support, (label_fg.unsqueeze(0), val_mask.unsqueeze(0), subcls_list[0])