Spaces:
Runtime error
Runtime error
wzhouxiff
commited on
Commit
•
2890711
0
Parent(s):
init
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +39 -0
- .gitignore +5 -0
- README.md +13 -0
- app.py +861 -0
- configs/inference/config_motionctrl_cmcm.yaml +169 -0
- configs/inference/motionctrl_run.sh +36 -0
- examples/camera_poses/test.txt +42 -0
- examples/camera_poses/test_camera_018f7907401f2fef.json +1 -0
- examples/camera_poses/test_camera_088b93f15ca8745d.json +1 -0
- examples/camera_poses/test_camera_1424acd0007d40b5.json +1 -0
- examples/camera_poses/test_camera_D.json +226 -0
- examples/camera_poses/test_camera_I.json +226 -0
- examples/camera_poses/test_camera_I_0.2x.json +226 -0
- examples/camera_poses/test_camera_I_0.4x.json +226 -0
- examples/camera_poses/test_camera_I_1.0x.json +226 -0
- examples/camera_poses/test_camera_I_2.0x.json +226 -0
- examples/camera_poses/test_camera_L.json +226 -0
- examples/camera_poses/test_camera_O.json +226 -0
- examples/camera_poses/test_camera_O_0.2x.json +226 -0
- examples/camera_poses/test_camera_O_0.4x.json +226 -0
- examples/camera_poses/test_camera_O_1.0x.json +226 -0
- examples/camera_poses/test_camera_O_2.0x.json +226 -0
- examples/camera_poses/test_camera_R.json +226 -0
- examples/camera_poses/test_camera_Round-RI-120.json +226 -0
- examples/camera_poses/test_camera_Round-RI.json +226 -0
- examples/camera_poses/test_camera_Round-RI_90.json +226 -0
- examples/camera_poses/test_camera_Round-ZoomIn.json +226 -0
- examples/camera_poses/test_camera_SPIN-ACW-60.json +226 -0
- examples/camera_poses/test_camera_SPIN-CW-60.json +226 -0
- examples/camera_poses/test_camera_U.json +226 -0
- examples/camera_poses/test_camera_b133a504fc90a2d1.json +1 -0
- examples/camera_poses/test_camera_d9642c8efc01481d.json +1 -0
- examples/camera_poses/test_camera_d971457c81bca597.json +1 -0
- gradio_utils/__pycache__/camera_utils.cpython-310.pyc +0 -0
- gradio_utils/__pycache__/flow_utils.cpython-310.pyc +0 -0
- gradio_utils/__pycache__/motionctrl_cmcm_gradio.cpython-310.pyc +0 -0
- gradio_utils/__pycache__/traj_utils.cpython-310.pyc +0 -0
- gradio_utils/__pycache__/utils.cpython-310.pyc +0 -0
- gradio_utils/camera_utils.py +157 -0
- gradio_utils/flow_utils.py +69 -0
- gradio_utils/motionctrl_cmcm_gradio.py +276 -0
- gradio_utils/traj_utils.py +104 -0
- gradio_utils/utils.py +175 -0
- main.py +943 -0
- main/inference/motionctrl_cmcm.py +416 -0
- pytest.ini +3 -0
- requirements.txt +32 -0
- scripts/__init__.py +0 -0
- scripts/demo/__init__.py +0 -0
- scripts/demo/detect.py +156 -0
.gitattributes
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
*.gif filter=lfs diff=lfs merge=lfs -text
|
37 |
+
*.jpeg filter=lfs diff=lfs merge=lfs -text
|
38 |
+
*.jpg filter=lfs diff=lfs merge=lfs -text
|
39 |
+
*.png filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.vscode/
|
2 |
+
.DS_Store
|
3 |
+
*.gif
|
4 |
+
*.png
|
5 |
+
*.jpg
|
README.md
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: MotionCtrl SVD
|
3 |
+
emoji: 📉
|
4 |
+
colorFrom: yellow
|
5 |
+
colorTo: indigo
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 3.37.0
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
license: apache-2.0
|
11 |
+
---
|
12 |
+
|
13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,861 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import os
|
3 |
+
import tempfile
|
4 |
+
|
5 |
+
import gradio as gr
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
from glob import glob
|
9 |
+
from torchvision.transforms import CenterCrop, Compose, Resize
|
10 |
+
|
11 |
+
from gradio_utils.camera_utils import CAMERA_MOTION_MODE, process_camera, create_relative
|
12 |
+
|
13 |
+
from gradio_utils.utils import vis_camera
|
14 |
+
from gradio_utils.motionctrl_cmcm_gradio import build_model, motionctrl_sample
|
15 |
+
|
16 |
+
os.environ['KMP_DUPLICATE_LIB_OK']='True'
|
17 |
+
SPACE_ID = os.environ.get('SPACE_ID', '')
|
18 |
+
|
19 |
+
|
20 |
+
#### Description ####
|
21 |
+
title = r"""<h1 align="center">MotionCtrl: A Unified and Flexible Motion Controller for Video Generation</h1>"""
|
22 |
+
subtitle = r"""<h2 align="center">Deployed on SVD Generation</h2>"""
|
23 |
+
|
24 |
+
description = r"""
|
25 |
+
<b>Official Gradio demo</b> for <a href='https://github.com/TencentARC/MotionCtrl' target='_blank'><b>MotionCtrl: A Unified and Flexible Motion Controller for Video Generation</b></a>.<br>
|
26 |
+
🔥 MotionCtrl is capable of independently and flexibly controling the camera motion and object motion of a generated video, with only a unified model.<br>
|
27 |
+
🤗 Try to control the motion of the generated videos yourself!<br>
|
28 |
+
❗❗❗ Please note **ONLY** Camera Motion Control in the current version of **MotionCtrl** deployed on **SVD** is avaliable.<br>
|
29 |
+
"""
|
30 |
+
# <div>
|
31 |
+
# <img src="https://raw.githubusercontent.com/TencentARC/MotionCtrl/main/assets/svd/00_ibzz5-dxv2h.gif", width="300">
|
32 |
+
# <img src="https://raw.githubusercontent.com/TencentARC/MotionCtrl/main/assets/svd/01_5guvn-0x6v2.gif", width="300">
|
33 |
+
# <img src="https://raw.githubusercontent.com/TencentARC/MotionCtrl/main/assets/svd/12_sn7bz-0hcaf.gif", width="300">
|
34 |
+
# <img src="https://raw.githubusercontent.com/TencentARC/MotionCtrl/main/assets/svd/13_3lyco-4ru8j.gif", width="300">
|
35 |
+
# </div>
|
36 |
+
article = r"""
|
37 |
+
If MotionCtrl is helpful, please help to ⭐ the <a href='https://github.com/TencentARC/MotionCtrl' target='_blank'>Github Repo</a>. Thanks!
|
38 |
+
[![GitHub Stars](https://img.shields.io/github/stars/TencentARC%2FMotionCtrl
|
39 |
+
)](https://github.com/TencentARC/MotionCtrl)
|
40 |
+
|
41 |
+
---
|
42 |
+
|
43 |
+
📝 **Citation**
|
44 |
+
<br>
|
45 |
+
If our work is useful for your research, please consider citing:
|
46 |
+
```bibtex
|
47 |
+
@inproceedings{wang2023motionctrl,
|
48 |
+
title={MotionCtrl: A Unified and Flexible Motion Controller for Video Generation},
|
49 |
+
author={Wang, Zhouxia and Yuan, Ziyang and Wang, Xintao and Chen, Tianshui and Xia, Menghan and Luo, Ping and Shan, Yin},
|
50 |
+
booktitle={arXiv preprint arXiv:2312.03641},
|
51 |
+
year={2023}
|
52 |
+
}
|
53 |
+
```
|
54 |
+
|
55 |
+
📧 **Contact**
|
56 |
+
<br>
|
57 |
+
If you have any questions, please feel free to reach me out at <b>[email protected]</b>.
|
58 |
+
|
59 |
+
"""
|
60 |
+
css = """
|
61 |
+
.gradio-container {width: 85% !important}
|
62 |
+
.gr-monochrome-group {border-radius: 5px !important; border: revert-layer !important; border-width: 2px !important; color: black !important;}
|
63 |
+
span.svelte-s1r2yt {font-size: 17px !important; font-weight: bold !important; color: #d30f2f !important;}
|
64 |
+
button {border-radius: 8px !important;}
|
65 |
+
.add_button {background-color: #4CAF50 !important;}
|
66 |
+
.remove_button {background-color: #f44336 !important;}
|
67 |
+
.clear_button {background-color: gray !important;}
|
68 |
+
.mask_button_group {gap: 10px !important;}
|
69 |
+
.video {height: 300px !important;}
|
70 |
+
.image {height: 300px !important;}
|
71 |
+
.video .wrap.svelte-lcpz3o {display: flex !important; align-items: center !important; justify-content: center !important;}
|
72 |
+
.video .wrap.svelte-lcpz3o > :first-child {height: 100% !important;}
|
73 |
+
.margin_center {width: 50% !important; margin: auto !important;}
|
74 |
+
.jc_center {justify-content: center !important;}
|
75 |
+
"""
|
76 |
+
|
77 |
+
|
78 |
+
T_base = [
|
79 |
+
[1.,0.,0.], ## W2C x 的正方向: 相机朝左 left
|
80 |
+
[-1.,0.,0.], ## W2C x 的负方向: 相机朝右 right
|
81 |
+
[0., 1., 0.], ## W2C y 的正方向: 相机朝上 up
|
82 |
+
[0.,-1.,0.], ## W2C y 的负方向: 相机朝下 down
|
83 |
+
[0.,0.,1.], ## W2C z 的正方向: 相机往前 zoom out
|
84 |
+
[0.,0.,-1.], ## W2C z 的负方向: 相机往前 zoom in
|
85 |
+
]
|
86 |
+
radius = 1
|
87 |
+
n = 16
|
88 |
+
# step =
|
89 |
+
look_at = np.array([0, 0, 0.8]).reshape(3,1)
|
90 |
+
# look_at = np.array([0, 0, 0.2]).reshape(3,1)
|
91 |
+
|
92 |
+
T_list = []
|
93 |
+
base_R = np.array([[1., 0., 0.],
|
94 |
+
[0., 1., 0.],
|
95 |
+
[0., 0., 1.]])
|
96 |
+
res = []
|
97 |
+
res_forsave = []
|
98 |
+
T_range = 1.8
|
99 |
+
|
100 |
+
|
101 |
+
|
102 |
+
for i in range(0, 16):
|
103 |
+
# theta = (1)*np.pi*i/n
|
104 |
+
|
105 |
+
R = base_R[:,:3]
|
106 |
+
T = np.array([0.,0.,1.]).reshape(3,1) * (i/n)*2
|
107 |
+
RT = np.concatenate([R,T], axis=1)
|
108 |
+
res.append(RT)
|
109 |
+
|
110 |
+
fig = vis_camera(res)
|
111 |
+
|
112 |
+
# MODE = ["camera motion control", "object motion control", "camera + object motion control"]
|
113 |
+
MODE = ["control camera poses", "control object trajectory", "control both camera and object motion"]
|
114 |
+
RESIZE_MODE = ['Center Crop To 576x1024', 'Keep original spatial ratio']
|
115 |
+
DIY_MODE = ['Customized Mode 1: First A then B',
|
116 |
+
'Customized Mode 2: Both A and B',
|
117 |
+
'Customized Mode 3: RAW Camera Poses']
|
118 |
+
|
119 |
+
## load default model
|
120 |
+
num_frames = 14
|
121 |
+
num_steps = 25
|
122 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
123 |
+
print(f"Using device {device}")
|
124 |
+
|
125 |
+
config = "configs/inference/config_motionctrl_cmcm.yaml"
|
126 |
+
ckpt='checkpoints/motionctrl_svd.ckpt'
|
127 |
+
if not os.path.exists(ckpt):
|
128 |
+
os.system(f'wget https://huggingface.co/TencentARC/MotionCtrl/resolve/main/motionctrl_svd.ckpt?download=true -P .')
