Spaces:
Runtime error
Runtime error
import json | |
import inspect | |
import torch | |
import os | |
import sys | |
import yaml | |
from shutil import copy, copytree | |
from os.path import join, dirname, realpath, expanduser, isfile, isdir, basename | |
class Logger(object): | |
def __getattr__(self, k): | |
return print | |
log = Logger() | |
def training_config_from_cli_args(): | |
experiment_name = sys.argv[1] | |
experiment_id = int(sys.argv[2]) | |
yaml_config = yaml.load(open(f'experiments/{experiment_name}'), Loader=yaml.SafeLoader) | |
config = yaml_config['configuration'] | |
config = {**config, **yaml_config['individual_configurations'][experiment_id]} | |
config = AttributeDict(config) | |
return config | |
def score_config_from_cli_args(): | |
experiment_name = sys.argv[1] | |
experiment_id = int(sys.argv[2]) | |
yaml_config = yaml.load(open(f'experiments/{experiment_name}'), Loader=yaml.SafeLoader) | |
config = yaml_config['test_configuration_common'] | |
if type(yaml_config['test_configuration']) == list: | |
test_id = int(sys.argv[3]) | |
config = {**config, **yaml_config['test_configuration'][test_id]} | |
else: | |
config = {**config, **yaml_config['test_configuration']} | |
if 'test_configuration' in yaml_config['individual_configurations'][experiment_id]: | |
config = {**config, **yaml_config['individual_configurations'][experiment_id]['test_configuration']} | |
train_checkpoint_id = yaml_config['individual_configurations'][experiment_id]['name'] | |
config = AttributeDict(config) | |
return config, train_checkpoint_id | |
def get_from_repository(local_name, repo_files, integrity_check=None, repo_dir='~/dataset_repository', | |
local_dir='~/datasets'): | |
""" copies files from repository to local folder. | |
repo_files: list of filenames or list of tuples [filename, target path] | |
e.g. get_from_repository('MyDataset', [['data/dataset1.tar', 'other/path/ds03.tar']) | |
will create a folder 'MyDataset' in local_dir, and extract the content of | |
'<repo_dir>/data/dataset1.tar' to <local_dir>/MyDataset/other/path. | |
""" | |
local_dir = realpath(join(expanduser(local_dir), local_name)) | |
dataset_exists = True | |
# check if folder is available | |
if not isdir(local_dir): | |
dataset_exists = False | |
if integrity_check is not None: | |
try: | |
integrity_ok = integrity_check(local_dir) | |
except BaseException: | |
integrity_ok = False | |
if integrity_ok: | |
log.hint('Passed custom integrity check') | |
else: | |
log.hint('Custom integrity check failed') | |
dataset_exists = dataset_exists and integrity_ok | |
if not dataset_exists: | |
repo_dir = realpath(expanduser(repo_dir)) | |
for i, filename in enumerate(repo_files): | |
if type(filename) == str: | |
origin, target = filename, filename | |
archive_target = join(local_dir, basename(origin)) | |
extract_target = join(local_dir) | |
else: | |
origin, target = filename | |
archive_target = join(local_dir, dirname(target), basename(origin)) | |
extract_target = join(local_dir, dirname(target)) | |
archive_origin = join(repo_dir, origin) | |
log.hint(f'copy: {archive_origin} to {archive_target}') | |
# make sure the path exists | |
os.makedirs(dirname(archive_target), exist_ok=True) | |
if os.path.isfile(archive_target): | |
# only copy if size differs | |
if os.path.getsize(archive_target) != os.path.getsize(archive_origin): | |
log.hint(f'file exists but filesize differs: target {os.path.getsize(archive_target)} vs. origin {os.path.getsize(archive_origin)}') | |
copy(archive_origin, archive_target) | |
else: | |
copy(archive_origin, archive_target) | |
extract_archive(archive_target, extract_target, noarchive_ok=True) | |
# concurrent processes might have deleted the file | |
if os.path.isfile(archive_target): | |
os.remove(archive_target) | |
def extract_archive(filename, target_folder=None, noarchive_ok=False): | |
from subprocess import run, PIPE | |
if filename.endswith('.tgz') or filename.endswith('.tar'): | |
command = f'tar -xf {filename}' | |
command += f' -C {target_folder}' if target_folder is not None else '' | |
elif filename.endswith('.tar.gz'): | |
command = f'tar -xzf {filename}' | |
command += f' -C {target_folder}' if target_folder is not None else '' | |
elif filename.endswith('zip'): | |
command = f'unzip {filename}' | |