|
129 |
+
os.system(f'mkdir checkpoints')
|
130 |
+
os.system(f'mv motionctrl_svd.ckpt?download=true {ckpt}')
|
131 |
+
model = build_model(config, ckpt, device, num_frames, num_steps)
|
132 |
+
width, height = 1024, 576
|
133 |
+
|
134 |
+
traj_list = []
|
135 |
+
camera_dict = {
|
136 |
+
"motion":[],
|
137 |
+
"mode": "Customized Mode 1: First A then B", # "First A then B", "Both A and B", "Custom"
|
138 |
+
"speed": 1.0,
|
139 |
+
"complex": None
|
140 |
+
}
|
141 |
+
|
142 |
+
def fn_vis_camera(camera_args):
|
143 |
+
global camera_dict, num_frames, width, height
|
144 |
+
RT = process_camera(camera_dict, camera_args, num_frames=num_frames, width=width, height=height) # [t, 3, 4]
|
145 |
+
|
146 |
+
rescale_T = 1.0
|
147 |
+
rescale_T = max(rescale_T, np.max(np.abs(RT[:,:,-1])) / 1.9)
|
148 |
+
|
149 |
+
fig = vis_camera(create_relative(RT), rescale_T=rescale_T)
|
150 |
+
|
151 |
+
vis_step3_prompt_generate = True
|
152 |
+
vis_generation_dec = True
|
153 |
+
vis_prompt = True
|
154 |
+
vis_num_samples = True
|
155 |
+
vis_seed = True
|
156 |
+
vis_start = True
|
157 |
+
vis_gen_video = True
|
158 |
+
vis_repeat_highlight = True
|
159 |
+
|
160 |
+
return fig, \
|
161 |
+
gr.update(visible=vis_step3_prompt_generate), \
|
162 |
+
gr.update(visible=vis_generation_dec), \
|
163 |
+
gr.update(visible=vis_prompt), \
|
164 |
+
gr.update(visible=vis_num_samples), \
|
165 |
+
gr.update(visible=vis_seed), \
|
166 |
+
gr.update(visible=vis_start), \
|
167 |
+
gr.update(visible=vis_gen_video, value=None), \
|
168 |
+
gr.update(visible=vis_repeat_highlight)
|
169 |
+
|
170 |
+
def display_camera_info(camera_dict, camera_mode=None):
|
171 |
+
if camera_dict['complex'] is not None:
|
172 |
+
res = f"complex : {camera_dict['complex']}. "
|
173 |
+
res += f"speed : {camera_dict['speed']}. "
|
174 |
+
else:
|
175 |
+
res = ""
|
176 |
+
res += f"motion : {[_ for _ in camera_dict['motion']]}. "
|
177 |
+
res += f"speed : {camera_dict['speed']}. "
|
178 |
+
if camera_mode == CAMERA_MOTION_MODE[2]:
|
179 |
+
res += f"mode : {camera_dict['mode']}. "
|
180 |
+
return res
|
181 |
+
|
182 |
+
def add_camera_motion(camera_motion, camera_mode):
|
183 |
+
global camera_dict
|
184 |
+
if camera_dict['complex'] is not None:
|
185 |
+
camera_dict['complex'] = None
|
186 |
+
if camera_mode == CAMERA_MOTION_MODE[2] and len(camera_dict['motion']) <2:
|
187 |
+
camera_dict['motion'].append(camera_motion)
|
188 |
+
else:
|
189 |
+
camera_dict['motion']=[camera_motion]
|
190 |
+
|
191 |
+
return display_camera_info(camera_dict, camera_mode)
|
192 |
+
|
193 |
+
def add_complex_camera_motion(camera_motion):
|
194 |
+
global camera_dict
|
195 |
+
camera_dict['complex']=camera_motion
|
196 |
+
return display_camera_info(camera_dict)
|
197 |
+
|
198 |
+
def input_raw_camera_pose(combine_type, camera_mode):
|
199 |
+
global camera_dict
|
200 |
+
camera_dict['mode'] = combine_type
|
201 |
+
|
202 |
+
vis_U = False
|
203 |
+
vis_D = False
|
204 |
+
vis_L = False
|
205 |
+
vis_R = False
|
206 |
+
vis_I = False
|
207 |
+
vis_O = False
|
208 |
+
vis_ACW = False
|
209 |
+
vis_CW = False
|
210 |
+
vis_speed = True
|
211 |
+
vis_combine3_des = True
|
212 |
+
|
213 |
+
return gr.update(value='1 0 0 0 0 1 0 0 0 0 1 0\n1 0 0 0 0 1 0 0 0 0 1 -0.225\n1 0 0 0 0 1 0 0 0 0 1 -0.45\n1 0 0 0 0 1 0 0 0 0 1 -0.675\n1 0 0 0 0 1 0 0 0 0 1 -0.9\n1 0 0 0 0 1 0 0 0 0 1 -1.125\n1 0 0 0 0 1 0 0 0 0 1 -1.35\n1 0 0 0 0 1 0 0 0 0 1 -1.575\n1 0 0 0 0 1 0 0 0 0 1 -1.8\n1 0 0 0 0 1 0 0 0 0 1 -2.025\n1 0 0 0 0 1 0 0 0 0 1 -2.25\n1 0 0 0 0 1 0 0 0 0 1 -2.475\n1 0 0 0 0 1 0 0 0 0 1 -2.7\n1 0 0 0 0 1 0 0 0 0 1 -2.925\n', max_lines=16, interactive=True), \
|
214 |
+
gr.update(visible=vis_U), \
|
215 |
+
gr.update(visible=vis_D), \
|
216 |
+
gr.update(visible=vis_L),\
|
217 |
+
gr.update(visible=vis_R), \
|
218 |
+
gr.update(visible=vis_I), \
|
219 |
+
gr.update(visible=vis_O), \
|
220 |
+
gr.update(visible=vis_ACW), \
|
221 |
+
gr.update(visible=vis_CW), \
|
222 |
+
gr.update(visible=vis_speed), \
|
223 |
+
gr.update(visible=vis_combine3_des)
|
224 |
+
|
225 |
+
def change_camera_mode(combine_type, camera_mode):
|
226 |
+
global camera_dict
|
227 |
+
camera_dict['mode'] = combine_type
|
228 |
+
|
229 |
+
vis_U = True
|
230 |
+
vis_D = True
|
231 |
+
vis_L = True
|
232 |
+
vis_R = True
|
233 |
+
vis_I = True
|
234 |
+
vis_O = True
|
235 |
+
vis_ACW = True
|
236 |
+
vis_CW = True
|
237 |
+
vis_speed = True
|
238 |
+
vis_combine3_des = False
|
239 |
+
|
240 |
+
return display_camera_info(camera_dict, camera_mode), \
|
241 |
+
gr.update(visible=vis_U), \
|
242 |
+
gr.update(visible=vis_D), \
|
243 |
+
gr.update(visible=vis_L),\
|
244 |
+
gr.update(visible=vis_R), \
|
245 |
+
gr.update(visible=vis_I), \
|
246 |
+
gr.update(visible=vis_O), \
|
247 |
+
gr.update(visible=vis_ACW), \
|
248 |
+
gr.update(visible=vis_CW), \
|
249 |
+
gr.update(visible=vis_speed), \
|
250 |
+
gr.update(visible=vis_combine3_des)
|
251 |
+
|
252 |
+
def change_camera_speed(camera_speed):
|
253 |
+
global camera_dict
|
254 |
+
camera_dict['speed'] = camera_speed
|
255 |
+
return display_camera_info(camera_dict)
|
256 |
+
|
257 |
+
def reset_camera():
|
258 |
+
global camera_dict
|
259 |
+
camera_dict = {
|
260 |
+
"motion":[],
|
261 |
+
"mode": "Customized Mode 1: First A then B",
|
262 |
+
"speed": 1.0,
|
263 |
+
"complex": None
|
264 |
+
}
|
265 |
+
return display_camera_info(camera_dict)
|
266 |
+
|
267 |
+
|
268 |
+
def visualized_camera_poses(step2_camera_motion):
|
269 |
+
reset_camera()
|
270 |
+
|
271 |
+
# generate video
|
272 |
+
vis_step3_prompt_generate = False
|
273 |
+
vis_generation_dec = False
|
274 |
+
vis_prompt = False
|
275 |
+
vis_num_samples = False
|
276 |
+
vis_seed = False
|
277 |
+
vis_start = False
|
278 |
+
vis_gen_video = False
|
279 |
+
vis_repeat_highlight = False
|
280 |
+
|
281 |
+
if step2_camera_motion == CAMERA_MOTION_MODE[0]:
|
282 |
+
vis_basic_camera_motion = True
|
283 |
+
vis_basic_camera_motion_des = True
|
284 |
+
vis_custom_camera_motion = False
|
285 |
+
vis_custom_run_status = False
|
286 |
+
vis_complex_camera_motion = False
|
287 |
+
vis_complex_camera_motion_des = False
|
288 |
+
vis_U = True
|
289 |
+
vis_D = True
|
290 |
+
vis_L = True
|
291 |
+
vis_R = True
|
292 |
+
vis_I = True
|
293 |
+
vis_O = True
|
294 |
+
vis_ACW = True
|
295 |
+
vis_CW = True
|
296 |
+
vis_combine1 = False
|
297 |
+
vis_combine2 = False
|
298 |
+
vis_combine3 = False
|
299 |
+
vis_combine3_des = False
|
300 |
+
vis_speed = True
|
301 |
+
|
302 |
+
vis_Pose_1, vis_Pose_2, vis_Pose_3, vis_Pose_4 = False, False, False, False
|
303 |
+
vis_Pose_5, vis_Pose_6, vis_Pose_7, vis_Pose_8 = False, False, False, False
|
304 |
+
|
305 |
+
elif step2_camera_motion == CAMERA_MOTION_MODE[1]:
|
306 |
+
vis_basic_camera_motion = False
|
307 |
+
vis_basic_camera_motion_des = False
|
308 |
+
vis_custom_camera_motion = False
|
309 |
+
vis_custom_run_status = False
|
310 |
+
vis_complex_camera_motion = True
|
311 |
+
vis_complex_camera_motion_des = True
|
312 |
+
vis_U = False
|
313 |
+
vis_D = False
|
314 |
+
vis_L = False
|
315 |
+
vis_R = False
|
316 |
+
vis_I = False
|
317 |
+
vis_O = False
|
318 |
+
vis_ACW = False
|
319 |
+
vis_CW = False
|
320 |
+
vis_combine1 = False
|
321 |
+
vis_combine2 = False
|
322 |
+
vis_combine3 = False
|
323 |
+
vis_combine3_des = False
|
324 |
+
vis_speed = True
|
325 |
+
|
326 |
+
vis_Pose_1, vis_Pose_2, vis_Pose_3, vis_Pose_4 = True, True, True, True
|
327 |
+
vis_Pose_5, vis_Pose_6, vis_Pose_7, vis_Pose_8 = True, True, True, True
|
328 |
+
|
329 |
+
else: # step2_camera_motion = CAMERA_MOTION_MODE[2]:
|
330 |
+
vis_basic_camera_motion = False
|
331 |
+
vis_basic_camera_motion_des = False
|
332 |
+
vis_custom_camera_motion = True
|
333 |
+
vis_custom_run_status = True
|
334 |
+
vis_complex_camera_motion = False
|
335 |
+
vis_complex_camera_motion_des = False
|
336 |
+
vis_U = False
|
337 |
+
vis_D = False
|
338 |
+
vis_L = False
|
339 |
+
vis_R = False
|
340 |
+
vis_I = False
|
341 |
+
vis_O = False
|
342 |
+
vis_ACW = False
|
343 |
+
vis_CW = False
|
344 |
+
vis_combine1 = True
|
345 |
+
vis_combine2 = True
|
346 |
+
vis_combine3 = True
|
347 |
+
vis_combine3_des = False
|
348 |
+
vis_speed = False
|
349 |
+
|
350 |
+
vis_Pose_1, vis_Pose_2, vis_Pose_3, vis_Pose_4 = False, False, False, False
|
351 |
+
vis_Pose_5, vis_Pose_6, vis_Pose_7, vis_Pose_8 = False, False, False, False
|
352 |
+
|
353 |
+
vis_camera_args = True
|
354 |
+
vis_camera_reset = True
|
355 |
+
vis_camera_vis = True
|
356 |
+
vis_vis_camera = True
|
357 |
+
|
358 |
+
return gr.update(visible=vis_basic_camera_motion), \
|
359 |
+
gr.update(visible=vis_basic_camera_motion_des), \
|
360 |
+
gr.update(visible=vis_custom_camera_motion), \
|
361 |
+
gr.update(visible=vis_custom_run_status), \
|
362 |
+
gr.update(visible=vis_complex_camera_motion), \
|
363 |
+
gr.update(visible=vis_complex_camera_motion_des), \
|
364 |
+
gr.update(visible=vis_U), gr.update(visible=vis_D), gr.update(visible=vis_L), gr.update(visible=vis_R), \
|
365 |
+
gr.update(visible=vis_I), gr.update(visible=vis_O), gr.update(visible=vis_ACW), gr.update(visible=vis_CW), \
|
366 |
+
gr.update(visible=vis_combine1), gr.update(visible=vis_combine2), gr.update(visible=vis_combine3), \
|
367 |
+
gr.update(visible=vis_combine3_des), \
|
368 |
+
gr.update(visible=vis_speed), \
|
369 |
+
gr.update(visible=vis_Pose_1), gr.update(visible=vis_Pose_2), gr.update(visible=vis_Pose_3), gr.update(visible=vis_Pose_4), \
|
370 |
+
gr.update(visible=vis_Pose_5), gr.update(visible=vis_Pose_6), gr.update(visible=vis_Pose_7), gr.update(visible=vis_Pose_8), \
|
371 |
+
gr.update(visible=vis_camera_args, value=None), \
|
372 |
+
gr.update(visible=vis_camera_reset), gr.update(visible=vis_camera_vis), \
|
373 |
+
gr.update(visible=vis_vis_camera, value=None), \
|
374 |
+
gr.update(visible=vis_step3_prompt_generate), \
|
375 |
+
gr.update(visible=vis_generation_dec), \
|
376 |
+
gr.update(visible=vis_prompt), \
|
377 |
+
gr.update(visible=vis_num_samples), \
|
378 |
+
gr.update(visible=vis_seed), \
|
379 |
+
gr.update(visible=vis_start), \
|
380 |
+
gr.update(visible=vis_gen_video), \
|
381 |
+
gr.update(visible=vis_repeat_highlight)
|
382 |
+
|
383 |
+
|
384 |
+
def process_input_image(input_image, resize_mode):
|
385 |
+
global width, height
|
386 |
+
if resize_mode == RESIZE_MODE[0]:
|
387 |
+
height = 576
|
388 |
+
width = 1024
|
389 |
+
w, h = input_image.size
|
390 |
+
h_ratio = h / height
|
391 |
+
w_ratio = w / width
|
392 |
+
|
393 |
+
if h_ratio > w_ratio:
|
394 |
+
h = int(h / w_ratio)
|
395 |
+
if h < height:
|
396 |
+
h = height
|
397 |
+
input_image = Resize((h, width))(input_image)
|
398 |
+
|
399 |
+
else:
|
400 |
+
w = int(w / h_ratio)
|
401 |
+
if w < width:
|
402 |
+
w = width
|
403 |
+
input_image = Resize((height, w))(input_image)
|
404 |
+
|
405 |
+
transformer = Compose([
|
406 |
+
# Resize(width),
|
407 |
+
CenterCrop((height, width)),
|
408 |
+
])
|
409 |
+
|
410 |
+
input_image = transformer(input_image)
|
411 |
+
else:
|
412 |
+
w, h = input_image.size
|
413 |
+
if h > w:
|
414 |
+
height = 576
|
415 |
+
width = int(w * height / h)
|
416 |
+
else:
|
417 |
+
width = 1024
|
418 |
+
height = int(h * width / w)
|
419 |
+
|
420 |
+
input_image = Resize((height, width))(input_image)
|
421 |
+
# print(f'input_image size: {input_image.size}')
|
422 |
+
|
423 |
+
vis_step2_camera_motion = True
|
424 |
+
vis_step2_camera_motion_des = True
|
425 |
+
vis_camera_mode = True
|
426 |
+
vis_camera_info = True
|
427 |
+
|
428 |
+
####
|
429 |
+
# camera motion control
|
430 |
+
vis_basic_camera_motion = False
|
431 |
+
vis_basic_camera_motion_des = False
|
432 |
+
vis_custom_camera_motion = False
|
433 |
+
vis_custom_run_status = False
|
434 |
+
vis_complex_camera_motion = False
|
435 |
+
vis_complex_camera_motion_des = False
|
436 |
+
vis_U = False
|
437 |
+
vis_D = False
|
438 |
+
vis_L = False
|
439 |
+
vis_R = False
|
440 |
+
vis_I = False
|
441 |
+
vis_O = False
|
442 |
+
vis_ACW = False
|
443 |
+
vis_CW = False
|
444 |
+
vis_combine1 = False
|
445 |
+
vis_combine2 = False
|
446 |
+
vis_combine3 = False
|
447 |
+
vis_combine3_des = False
|
448 |
+
vis_speed = False
|
449 |
+
|
450 |
+
vis_Pose_1, vis_Pose_2, vis_Pose_3, vis_Pose_4 = False, False, False, False
|
451 |
+
vis_Pose_5, vis_Pose_6, vis_Pose_7, vis_Pose_8 = False, False, False, False
|
452 |
+
|
453 |
+
vis_camera_args = False
|
454 |
+
vis_camera_reset = False
|
455 |
+
vis_camera_vis = False
|
456 |
+
vis_vis_camera = False
|
457 |
+
|
458 |
+
# generate video
|
459 |
+
vis_step3_prompt_generate = False
|
460 |
+
vis_generation_dec = False
|
461 |
+
vis_prompt = False
|
462 |
+
vis_num_samples = False
|
463 |
+
vis_seed = False
|
464 |
+
vis_start = False
|
465 |
+
vis_gen_video = False
|
466 |
+
vis_repeat_highlight = False
|
467 |
+
|
468 |
+
return gr.update(visible=True, value=input_image, height=height, width=width), \
|
469 |
+
gr.update(visible=vis_step2_camera_motion), \
|
470 |
+
gr.update(visible=vis_step2_camera_motion_des), \
|
471 |
+
gr.update(visible=vis_camera_mode), \
|
472 |
+
gr.update(visible=vis_camera_info), \
|
473 |
+
gr.update(visible=vis_basic_camera_motion), \
|
474 |
+
gr.update(visible=vis_basic_camera_motion_des), \
|
475 |
+
gr.update(visible=vis_custom_camera_motion), \
|
476 |
+
gr.update(visible=vis_custom_run_status), \
|
477 |
+
gr.update(visible=vis_complex_camera_motion), \
|
478 |
+
gr.update(visible=vis_complex_camera_motion_des), \
|
479 |
+
gr.update(visible=vis_U), gr.update(visible=vis_D), gr.update(visible=vis_L), gr.update(visible=vis_R), \
|
480 |
+
gr.update(visible=vis_I), gr.update(visible=vis_O), gr.update(visible=vis_ACW), gr.update(visible=vis_CW), \
|
481 |
+
gr.update(visible=vis_combine1), gr.update(visible=vis_combine2), gr.update(visible=vis_combine3), \
|
482 |
+
gr.update(visible=vis_combine3_des), \
|
483 |
+
gr.update(visible=vis_speed), \
|
484 |
+
gr.update(visible=vis_Pose_1), gr.update(visible=vis_Pose_2), gr.update(visible=vis_Pose_3), gr.update(visible=vis_Pose_4), \
|
485 |
+
gr.update(visible=vis_Pose_5), gr.update(visible=vis_Pose_6), gr.update(visible=vis_Pose_7), gr.update(visible=vis_Pose_8), \
|
486 |
+
gr.update(visible=vis_camera_args, value=None), \
|
487 |
+
gr.update(visible=vis_camera_reset), gr.update(visible=vis_camera_vis), \
|
488 |
+
gr.update(visible=vis_vis_camera, value=None), \
|
489 |
+
gr.update(visible=vis_step3_prompt_generate), \
|
490 |
+
gr.update(visible=vis_generation_dec), \
|
491 |
+
gr.update(visible=vis_prompt), \
|
492 |
+
gr.update(visible=vis_num_samples), \
|
493 |
+
gr.update(visible=vis_seed), \
|
494 |
+
gr.update(visible=vis_start), \
|
495 |
+
gr.update(visible=vis_gen_video), \
|
496 |
+
gr.update(visible=vis_repeat_highlight)
|
497 |
+
|
498 |
+
def model_run(input_image, fps_id, seed, n_samples, camera_args):
|
499 |
+
global model, device, camera_dict, num_frames, num_steps, width, height
|
500 |
+
RT = process_camera(camera_dict, camera_args, num_frames=num_frames, width=width, height=height).reshape(-1,12)
|
501 |
+
|
502 |
+
video_path = motionctrl_sample(
|
503 |
+
model=model,
|
504 |
+
image=input_image,
|
505 |
+
RT=RT,
|
506 |
+
num_frames=num_frames,
|
507 |
+
fps_id=fps_id,
|
508 |
+
decoding_t=1,
|
509 |
+
seed=seed,
|
510 |
+
sample_num=n_samples,
|
511 |
+
device=device
|
512 |
+
)
|
513 |
+
|
514 |
+
return video_path
|
515 |
+
|
516 |
+
def main(args):
|
517 |
+
demo = gr.Blocks()
|
518 |
+
with demo:
|
519 |
+
|
520 |
+
gr.Markdown(title)
|
521 |
+
gr.Markdown(subtitle)
|
522 |
+
gr.Markdown(description)
|
523 |
+
|
524 |
+
with gr.Column():
|
525 |
+
|
526 |
+
# step 0: Some useful tricks
|
527 |
+
gr.Markdown("## Step 0/3: Some Useful Tricks", show_label=False)
|
528 |
+
gr.HighlightedText(value=[("",""), (f"1. If the motion control is not obvious, try to increase the `Motion Speed`. \
|
529 |
+
\n 2. If the generated videos are distored severely, try to descrease the `Motion Speed` \
|
530 |
+
or increase `FPS`.", "Normal")],
|
531 |
+
color_map={"Normal": "green", "Error": "red", "Clear clicks": "gray", "Add mask": "green", "Remove mask": "red"}, visible=True)
|
532 |
+
|
533 |
+
# step 2: input an image
|
534 |
+
step2_title = gr.Markdown("---\n## Step 1/3: Input an Image", show_label=False, visible=True)
|
535 |
+
step2_dec = gr.Markdown(f"\n 1. Upload an Image by `Drag` or Click `Upload Image`; \
|
536 |
+
\n 2. Click `{RESIZE_MODE[0]}` or `{RESIZE_MODE[1]}` to select the image resize mode. \
|
537 |
+
You will get a processed image and go into the next step. \
|
538 |
+
\n - `{RESIZE_MODE[0]}`: Our MotionCtrl is train on image with spatial size 576x1024. Choose `{RESIZE_MODE[0]}` can get better generated video. \
|
539 |
+
\n - `{RESIZE_MODE[1]}`: Choose `{RESIZE_MODE[1]}` if you want to generate video with the same spatial ratio as the input image.",
|
540 |
+
show_label=False, visible=True)
|
541 |
+
|
542 |
+
with gr.Row(equal_height=True):
|
543 |
+
with gr.Column(scale=2):
|
544 |
+
input_image = gr.Image(type="pil", interactive=True, elem_id="input_image", elem_classes='image', visible=True)
|
545 |
+
# process_input_image_button = gr.Button(value="Process Input Image", visible=False)
|
546 |
+
with gr.Row():
|
547 |
+
center_crop_botton = gr.Button(value=RESIZE_MODE[0], visible=True)
|
548 |
+
keep_spatial_raition_botton = gr.Button(value=RESIZE_MODE[1], visible=True)
|
549 |
+
with gr.Column(scale=2):
|
550 |
+