command += f' -d {target_folder}' if target_folder is not None else '' | |
else: | |
if noarchive_ok: | |
return | |
else: | |
raise ValueError(f'unsuppored file ending of {filename}') | |
log.hint(command) | |
result = run(command.split(), stdout=PIPE, stderr=PIPE) | |
if result.returncode != 0: | |
print(result.stdout, result.stderr) | |
class AttributeDict(dict): | |
""" | |
An extended dictionary that allows access to elements as atttributes and counts | |
these accesses. This way, we know if some attributes were never used. | |
""" | |
def __init__(self, *args, **kwargs): | |
from collections import Counter | |
super().__init__(*args, **kwargs) | |
self.__dict__['counter'] = Counter() | |
def __getitem__(self, k): | |
self.__dict__['counter'][k] += 1 | |
return super().__getitem__(k) | |
def __getattr__(self, k): | |
self.__dict__['counter'][k] += 1 | |
return super().get(k) | |
def __setattr__(self, k, v): | |
return super().__setitem__(k, v) | |
def __delattr__(self, k, v): | |
return super().__delitem__(k, v) | |
def unused_keys(self, exceptions=()): | |
return [k for k in super().keys() if self.__dict__['counter'][k] == 0 and k not in exceptions] | |
def assume_no_unused_keys(self, exceptions=()): | |
if len(self.unused_keys(exceptions=exceptions)) > 0: | |
log.warning('Unused keys:', self.unused_keys(exceptions=exceptions)) | |
def get_attribute(name): | |
import importlib | |
if name is None: | |
raise ValueError('The provided attribute is None') | |
name_split = name.split('.') | |
mod = importlib.import_module('.'.join(name_split[:-1])) | |
return getattr(mod, name_split[-1]) | |
def filter_args(input_args, default_args): | |
updated_args = {k: input_args[k] if k in input_args else v for k, v in default_args.items()} | |
used_args = {k: v for k, v in input_args.items() if k in default_args} | |
unused_args = {k: v for k, v in input_args.items() if k not in default_args} | |
return AttributeDict(updated_args), AttributeDict(used_args), AttributeDict(unused_args) | |
def load_model(checkpoint_id, weights_file=None, strict=True, model_args='from_config', with_config=False): | |
config = json.load(open(join('logs', checkpoint_id, 'config.json'))) | |
if model_args != 'from_config' and type(model_args) != dict: | |
raise ValueError('model_args must either be "from_config" or a dictionary of values') | |
model_cls = get_attribute(config['model']) | |
# load model | |
if model_args == 'from_config': | |
_, model_args, _ = filter_args(config, inspect.signature(model_cls).parameters) | |
model = model_cls(**model_args) | |
if weights_file is None: | |
weights_file = realpath(join('logs', checkpoint_id, 'weights.pth')) | |
else: | |
weights_file = realpath(join('logs', checkpoint_id, weights_file)) | |
if isfile(weights_file): | |
weights = torch.load(weights_file) | |
for _, w in weights.items(): | |
assert not torch.any(torch.isnan(w)), 'weights contain NaNs' | |
model.load_state_dict(weights, strict=strict) | |
else: | |
raise FileNotFoundError(f'model checkpoint {weights_file} was not found') | |
if with_config: | |
return model, config | |
return model | |
class TrainingLogger(object): | |
def __init__(self, model, log_dir, config=None, *args): | |
super().__init__() | |
self.model = model | |
self.base_path = join(f'logs/{log_dir}') if log_dir is not None else None | |
os.makedirs('logs/', exist_ok=True) | |
os.makedirs(self.base_path, exist_ok=True) | |
if config is not None: | |
json.dump(config, open(join(self.base_path, 'config.json'), 'w')) | |
def iter(self, i, **kwargs): | |
if i % 100 == 0 and 'loss' in kwargs: | |
loss = kwargs['loss'] | |
print(f'iteration {i}: loss {loss:.4f}') | |
def save_weights(self, only_trainable=False, weight_file='weights.pth'): | |
if self.model is None: | |
raise AttributeError('You need to provide a model reference when initializing TrainingTracker to save weights.') | |
weights_path = join(self.base_path, weight_file) | |
weight_dict = self.model.state_dict() | |
if only_trainable: | |
weight_dict = {n: weight_dict[n] for n, p in self.model.named_parameters() if p.requires_grad} | |
torch.save(weight_dict, weights_path) | |
log.info(f'Saved weights to {weights_path}') | |
def __enter__(self): | |
return self | |
def __exit__(self, type, value, traceback): | |
""" automatically stop processes if used in a context manager """ | |
pass |