process_image = gr.Image(type="pil", interactive=False, elem_id="process_image", elem_classes='image', visible=False)
|
551 |
+
# step2_proceed_button = gr.Button(value="Proceed", visible=False)
|
552 |
+
|
553 |
+
|
554 |
+
# step3 - camera motion control
|
555 |
+
step2_camera_motion = gr.Markdown("---\n## Step 2/3: Select the camera poses", show_label=False, visible=False)
|
556 |
+
step2_camera_motion_des = gr.Markdown(f"\n - {CAMERA_MOTION_MODE[0]}: Including 8 basic camera poses, such as pan up, pan down, zoom in, and zoom out. \
|
557 |
+
\n - {CAMERA_MOTION_MODE[1]}: Complex camera poses extracted from the real videos. \
|
558 |
+
\n - {CAMERA_MOTION_MODE[2]}: You can customize complex camera poses yourself by combining or fusing two of the eight basic camera poses or input RAW RT matrix. \
|
559 |
+
\n - Click `Proceed` to go into next step",
|
560 |
+
show_label=False, visible=False)
|
561 |
+
camera_mode = gr.Radio(choices=CAMERA_MOTION_MODE, value=CAMERA_MOTION_MODE[0], label="Camera Motion Control Mode", interactive=True, visible=False)
|
562 |
+
camera_info = gr.Button(value="Proceed", visible=False)
|
563 |
+
|
564 |
+
with gr.Row():
|
565 |
+
with gr.Column():
|
566 |
+
# step3.1 - camera motion control - basic
|
567 |
+
basic_camera_motion = gr.Markdown("---\n### Basic Camera Poses", show_label=False, visible=False)
|
568 |
+
basic_camera_motion_des = gr.Markdown(f"\n 1. Click one of the basic camera poses, such as `Pan Up`; \
|
569 |
+
\n 2. Slide the `Motion speed` to get a speed value. The large the value, the fast the camera motion; \
|
570 |
+
\n 3. Click `Visualize Camera and Proceed` to visualize the camera poses and go proceed; \
|
571 |
+
\n 4. Click `Reset Camera` to reset the camera poses (If needed). ",
|
572 |
+
show_label=False, visible=False)
|
573 |
+
|
574 |
+
|
575 |
+
# step3.2 - camera motion control - provided complex
|
576 |
+
complex_camera_motion = gr.Markdown("---\n### Provided Complex Camera Poses", show_label=False, visible=False)
|
577 |
+
complex_camera_motion_des = gr.Markdown(f"\n 1. Click one of the complex camera poses, such as `Pose_1`; \
|
578 |
+
\n 2. Click `Visualize Camera and Proceed` to visualize the camera poses and go proceed; \
|
579 |
+
\n 3. Click `Reset Camera` to reset the camera poses (If needed). ",
|
580 |
+
show_label=False, visible=False)
|
581 |
+
|
582 |
+
# step3.3 - camera motion control - custom
|
583 |
+
custom_camera_motion = gr.Markdown(f"---\n### {CAMERA_MOTION_MODE[2]}", show_label=False, visible=False)
|
584 |
+
custom_run_status = gr.Markdown(f"\n 1. Click `{DIY_MODE[0]}`, `{DIY_MODE[1]}`, or `{DIY_MODE[2]}` \
|
585 |
+
\n - `Customized Mode 1: First A then B`: For example, click `Pan Up` and `Pan Left`, the camera will first `Pan Up` and then `Pan Left`; \
|
586 |
+
\n - `Customized Mode 2: Both A and B`: For example, click `Pan Up` and `Pan Left`, the camera will move towards the upper left corner; \
|
587 |
+
\n - `{DIY_MODE[2]}`: Input the RAW RT matrix yourselves. \
|
588 |
+
\n 2. Slide the `Motion speed` to get a speed value. The large the value, the fast the camera motion; \
|
589 |
+
\n 3. Click `Visualize Camera and Proceed` to visualize the camera poses and go proceed; \
|
590 |
+
\n 4. Click `Reset Camera` to reset the camera poses (If needed). ",
|
591 |
+
show_label=False, visible=False)
|
592 |
+
|
593 |
+
gr.HighlightedText(value=[("",""), ("1. Select two of the basic camera poses; 2. Select Customized Mode 1 OR Customized Mode 2. 3. Visualized Camera to show the customized camera poses", "Normal")],
|
594 |
+
color_map={"Normal": "green", "Error": "red", "Clear clicks": "gray", "Add mask": "green", "Remove mask": "red"}, visible=False)
|
595 |
+
|
596 |
+
with gr.Row():
|
597 |
+
combine1 = gr.Button(value=DIY_MODE[0], visible=False)
|
598 |
+
combine2 = gr.Button(value=DIY_MODE[1], visible=False)
|
599 |
+
combine3 = gr.Button(value=DIY_MODE[2], visible=False)
|
600 |
+
with gr.Row():
|
601 |
+
combine3_des = gr.Markdown(f"---\n#### Input your camera pose in the following textbox. \
|
602 |
+
A total of 14 lines and each line contains 12 float number, indicated \
|
603 |
+
the RT matrix in the shape of 1x12. \
|
604 |
+
The example is RT matrix of ZOOM IN.", show_label=False, visible=False)
|
605 |
+
|
606 |
+
with gr.Row():
|
607 |
+
U = gr.Button(value="Pan Up", visible=False)
|
608 |
+
D = gr.Button(value="Pan Down", visible=False)
|
609 |
+
L = gr.Button(value="Pan Left", visible=False)
|
610 |
+
R = gr.Button(value="Pan Right", visible=False)
|
611 |
+
with gr.Row():
|
612 |
+
I = gr.Button(value="Zoom In", visible=False)
|
613 |
+
O = gr.Button(value="Zoom Out", visible=False)
|
614 |
+
ACW = gr.Button(value="ACW", visible=False)
|
615 |
+
CW = gr.Button(value="CW", visible=False)
|
616 |
+
|
617 |
+
with gr.Row():
|
618 |
+
speed = gr.Slider(minimum=0, maximum=8, step=0.2, label="Motion Speed", value=1.0, visible=False)
|
619 |
+
|
620 |
+
with gr.Row():
|
621 |
+
Pose_1 = gr.Button(value="Pose_1", visible=False)
|
622 |
+
Pose_2 = gr.Button(value="Pose_2", visible=False)
|
623 |
+
Pose_3 = gr.Button(value="Pose_3", visible=False)
|
624 |
+
Pose_4 = gr.Button(value="Pose_4", visible=False)
|
625 |
+
with gr.Row():
|
626 |
+
Pose_5 = gr.Button(value="Pose_5", visible=False)
|
627 |
+
Pose_6 = gr.Button(value="Pose_6", visible=False)
|
628 |
+
Pose_7 = gr.Button(value="Pose_7", visible=False)
|
629 |
+
Pose_8 = gr.Button(value="Pose_8", visible=False)
|
630 |
+
|
631 |
+
with gr.Row():
|
632 |
+
camera_args = gr.Textbox(value="Camera Type", label="Camera Type", visible=False)
|
633 |
+
with gr.Row():
|
634 |
+
camera_vis= gr.Button(value="Visualize Camera and Proceed", visible=False)
|
635 |
+
camera_reset = gr.Button(value="Reset Camera", visible=False)
|
636 |
+
with gr.Column():
|
637 |
+
vis_camera = gr.Plot(fig, label='Camera Poses', visible=False)
|
638 |
+
|
639 |
+
|
640 |
+
# step4 - Generate videos
|
641 |
+
with gr.Row():
|
642 |
+
with gr.Column():
|
643 |
+
step3_prompt_generate = gr.Markdown("---\n## Step 3/3: Generate videos", show_label=False, visible=False)
|
644 |
+
generation_dec = gr.Markdown(f"\n 1. Set `FPS`.; \
|
645 |
+
\n 2. Set `n_samples`; \
|
646 |
+
\n 3. Set `seed`; \
|
647 |
+
\n 4. Click `Start generation !` to generate videos; ", visible=False)
|
648 |
+
# prompt = gr.Textbox(value="a dog sitting on grass", label="Prompt", interactive=True, visible=False)
|
649 |
+
prompt = gr.Slider(minimum=5, maximum=30, step=1, label="FPS", value=10, visible=False)
|
650 |
+
n_samples = gr.Number(value=2, precision=0, interactive=True, label="n_samples", visible=False)
|
651 |
+
seed = gr.Number(value=1234, precision=0, interactive=True, label="Seed", visible=False)
|
652 |
+
start = gr.Button(value="Start generation !", visible=False)
|
653 |
+
with gr.Column():
|
654 |
+
gen_video = gr.Video(value=None, label="Generate Video", visible=False)
|
655 |
+
repeat_highlight=gr.HighlightedText(value=[("",""), (f"1. If the motion control is not obvious, try to increase the `Motion Speed`. \
|
656 |
+
\n 2. If the generated videos are distored severely, try to descrease the `Motion Speed` \
|
657 |
+
or increase `FPS`.", "Normal")],
|
658 |
+
color_map={"Normal": "green", "Error": "red", "Clear clicks": "gray", "Add mask": "green", "Remove mask": "red"}, visible=False)
|
659 |
+
|
660 |
+
center_crop_botton.click(
|
661 |
+
fn=process_input_image,
|
662 |
+
inputs=[input_image, center_crop_botton],
|
663 |
+
outputs=[
|
664 |
+
process_image,
|
665 |
+
step2_camera_motion,
|
666 |
+
step2_camera_motion_des,
|
667 |
+
camera_mode,
|
668 |
+
camera_info,
|
669 |
+
basic_camera_motion,
|
670 |
+
basic_camera_motion_des,
|
671 |
+
custom_camera_motion,
|
672 |
+
custom_run_status,
|
673 |
+
complex_camera_motion,
|
674 |
+
complex_camera_motion_des,
|
675 |
+
U, D, L, R,
|
676 |
+
I, O, ACW, CW,
|
677 |
+
combine1, combine2, combine3, combine3_des,
|
678 |
+
speed,
|
679 |
+
Pose_1, Pose_2, Pose_3, Pose_4,
|
680 |
+
Pose_5, Pose_6, Pose_7, Pose_8,
|
681 |
+
camera_args,
|
682 |
+
camera_reset, camera_vis,
|
683 |
+
vis_camera,
|
684 |
+
|
685 |
+
step3_prompt_generate,
|
686 |
+
generation_dec,
|
687 |
+
prompt,
|
688 |
+
n_samples,
|
689 |
+
seed, start, gen_video, repeat_highlight])
|
690 |
+
|
691 |
+
keep_spatial_raition_botton.click(
|
692 |
+
fn=process_input_image,
|
693 |
+
inputs=[input_image, keep_spatial_raition_botton],
|
694 |
+
outputs=[
|
695 |
+
process_image,
|
696 |
+
step2_camera_motion,
|
697 |
+
step2_camera_motion_des,
|
698 |
+
camera_mode,
|
699 |
+
camera_info,
|
700 |
+
basic_camera_motion,
|
701 |
+
basic_camera_motion_des,
|
702 |
+
custom_camera_motion,
|
703 |
+
custom_run_status,
|
704 |
+
complex_camera_motion,
|
705 |
+
complex_camera_motion_des,
|
706 |
+
U, D, L, R,
|
707 |
+
I, O, ACW, CW,
|
708 |
+
combine1, combine2, combine3, combine3_des,
|
709 |
+
speed,
|
710 |
+
Pose_1, Pose_2, Pose_3, Pose_4,
|
711 |
+
Pose_5, Pose_6, Pose_7, Pose_8,
|
712 |
+
camera_args,
|
713 |
+
camera_reset, camera_vis,
|
714 |
+
vis_camera,
|
715 |
+
|
716 |
+
step3_prompt_generate,
|
717 |
+
generation_dec,
|
718 |
+
prompt,
|
719 |
+
n_samples,
|
720 |
+
seed, start, gen_video, repeat_highlight])
|
721 |
+
|
722 |
+
|
723 |
+
camera_info.click(
|
724 |
+
fn=visualized_camera_poses,
|
725 |
+
inputs=[camera_mode],
|
726 |
+
outputs=[basic_camera_motion,
|
727 |
+
basic_camera_motion_des,
|
728 |
+
custom_camera_motion,
|
729 |
+
custom_run_status,
|
730 |
+
complex_camera_motion,
|
731 |
+
complex_camera_motion_des,
|
732 |
+
U, D, L, R,
|
733 |
+
I, O, ACW, CW,
|
734 |
+
combine1, combine2, combine3, combine3_des,
|
735 |
+
speed,
|
736 |
+
Pose_1, Pose_2, Pose_3, Pose_4,
|
737 |
+
Pose_5, Pose_6, Pose_7, Pose_8,
|
738 |
+
camera_args,
|
739 |
+
camera_reset, camera_vis,
|
740 |
+
vis_camera,
|
741 |
+
step3_prompt_generate, generation_dec, prompt, n_samples, seed, start, gen_video, repeat_highlight],
|
742 |
+
)
|
743 |
+
|
744 |
+
|
745 |
+
U.click(fn=add_camera_motion, inputs=[U, camera_mode], outputs=camera_args)
|
746 |
+
D.click(fn=add_camera_motion, inputs=[D, camera_mode], outputs=camera_args)
|
747 |
+
L.click(fn=add_camera_motion, inputs=[L, camera_mode], outputs=camera_args)
|
748 |
+
R.click(fn=add_camera_motion, inputs=[R, camera_mode], outputs=camera_args)
|
749 |
+
I.click(fn=add_camera_motion, inputs=[I, camera_mode], outputs=camera_args)
|
750 |
+
O.click(fn=add_camera_motion, inputs=[O, camera_mode], outputs=camera_args)
|
751 |
+
ACW.click(fn=add_camera_motion, inputs=[ACW, camera_mode], outputs=camera_args)
|
752 |
+
CW.click(fn=add_camera_motion, inputs=[CW, camera_mode], outputs=camera_args)
|
753 |
+
speed.change(fn=change_camera_speed, inputs=speed, outputs=camera_args)
|
754 |
+
camera_reset.click(fn=reset_camera, inputs=None, outputs=[camera_args])
|
755 |
+
|
756 |
+
combine1.click(fn=change_camera_mode,
|
757 |
+
inputs=[combine1, camera_mode],
|
758 |
+
outputs=[camera_args,
|
759 |
+
U, D, L, R,
|
760 |
+
I, O, ACW, CW, speed,
|
761 |
+
combine3_des])
|
762 |
+
combine2.click(fn=change_camera_mode,
|
763 |
+
inputs=[combine2, camera_mode],
|
764 |
+
outputs=[camera_args,
|
765 |
+
U, D, L, R,
|
766 |
+
I, O, ACW, CW,
|
767 |
+
speed,
|
768 |
+
combine3_des])
|
769 |
+
combine3.click(fn=input_raw_camera_pose,
|
770 |
+
inputs=[combine3, camera_mode],
|
771 |
+
outputs=[camera_args,
|
772 |
+
U, D, L, R,
|
773 |
+
I, O, ACW, CW,
|
774 |
+
speed,
|
775 |
+
combine3_des])
|
776 |
+
|
777 |
+
camera_vis.click(fn=fn_vis_camera, inputs=[camera_args],
|
778 |
+
outputs=[vis_camera,
|
779 |
+
step3_prompt_generate,
|
780 |
+
generation_dec,
|
781 |
+
prompt,
|
782 |
+
n_samples,
|
783 |
+
seed,
|
784 |
+
start,
|
785 |
+
gen_video,
|
786 |
+
repeat_highlight])
|
787 |
+
|
788 |
+
Pose_1.click(fn=add_complex_camera_motion, inputs=Pose_1, outputs=camera_args)
|
789 |
+
Pose_2.click(fn=add_complex_camera_motion, inputs=Pose_2, outputs=camera_args)
|
790 |
+
Pose_3.click(fn=add_complex_camera_motion, inputs=Pose_3, outputs=camera_args)
|
791 |
+
Pose_4.click(fn=add_complex_camera_motion, inputs=Pose_4, outputs=camera_args)
|
792 |
+
Pose_5.click(fn=add_complex_camera_motion, inputs=Pose_5, outputs=camera_args)
|
793 |
+
Pose_6.click(fn=add_complex_camera_motion, inputs=Pose_6, outputs=camera_args)
|
794 |
+
Pose_7.click(fn=add_complex_camera_motion, inputs=Pose_7, outputs=camera_args)
|
795 |
+
Pose_8.click(fn=add_complex_camera_motion, inputs=Pose_8, outputs=camera_args)
|
796 |
+
|
797 |
+
|
798 |
+
start.click(fn=model_run,
|
799 |
+
inputs=[process_image, prompt, seed, n_samples, camera_args],
|
800 |
+
outputs=gen_video)
|
801 |
+
|
802 |
+
# set example
|
803 |
+
gr.Markdown("## Examples")
|
804 |
+
examples = glob(os.path.join(os.path.dirname(__file__), "./assets/demo/images", "*.png"))
|
805 |
+
gr.Examples(
|
806 |
+
examples=examples,
|
807 |
+
inputs=[input_image],
|
808 |
+
)
|
809 |
+
|
810 |
+
gr.Markdown(article)
|
811 |
+
|
812 |
+
# demo.launch(server_name='0.0.0.0', share=False, server_port=args['server_port'])
|
813 |
+
# demo.queue(concurrency_count=1, max_size=10)
|
814 |
+
# demo.launch()
|
815 |
+
demo.queue(max_size=10).launch(**args)
|
816 |
+
|
817 |
+
|
818 |
+
if __name__=="__main__":
|
819 |
+
parser = argparse.ArgumentParser()
|
820 |
+
# parser.add_argument("--port", type=int, default=12345)
|
821 |
+
|
822 |
+
parser.add_argument(
|
823 |
+
'--listen',
|
824 |
+
type=str,
|
825 |
+
default='0.0.0.0' if 'SPACE_ID' in os.environ else '127.0.0.1',
|
826 |
+
help='IP to listen on for connections to Gradio',
|
827 |
+
)
|
828 |
+
parser.add_argument(
|
829 |
+
'--username', type=str, default='', help='Username for authentication'
|
830 |
+
)
|
831 |
+
parser.add_argument(
|
832 |
+
'--password', type=str, default='', help='Password for authentication'
|
833 |
+
)
|
834 |
+
parser.add_argument(
|
835 |
+
'--server_port',
|
836 |
+
type=int,
|
837 |
+
default=0,
|
838 |
+
help='Port to run the server listener on',
|
839 |
+
)
|
840 |
+
parser.add_argument(
|
841 |
+
'--inbrowser', action='store_true', help='Open in browser'
|
842 |
+
)
|
843 |
+
parser.add_argument(
|
844 |
+
'--share', action='store_true', help='Share the gradio UI'
|
845 |
+
)
|
846 |
+
|
847 |
+
args = parser.parse_args()
|
848 |
+
|
849 |
+
launch_kwargs = {}
|
850 |
+
launch_kwargs['server_name'] = args.listen
|
851 |
+
|
852 |
+
if args.username and args.password:
|
853 |
+
launch_kwargs['auth'] = (args.username, args.password)
|
854 |
+
if args.server_port:
|
855 |
+
launch_kwargs['server_port'] = args.server_port
|
856 |
+
if args.inbrowser:
|
857 |
+
launch_kwargs['inbrowser'] = args.inbrowser
|
858 |
+
if args.share:
|
859 |
+
launch_kwargs['share'] = args.share
|
860 |
+
|
861 |
+
main(launch_kwargs)
|
configs/inference/config_motionctrl_cmcm.yaml
ADDED
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model:
|
2 |
+
base_learning_rate: 3.0e-5
|
3 |
+
target: sgm.motionctrl.camera_motion_control.CameraMotionControl
|
4 |
+
params:
|
5 |
+
ckpt_path: /group/30098/zhouxiawang/env/share/weights/svd/stable-video-diffusion-img2vid/svd.safetensors
|
6 |
+
scale_factor: 0.18215
|
7 |
+
input_key: video
|
8 |
+
no_cond_log: true
|
9 |
+
en_and_decode_n_samples_a_time: 1
|
10 |
+
use_ema: false
|
11 |
+
disable_first_stage_autocast: true
|
12 |
+
|
13 |
+
denoiser_config:
|
14 |
+
target: sgm.modules.diffusionmodules.denoiser.Denoiser
|
15 |
+
params:
|
16 |
+
scaling_config:
|
17 |
+
target: sgm.modules.diffusionmodules.denoiser_scaling.VScalingWithEDMcNoise
|
18 |
+
|
19 |
+
network_config:
|
20 |
+
target: sgm.modules.diffusionmodules.video_model.VideoUNet
|
21 |
+
params:
|
22 |
+
num_frames: 14
|
23 |
+
adm_in_channels: 768
|
24 |
+
num_classes: sequential
|
25 |
+
use_checkpoint: false
|
26 |
+
in_channels: 8
|
27 |
+
out_channels: 4
|
28 |
+
model_channels: 320
|
29 |
+
attention_resolutions: [4, 2, 1]
|
30 |
+
num_res_blocks: 2
|
31 |
+
channel_mult: [1, 2, 4, 4]
|
32 |
+
num_head_channels: 64
|
33 |
+
use_linear_in_transformer: true
|
34 |
+
transformer_depth: 1
|
35 |
+
context_dim: 1024
|
36 |
+
spatial_transformer_attn_type: softmax-xformers
|
37 |
+
extra_ff_mix_layer: true
|
38 |
+
use_spatial_context: true
|
39 |
+
merge_strategy: learned_with_images
|
40 |
+
video_kernel_size: [3, 1, 1]
|
41 |
+
|
42 |
+
conditioner_config:
|
43 |
+
target: sgm.modules.GeneralConditioner
|
44 |
+
params:
|
45 |
+
emb_models:
|
46 |
+
- is_trainable: false
|
47 |
+
input_key: cond_frames_without_noise
|
48 |
+
ucg_rate: 0.1
|
49 |
+
target: sgm.modules.encoders.modules.FrozenOpenCLIPImagePredictionEmbedder
|
50 |
+
params:
|
51 |
+
n_cond_frames: 1
|
52 |
+
n_copies: 1
|
53 |
+
open_clip_embedding_config:
|
54 |
+
target: sgm.modules.encoders.modules.FrozenOpenCLIPImageEmbedder
|
55 |
+
params:
|
56 |
+
freeze: true
|
57 |
+
# version: "/apdcephfs_cq3/share_1290939/vg_zoo/dependencies/OpenCLIP-ViT-H-14-laion2B-s32B-b79K/blobs/9a78ef8e8c73fd0df621682e7a8e8eb36c6916cb3c16b291a082ecd52ab79cc4"
|
58 |
+
|
59 |
+
- input_key: fps_id
|
60 |
+
is_trainable: false
|
61 |
+
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
|
62 |
+
params:
|
63 |
+
outdim: 256
|
64 |
+
|
65 |
+
- input_key: motion_bucket_id
|
66 |
+
is_trainable: false
|
67 |
+
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
|
68 |
+
params:
|
69 |
+
outdim: 256
|
70 |
+
|
71 |
+
- input_key: cond_frames
|
72 |
+
is_trainable: false
|
73 |
+
ucg_rate: 0.1
|
74 |
+
target: sgm.modules.encoders.modules.VideoPredictionEmbedderWithEncoder
|
75 |
+
params:
|
76 |
+
disable_encoder_autocast: true
|
77 |
+
n_cond_frames: 1
|
78 |
+
n_copies: 1
|
79 |
+
is_ae: true
|
80 |
+
encoder_config:
|
81 |
+
target: sgm.models.autoencoder.AutoencoderKLModeOnly
|
82 |
+
params:
|
83 |
+
embed_dim: 4
|
84 |
+
monitor: val/rec_loss
|
85 |
+
ddconfig:
|
86 |
+
attn_type: vanilla-xformers
|
87 |
+
double_z: true
|
88 |
+
z_channels: 4
|
89 |
+
resolution: 256
|
90 |
+
in_channels: 3
|
91 |
+
out_ch: 3
|
92 |
+
ch: 128
|
93 |
+
ch_mult: [1, 2, 4, 4]
|
94 |
+
num_res_blocks: 2
|
95 |
+
attn_resolutions: []
|
96 |
+
dropout: 0.0
|
97 |
+
lossconfig:
|
98 |
+
target: torch.nn.Identity
|
99 |
+
|
100 |
+
- input_key: cond_aug
|
101 |
+
is_trainable: false
|
102 |
+
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
|
103 |
+
params:
|
104 |
+
outdim: 256
|
105 |
+
|
106 |
+
first_stage_config:
|
107 |
+
target: sgm.models.autoencoder.AutoencodingEngine
|
108 |
+
params:
|
109 |
+
loss_config:
|
110 |
+
target: torch.nn.Identity
|
111 |
+
regularizer_config:
|
112 |
+
target: sgm.modules.autoencoding.regularizers.DiagonalGaussianRegularizer
|
113 |
+
encoder_config:
|
114 |
+
target: sgm.modules.diffusionmodules.model.Encoder
|
115 |
+
params:
|
116 |
+
attn_type: vanilla
|
117 |
+
double_z: true
|
118 |
+
z_channels: 4
|
119 |
+
resolution: 256
|
120 |
+
in_channels: 3
|
121 |
+
out_ch: 3
|
122 |
+
ch: 128
|
123 |
+
ch_mult: [1, 2, 4, 4]
|
124 |
+
num_res_blocks: 2
|
125 |
+
attn_resolutions: []
|
126 |
+
dropout: 0.0
|
127 |
+
decoder_config:
|
128 |
+
target: sgm.modules.autoencoding.temporal_ae.VideoDecoder
|
129 |
+
params:
|
130 |
+
attn_type: vanilla
|
131 |
+
double_z: true
|
132 |
+
z_channels: 4
|
133 |
+
resolution: 256
|
134 |
+
in_channels: 3
|
135 |
+
out_ch: 3
|
136 |
+
ch: 128
|
137 |
+
ch_mult: [1, 2, 4, 4]
|
138 |
+
num_res_blocks: 2
|
139 |
+
attn_resolutions: []
|
140 |
+
dropout: 0.0
|
141 |
+
video_kernel_size: [3, 1, 1]
|
142 |
+
|
143 |
+
# loss_fn_config:
|
144 |
+
# target: sgm.modules.diffusionmodules.loss.StandardDiffusionLoss
|
145 |
+
# params:
|
146 |
+
# batch2model_keys: ['RT']
|
147 |
+
# loss_weighting_config:
|
148 |
+
# target: sgm.modules.diffusionmodules.loss_weighting.VWeighting
|
149 |
+
# sigma_sampler_config:
|
150 |
+
# target: sgm.modules.diffusionmodules.sigma_sampling.EDMSampling
|
151 |
+
# params:
|
152 |
+
# p_mean: 1.0
|
153 |
+
# p_std: 1.6
|
154 |
+
|
155 |
+
sampler_config:
|
156 |
+
target: sgm.modules.diffusionmodules.sampling.EulerEDMSampler
|
157 |
+
params:
|
158 |
+
num_steps: 25
|
159 |
+
discretization_config:
|
160 |
+
target: sgm.modules.diffusionmodules.discretizer.EDMDiscretization
|
161 |
+
params:
|
162 |
+
sigma_max: 700.0
|
163 |
+
|
164 |
+
guider_config:
|
165 |
+
target: sgm.modules.diffusionmodules.guiders.LinearPredictionGuider
|
166 |
+
params:
|
167 |
+
num_frames: 14
|
168 |
+
max_scale: 2.5
|
169 |
+
min_scale: 1.0
|
configs/inference/motionctrl_run.sh
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
|
3 |
+
ckpt='checkpoints/motionctrl_svd.ckpt'
|
4 |
+
config='configs/inference/config_motionctrl_cmcm.yaml'
|
5 |
+
|
6 |
+
height=576
|
7 |
+
width=1024
|
8 |
+
cond_aug=0.02
|
9 |
+
|
10 |
+
fps=10
|
11 |
+
|
12 |
+
image_input='examples/basic/eduardo-gorghetto-5auIBbcoRNw-unsplash.jpg'
|
13 |
+
|
14 |
+
res_dir="outputs/motionctrl_svd"
|
15 |
+
if [ ! -d $res_dir ]; then
|
16 |
+
mkdir -p $res_dir
|
17 |
+
fi
|
18 |
+
|
19 |
+
CUDA_VISIBLE_DEVICES=7 python main/inference/motionctrl_cmcm.py \
|
20 |
+
--seed 12345 \
|
21 |
+
--ckpt $ckpt \
|
22 |
+
--config $config \
|
23 |
+
--savedir $res_dir \
|
24 |
+
--savefps 10 \
|
25 |
+
--ddim_steps 25 \
|
26 |
+
--frames 14 \
|
27 |
+
--input $image_input \
|
28 |
+
--fps $fps \
|
29 |
+
--motion 127 \
|
30 |
+
--cond_aug $cond_aug \
|
31 |
+
--decoding_t 1 --resize \
|
32 |
+
--height $height --width $width \
|
33 |
+
--sample_num 2 \
|
34 |
+
--transform \
|
35 |
+
--pose_dir 'examples/camera_poses' \
|
36 |
+
--speed 2.0 \
|
examples/camera_poses/test.txt
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gr.update(value=f'1.0 -4.493872218791495e-10 5.58983348497577e-09 1.9967236752904682e-09 \
|
2 |
+
-4.493872218791495e-10 1.0 -6.144247333139674e-10 1.0815730533408896e-09 \
|
3 |
+
5.58983348497577e-09 -6.144247333139674e-10 1.0 -7.984015226725205e-09 \n\
|
4 |
+
0.9982863664627075 -0.0024742060340940952 0.05846544727683067 -0.024547122418880463 \
|
5 |
+
0.002410230925306678 0.9999964237213135 0.0011647245846688747 -0.003784072818234563 \
|
6 |
+
-0.05846811458468437 -0.0010218139505013824 0.9982887506484985 -0.09103696048259735 \n\
|
7 |
+
0.9933298230171204 -0.006303737405687571 0.11513543128967285 -0.053876250982284546 \
|
8 |
+
0.00586089538410306 0.9999741315841675 0.004184383898973465 -0.006566310301423073 \
|
9 |
+
-0.115158811211586 -0.0034816779661923647 0.9933409690856934 -0.18525512516498566\n \
|
10 |
+
0.9849286675453186 -0.013619760051369667 0.17242403328418732 -0.08322551101446152 \
|
11 |
+
0.01256392989307642 0.9998950958251953 0.0072133541107177734 -0.004579910542815924 \
|
12 |
+
-0.17250417172908783 -0.004938316997140646 0.9849964380264282 -0.28701746463775635 \n\
|
13 |
+
0.9731453657150269 -0.022617166861891747 0.2290775030851364 -0.11655563861131668 \
|
14 |
+
0.02060025744140148 0.9997251629829407 0.011192308738827705 -0.0017426757840439677\
|
15 |
+
-0.2292676568031311 -0.006172688212245703 0.9733438491821289 -0.37736839056015015\n \
|
16 |
+
0.9582399725914001 -0.03294993191957474 0.2840607464313507 -0.15743066370487213 \
|
17 |
+
0.030182993039488792 0.9994447827339172 0.014113469049334526 -0.002769832033663988 \
|
18 |
+
-0.28436803817749023 -0.004950287751853466 0.9587023854255676 -0.46959081292152405 \n \
|
19 |
+
0.940129816532135 -0.03991429880261421 0.3384712040424347 -0.22889098525047302 \
|
20 |
+
0.03725311905145645 0.9992027282714844 0.01435780432075262 -0.0028311305213719606 \
|
21 |
+
-0.3387744128704071 -0.0008890923927538097 0.9408671855926514 -0.5631460547447205\n \
|
22 |
+
0.9222924709320068 -0.044258520007133484 0.38395029306411743 -0.2986142039299011 \
|
23 |
+
0.04110203683376312 0.9990199208259583 0.01642671786248684 0.0013055746676400304 \
|
24 |
+
-0.38430097699165344 0.000630900904070586 0.9232076406478882 -0.6414245367050171\n \
|
25 |
+
0.9061535000801086 -0.04851173609495163 0.4201577305793762 -0.3483412563800812 \
|
26 |
+
0.04521748423576355 0.9988185167312622 0.017803886905312538 0.0010280977003276348 \
|
27 |
+
-0.4205249547958374 0.0028654206544160843 0.907276451587677 -0.7144853472709656\n \
|
28 |
+
0.8919307589530945 -0.05171844735741615 0.4492044746875763 -0.37905213236808777 \
|
29 |
+
0.04818608984351158 0.9986518621444702 0.019300933927297592 0.00036871168413199484 \
|
30 |
+
-0.44959715008735657 0.004430312197655439 0.8932204246520996,-0.7976372241973877\n \
|
31 |
+
0.8792291879653931 -0.05425972864031792 0.47329893708229065 -0.39671003818511963 \
|
32 |
+
0.05076585337519646 0.998507022857666 0.02016463316977024 0.001104982104152441 \
|
33 |
+
-0.4736863970756531 0.00629808846861124 0.8806710243225098 -0.8874085545539856\n \
|
34 |
+
0.8659296035766602 -0.0567130371928215 0.49694016575813293 -0.4097800552845001 \
|
35 |
+
0.05366959795355797 0.9983500838279724 0.020415671169757843 0.0009228077251464128 \
|
36 |
+
-0.497278094291687 0.008992047980427742 0.8675445914268494 -0.9762357473373413\n \
|
37 |
+
0.8503361940383911 -0.055699657648801804 0.5232837200164795 -0.44268566370010376 \
|
38 |
+
0.054582174867391586 0.9983546733856201 0.01757136546075344 0.005412018392235041 \
|
39 |
+
-0.5234014391899109, 0.013620397076010704, 0.8519773483276367, -1.069865107536316 \n \
|
40 |
+
0.836037814617157 -0.05214058235287666 0.5461887717247009 -0.4671085774898529 \
|
41 |
+
0.05177384987473488 0.9985294938087463 0.01607322134077549 0.008980141952633858 \
|
42 |
+
-0.5462236404418945 0.014840473420917988 0.8375079035758972 -1.1569048166275024\n', interactive=True), \
|
examples/camera_poses/test_camera_018f7907401f2fef.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
[[1.0, -4.493872218791495e-10, 5.58983348497577e-09, 1.9967236752904682e-09, -4.493872218791495e-10, 1.0, -6.144247333139674e-10, 1.0815730533408896e-09, 5.58983348497577e-09, -6.144247333139674e-10, 1.0, -7.984015226725205e-09], [0.9982863664627075, -0.0024742060340940952, 0.05846544727683067, -0.024547122418880463, 0.002410230925306678, 0.9999964237213135, 0.0011647245846688747, -0.003784072818234563, -0.05846811458468437, -0.0010218139505013824, 0.9982887506484985, -0.09103696048259735], [0.9933298230171204, -0.006303737405687571, 0.11513543128967285, -0.053876250982284546, 0.00586089538410306, 0.9999741315841675, 0.004184383898973465, -0.006566310301423073, -0.115158811211586, -0.0034816779661923647, 0.9933409690856934, -0.18525512516498566], [0.9849286675453186, -0.013619760051369667, 0.17242403328418732, -0.08322551101446152, 0.01256392989307642, 0.9998950958251953, 0.0072133541107177734, -0.004579910542815924, -0.17250417172908783, -0.004938316997140646, 0.9849964380264282, -0.28701746463775635], [0.9731453657150269, -0.022617166861891747, 0.2290775030851364, -0.11655563861131668, 0.02060025744140148, 0.9997251629829407, 0.011192308738827705, -0.0017426757840439677, -0.2292676568031311, -0.006172688212245703, 0.9733438491821289, -0.37736839056015015], [0.9582399725914001, -0.03294993191957474, 0.2840607464313507, -0.15743066370487213, 0.030182993039488792, 0.9994447827339172, 0.014113469049334526, -0.002769832033663988, -0.28436803817749023, -0.004950287751853466, 0.9587023854255676, -0.46959081292152405], [0.940129816532135, -0.03991429880261421, 0.3384712040424347, -0.22889098525047302, 0.03725311905145645, 0.9992027282714844, 0.01435780432075262, -0.0028311305213719606, -0.3387744128704071, -0.0008890923927538097, 0.9408671855926514, -0.5631460547447205], [0.9222924709320068, -0.044258520007133484, 0.38395029306411743, -0.2986142039299011, 0.04110203683376312, 0.9990199208259583, 0.01642671786248684, 0.0013055746676400304, -0.38430097699165344, 0.000630900904070586, 0.9232076406478882, -0.6414245367050171], [0.9061535000801086, -0.04851173609495163, 0.4201577305793762, -0.3483412563800812, 0.04521748423576355, 0.9988185167312622, 0.017803886905312538, 0.0010280977003276348, -0.4205249547958374, 0.0028654206544160843, 0.907276451587677, -0.7144853472709656], [0.8919307589530945, -0.05171844735741615, 0.4492044746875763, -0.37905213236808777, 0.04818608984351158, 0.9986518621444702, 0.019300933927297592, 0.00036871168413199484, -0.44959715008735657, 0.004430312197655439, 0.8932204246520996, -0.7976372241973877], [0.8792291879653931, -0.05425972864031792, 0.47329893708229065, -0.39671003818511963, 0.05076585337519646, 0.998507022857666, 0.02016463316977024, 0.001104982104152441, -0.4736863970756531, 0.00629808846861124, 0.8806710243225098, -0.8874085545539856], [0.8659296035766602, -0.0567130371928215, 0.49694016575813293, -0.4097800552845001, 0.05366959795355797, 0.9983500838279724, 0.020415671169757843, 0.0009228077251464128, -0.497278094291687, 0.008992047980427742, 0.8675445914268494, -0.9762357473373413], [0.8503361940383911, -0.055699657648801804, 0.5232837200164795, -0.44268566370010376, 0.054582174867391586, 0.9983546733856201, 0.01757136546075344, 0.005412018392235041, -0.5234014391899109, 0.013620397076010704, 0.8519773483276367, -1.069865107536316], [0.836037814617157, -0.05214058235287666, 0.5461887717247009, -0.4671085774898529, 0.05177384987473488, 0.9985294938087463, 0.01607322134077549, 0.008980141952633858, -0.5462236404418945, 0.014840473420917988, 0.8375079035758972, -1.1569048166275024], [0.82603919506073, -0.04987695440649986, 0.5614013671875, -0.4677649438381195, 0.05124447122216225, 0.9985973834991455, 0.013318539597094059, 0.012170637026429176, -0.5612781643867493, 0.017767081037163734, 0.8274364471435547, -1.2651430368423462], [0.8179472088813782, -0.0496118925511837, 0.573150098323822, -0.45822662115097046, 0.052784956991672516, 0.9985441565513611, 0.011104168370366096, 0.018991567194461823, -0.5728666186332703, 0.0211710836738348, 0.8193751573562622, -1.3895009756088257]]
|
examples/camera_poses/test_camera_088b93f15ca8745d.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
[[0.9999999403953552, 3.8618797049139175e-10, -1.3441345814158012e-08, 1.3928219289027766e-07, 3.8618797049139175e-10, 1.0, -4.134579345560496e-10, -6.074658998045379e-09, -1.3441345814158012e-08, -4.134579345560496e-10, 1.0, 7.038884319854333e-08], [0.9994913339614868, 0.003077245783060789, -0.031741149723529816, 0.08338673412799835, -0.0030815028585493565, 0.999995231628418, -8.520588744431734e-05, 0.006532138213515282, 0.0317407064139843, 0.00018297435599379241, 0.9994961619377136, -0.02256060019135475], [0.9979938268661499, 0.0051255361177027225, -0.06310292333364487, 0.18344485759735107, -0.005117486696690321, 0.9999868869781494, 0.00028916727751493454, 0.018134046345949173, 0.06310353428125381, 3.434090831433423e-05, 0.9980069994926453, -0.030579563230276108], [0.9954646825790405, 0.00820203311741352, -0.0947771891951561, 0.29663264751434326, -0.00811922550201416, 0.9999662041664124, 0.0012593322899192572, 0.02404301054775715, 0.09478426724672318, -0.0004841022891923785, 0.9954977035522461, -0.02678978443145752], [0.9913660883903503, 0.012001598253846169, -0.13057230412960052, 0.4076530337333679, -0.011968829669058323, 0.999927818775177, 0.0010357286082580686, 0.024977533146739006, 0.1305752843618393, 0.0005360084469430149, 0.9914382100105286, -0.010779343545436859], [0.985666811466217, 0.017323914915323257, -0.16781197488307953, 0.509911060333252, -0.017399737611413002, 0.9998481273651123, 0.0010186078725382686, 0.023117201402783394, 0.16780413687229156, 0.0019158748909831047, 0.9858185052871704, 0.018053216859698296], [0.9784473180770874, 0.022585421800613403, -0.20525763928890228, 0.5957884192466736, -0.022850200533866882, 0.9997382760047913, 0.0010805513011291623, 0.020451901480555534, 0.2052282989025116, 0.003632916137576103, 0.9787073731422424, 0.03460140898823738], [0.9711515307426453, 0.026846906170248985, -0.23694702982902527, 0.6832671165466309, -0.02745947800576687, 0.999622642993927, 0.0007151798927225173, 0.012211678549647331, 0.23687675595283508, 0.005811895243823528, 0.971522331237793, 0.03236595541238785], [0.9641746878623962, 0.030338184908032417, -0.26352745294570923, 0.7764986157417297, -0.031404945999383926, 0.9995067715644836, 0.0001645474840188399, 0.0011497576488181949, 0.26340243220329285, 0.008117412216961384, 0.964651882648468, 0.022656364366412163], [0.9573631882667542, 0.0335896760225296, -0.2869274914264679, 0.8815275430679321, -0.03532479330897331, 0.9993755221366882, -0.0008711823611520231, -0.003618708113208413, 0.2867189943790436, 0.010969695635139942, 0.9579519033432007, 0.005283573176711798], [0.9507063627243042, 0.036557890474796295, -0.3079299330711365, 0.9931321740150452, -0.03846294432878494, 0.9992600679397583, -0.00011733790597645566, 0.0018704120302572846, 0.30769774317741394, 0.01195544097572565, 0.9514090418815613, -0.035360634326934814], [0.9448517560958862, 0.039408694952726364, -0.3251185715198517, 1.1025006771087646, -0.041503626853227615, 0.9991382360458374, 0.0004919985658489168, 0.007425118237733841, 0.32485777139663696, 0.013028733432292938, 0.9456731081008911, -0.09869624674320221], [0.940796971321106, 0.04081147164106369, -0.33650481700897217, 1.1961394548416138, -0.0429220013320446, 0.9990777373313904, 0.0011677180882543325, 0.019955899566411972, 0.336242139339447, 0.013344875536859035, 0.9416810274124146, -0.16835527122020721], [0.9376427531242371, 0.04111124947667122, -0.3451607823371887, 1.2392503023147583, -0.043144747614860535, 0.9990671873092651, 0.0017920633545145392, 0.03982722759246826, 0.34491249918937683, 0.013211555778980255, 0.938541829586029, -0.24618202447891235], [0.9353355765342712, 0.04122937470674515, -0.3513509929180145, 1.285768747329712, -0.043183211237192154, 0.9990646243095398, 0.0022769556380808353, 0.06841164082288742, 0.3511161506175995, 0.01304274145513773, 0.936241090297699, -0.3213619291782379], [0.9342393279075623, 0.041213057935237885, -0.3542574644088745, 1.3363462686538696, -0.04236872121691704, 0.9990919232368469, 0.0044970144517719746, 0.08925694227218628, 0.35412102937698364, 0.010808154009282589, 0.9351370930671692, -0.40201041102409363]]
|
examples/camera_poses/test_camera_1424acd0007d40b5.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
[[1.0, 9.44418099280142e-10, 3.889182664806867e-08, 6.214055492392845e-09, 9.44418099280142e-10, 1.0, -1.0644604121756718e-11, -7.621465680784922e-10, 3.889182664806867e-08, -1.0644604121756718e-11, 1.0, -2.7145965475483536e-08], [0.9873979091644287, -0.007892023772001266, 0.15806053578853607, 0.4749181270599365, 0.008024877868592739, 0.9999678134918213, -0.00020230526570230722, 0.1585356593132019, -0.15805381536483765, 0.0014681711327284575, 0.9874294400215149, -0.2091633826494217], [0.9708925485610962, -0.011486345902085304, 0.23923994600772858, 0.8120080828666687, 0.012198254466056824, 0.9999244809150696, -0.0014952132478356361, 0.2486257702112198, -0.23920467495918274, 0.004370000213384628, 0.9709593057632446, -0.5957822799682617], [0.9619541168212891, -0.013188007287681103, 0.2728927433490753, 1.1486873626708984, 0.014017474837601185, 0.9999011754989624, -0.001090032048523426, 0.3114692270755768, -0.2728513777256012, 0.0048738280311226845, 0.962043821811676, -1.0323039293289185], [0.9586812257766724, -0.013936692848801613, 0.284140944480896, 1.5948307514190674, 0.014867136254906654, 0.9998888373374939, -0.0011181083973497152, 0.36000898480415344, -0.2840937674045563, 0.0052962712943553925, 0.958781898021698, -1.4377187490463257], [0.9583359360694885, -0.011928150430321693, 0.28539448976516724, 2.002793788909912, 0.014221147634088993, 0.9998810887336731, -0.0059633455239236355, 0.35464340448379517, -0.28528934717178345, 0.009773525409400463, 0.9583916068077087, -1.8953297138214111], [0.9584393501281738, -0.010862396098673344, 0.28508952260017395, 2.3351645469665527, 0.012857729569077492, 0.9999041557312012, -0.005128204356878996, 0.38934090733528137, -0.28500640392303467, 0.008580676279962063, 0.9584871530532837, -2.4214961528778076], [0.9587277173995972, -0.009760312736034393, 0.28415825963020325, 2.6858017444610596, 0.012186127714812756, 0.9999027848243713, -0.0067702098749578, 0.4173329174518585, -0.28406453132629395, 0.009953574277460575, 0.9587535262107849, -3.030754327774048], [0.9589635729789734, -0.0070899901911616325, 0.2834406793117523, 2.8917219638824463, 0.010482418350875378, 0.9998904466629028, -0.01045384630560875, 0.4001043438911438, -0.28333547711372375, 0.012996001169085503, 0.9589328169822693, -3.6960957050323486], [0.9590328931808472, -0.005921780597418547, 0.2832328677177429, 3.034579038619995, 0.00947173498570919, 0.9998928308486938, -0.01116593275219202, 0.4193899631500244, -0.2831363379955292, 0.013391205109655857, 0.9589861631393433, -4.384733200073242], [0.9593284726142883, -0.004661113955080509, 0.28225383162498474, 3.2042288780212402, 0.0076906089670956135, 0.9999240636825562, -0.009626304730772972, 0.4752484858036041, -0.28218749165534973, 0.011405492201447487, 0.9592914581298828, -5.098723411560059], [0.9591755867004395, -0.0035665074829012156, 0.2827887237071991, 3.263953924179077, 0.0062992447055876255, 0.9999418258666992, -0.008754877373576164, 0.4543868899345398, -0.282740980386734, 0.010178821161389351, 0.95914226770401, -5.7807512283325195], [0.9591742753982544, -0.003413048107177019, 0.2827949523925781, 3.3116462230682373, 0.003146615345031023, 0.9999940991401672, 0.0013963348465040326, 0.4299861788749695, -0.28279799222946167, -0.0004494813329074532, 0.9591793417930603, -6.478931903839111], [0.9585762619972229, -0.002857929328456521, 0.28482162952423096, 3.4120190143585205, -0.008201238699257374, 0.9992581605911255, 0.0376281812787056, 0.21596357226371765, -0.2847178280353546, -0.03840537369251251, 0.957841694355011, -7.178638935089111], [0.9572952389717102, -0.002719884505495429, 0.28909942507743835, 3.4662365913391113, -0.030634215101599693, 0.9933721423149109, 0.11078491061925888, -0.29767531156539917, -0.2874845862388611, -0.11491020023822784, 0.9508671164512634, -7.794575214385986], [0.9545961618423462, -0.005338957067579031, 0.29785510897636414, 3.5083835124969482, -0.06037351116538048, 0.9756243824958801, 0.2109788954257965, -1.0968165397644043, -0.29172107577323914, -0.21938219666481018, 0.9310050010681152, -8.306528091430664]]
|
examples/camera_poses/test_camera_D.json
ADDED
@@ -0,0 +1,226 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
[
|
3 |
+
1.0,
|
4 |
+
0.0,
|
5 |
+
0.0,
|
6 |
+
0.0,
|
7 |
+
0.0,
|
8 |
+
1.0,
|
9 |
+
0.0,
|
10 |
+
-0.2,
|
11 |
+
0.0,
|
12 |
+
0.0,
|
13 |
+
1.0,
|
14 |
+
0.0
|
15 |
+
],
|
16 |
+
[
|
17 |
+
1.0,
|
18 |
+
0.0,
|
19 |
+
0.0,
|
20 |
+
0.0,
|
21 |
+
0.0,
|
22 |
+
1.0,
|
23 |
+
0.0,
|
24 |
+
-0.28750000000000003,
|
25 |
+
0.0,
|
26 |
+
0.0,
|
27 |
+
1.0,
|
28 |
+
0.0
|
29 |
+
],
|
30 |
+
[
|
31 |
+
1.0,
|
32 |
+
0.0,
|
33 |
+
0.0,
|
34 |
+
0.0,
|
35 |
+
0.0,
|
36 |
+
1.0,
|
37 |
+
0.0,
|
38 |
+
-0.37500000000000006,
|
39 |
+
0.0,
|
40 |
+
0.0,
|
41 |
+
1.0,
|
42 |
+
0.0
|
43 |
+
],
|
44 |
+
[
|
45 |
+
1.0,
|
46 |
+
0.0,
|
47 |
+
0.0,
|
48 |
+
0.0,
|
49 |
+
0.0,
|
50 |
+
1.0,
|
51 |
+
0.0,
|
52 |
+
-0.4625000000000001,
|
53 |
+
0.0,
|
54 |
+
0.0,
|
55 |
+
1.0,
|
56 |
+
0.0
|
57 |
+
],
|
58 |
+
[
|
59 |
+
1.0,
|
60 |
+
0.0,
|
61 |
+
0.0,
|
62 |
+
0.0,
|
63 |
+
0.0,
|
64 |
+
1.0,
|
65 |
+
0.0,
|
66 |
+
-0.55,
|
67 |
+
0.0,
|
68 |
+
0.0,
|
69 |
+
1.0,
|
70 |
+
0.0
|
71 |
+
],
|
72 |
+
[
|
73 |
+
1.0,
|
74 |
+
0.0,
|
75 |
+
0.0,
|
76 |
+
0.0,
|
77 |
+
0.0,
|
78 |
+
1.0,
|
79 |
+
0.0,
|
80 |
+
-0.6375000000000002,
|
81 |
+
0.0,
|
82 |
+
0.0,
|
83 |
+
1.0,
|
84 |
+
0.0
|
85 |
+
],
|
86 |
+
[
|
87 |
+
1.0,
|
88 |
+
0.0,
|
89 |
+
0.0,
|
90 |
+
0.0,
|
91 |
+
0.0,
|
92 |
+
1.0,
|
93 |
+
0.0,
|
94 |
+
-0.7250000000000001,
|
95 |
+
0.0,
|
96 |
+
0.0,
|
97 |
+
1.0,
|
98 |
+
0.0
|
99 |
+
],
|
100 |
+
[
|
101 |
+
1.0,
|
102 |
+
0.0,
|
103 |
+
0.0,
|
104 |
+
0.0,
|
105 |
+
0.0,
|
106 |
+
1.0,
|
107 |
+
0.0,
|
108 |
+
-0.8125000000000002,
|
109 |
+
0.0,
|
110 |
+
0.0,
|
111 |
+
1.0,
|
112 |
+
0.0
|
113 |
+
],
|
114 |
+
[
|
115 |
+
1.0,
|
116 |
+
0.0,
|
117 |
+
0.0,
|
118 |
+
0.0,
|
119 |
+
0.0,
|
120 |
+
1.0,
|
121 |
+
0.0,
|
122 |
+
-0.9000000000000001,
|
123 |
+
0.0,
|
124 |
+
0.0,
|
125 |
+
1.0,
|
126 |
+
0.0
|
127 |
+
],
|
128 |
+
[
|
129 |
+
1.0,
|
130 |
+
0.0,
|
131 |
+
0.0,
|
132 |
+
0.0,
|
133 |
+
0.0,
|
134 |
+
1.0,
|
135 |
+
0.0,
|
136 |
+
-0.9875000000000003,
|
137 |
+
0.0,
|
138 |
+
0.0,
|
139 |
+
1.0,
|
140 |
+
0.0
|
141 |
+
],
|
142 |
+
[
|
143 |
+
1.0,
|
144 |
+
0.0,
|
145 |
+
0.0,
|
146 |
+
0.0,
|
147 |
+
0.0,
|
148 |
+
1.0,
|
149 |
+
0.0,
|
150 |
+
-1.0750000000000002,
|
151 |
+
0.0,
|
152 |
+
0.0,
|
153 |
+
1.0,
|
154 |
+
0.0
|
155 |
+
],
|
156 |
+
[
|
157 |
+
1.0,
|
158 |
+
0.0,
|
159 |
+
0.0,
|
160 |
+
0.0,
|
161 |
+
0.0,
|
162 |
+
1.0,
|
163 |
+
0.0,
|
164 |
+
-1.1625000000000003,
|
165 |
+
0.0,
|
166 |
+
0.0,
|
167 |
+
1.0,
|
168 |
+
0.0
|
169 |
+
],
|
170 |
+
[
|
171 |
+
1.0,
|
172 |
+
0.0,
|
173 |
+
0.0,
|
174 |
+
0.0,
|
175 |
+
0.0,
|
176 |
+
1.0,
|
177 |
+
0.0,
|
178 |
+
-1.2500000000000002,
|
179 |
+
0.0,
|
180 |
+
0.0,
|
181 |
+
1.0,
|
182 |
+
0.0
|
183 |
+
],
|
184 |
+
[
|
185 |
+
1.0,
|
186 |
+
0.0,
|
187 |
+
0.0,
|
188 |
+
0.0,
|
189 |
+
0.0,
|
190 |
+
1.0,
|
191 |
+
0.0,
|
192 |
+
-1.3375000000000001,
|
193 |
+
0.0,
|
194 |
+
0.0,
|
195 |
+
1.0,
|
196 |
+
0.0
|
197 |
+
],
|
198 |
+
[
|
199 |
+
1.0,
|
200 |
+
0.0,
|
201 |
+
0.0,
|
202 |
+
0.0,
|
203 |
+
0.0,
|
204 |
+
1.0,
|
205 |
+
0.0,
|
206 |
+
-1.4250000000000003,
|
207 |
+
0.0,
|
208 |
+
0.0,
|
209 |
+
1.0,
|
210 |
+
0.0
|
211 |
+
],
|
212 |
+
[
|
213 |
+
1.0,
|
214 |
+
0.0,
|
215 |
+
0.0,
|
216 |
+
0.0,
|
217 |
+
0.0,
|
218 |
+
1.0,
|
219 |
+
0.0,
|
220 |
+
-1.5125000000000004,
|
221 |
+
0.0,
|
222 |
+
0.0,
|
223 |
+
1.0,
|
224 |
+
0.0
|
225 |
+
]
|
226 |
+
]
|
examples/camera_poses/test_camera_I.json
ADDED
@@ -0,0 +1,226 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
[
|
3 |
+
1.0,
|
4 |
+
0.0,
|
5 |
+
0.0,
|
6 |
+
0.0,
|
7 |
+
0.0,
|
8 |
+
1.0,
|
9 |
+
0.0,
|
10 |
+
0.0,
|
11 |
+
0.0,
|
12 |
+
0.0,
|
13 |
+
1.0,
|
14 |
+
-0.2
|
15 |
+
],
|
16 |
+
[
|
17 |
+
1.0,
|
18 |
+
0.0,
|
19 |
+
0.0,
|
20 |
+
0.0,
|
21 |
+
0.0,
|
22 |
+
1.0,
|
23 |
+
0.0,
|
24 |
+
0.0,
|
25 |
+
0.0,
|
26 |
+
0.0,
|
27 |
+
1.0,
|
28 |
+
-0.28750000000000003
|
29 |
+
],
|
30 |
+
[
|
31 |
+
1.0,
|
32 |
+
0.0,
|
33 |
+
0.0,
|
34 |
+
0.0,
|
35 |
+
0.0,
|
36 |
+
1.0,
|
37 |
+
0.0,
|
38 |
+
0.0,
|
39 |
+
0.0,
|
40 |
+
0.0,
|
41 |
+
1.0,
|
42 |
+
-0.37500000000000006
|
43 |
+
],
|
44 |
+
[
|
45 |
+
1.0,
|
46 |
+
0.0,
|
47 |
+
0.0,
|
48 |
+
0.0,
|
49 |
+
0.0,
|
50 |
+
1.0,
|
51 |
+
0.0,
|
52 |
+
0.0,
|
53 |
+
0.0,
|
54 |
+
0.0,
|
55 |
+
1.0,
|
56 |
+
-0.4625000000000001
|
57 |
+
],
|
58 |
+
[
|
59 |
+
1.0,
|
60 |
+
0.0,
|
61 |
+
0.0,
|
62 |
+
0.0,
|
63 |
+
0.0,
|
64 |
+
1.0,
|
65 |
+
0.0,
|
66 |
+
0.0,
|
67 |
+
0.0,
|
68 |
+
0.0,
|
69 |
+
1.0,
|
70 |
+
-0.55
|
71 |
+
],
|
72 |
+
[
|
73 |
+
1.0,
|
74 |
+
0.0,
|
75 |
+
0.0,
|
76 |
+
0.0,
|
77 |
+
0.0,
|
78 |
+
1.0,
|
79 |
+
0.0,
|
80 |
+
0.0,
|
81 |
+
0.0,
|
82 |
+
0.0,
|
83 |
+
1.0,
|
84 |
+
-0.6375000000000002
|
85 |
+
],
|
86 |
+
[
|
87 |
+
1.0,
|
88 |
+
0.0,
|
89 |
+
0.0,
|
90 |
+
0.0,
|
91 |
+
0.0,
|
92 |
+
1.0,
|
93 |
+
0.0,
|
94 |
+
0.0,
|
95 |
+
0.0,
|
96 |
+
0.0,
|
97 |
+
1.0,
|
98 |
+
-0.7250000000000001
|
99 |
+
],
|
100 |
+
[
|
101 |
+
1.0,
|
102 |
+
0.0,
|
103 |
+
0.0,
|
104 |
+
0.0,
|
105 |
+
0.0,
|
106 |
+
1.0,
|
107 |
+
0.0,
|
108 |
+
0.0,
|
109 |
+
0.0,
|
110 |
+
0.0,
|
111 |
+
1.0,
|
112 |
+
-0.8125000000000002
|
113 |
+
],
|
114 |
+
[
|
115 |
+
1.0,
|
116 |
+
0.0,
|
117 |
+
0.0,
|
118 |
+
0.0,
|
119 |
+
0.0,
|
120 |
+
1.0,
|
121 |
+
0.0,
|
122 |
+
0.0,
|
123 |
+
0.0,
|
124 |
+
0.0,
|
125 |
+
1.0,
|
126 |
+
-0.9000000000000001
|
127 |
+
],
|
128 |
+
[
|
129 |
+
1.0,
|
130 |
+
0.0,
|
131 |
+
0.0,
|
132 |
+
0.0,
|
133 |
+
0.0,
|
134 |
+
1.0,
|
135 |
+
0.0,
|
136 |
+
0.0,
|
137 |
+
0.0,
|
138 |
+
0.0,
|
139 |
+
1.0,
|
140 |
+
-0.9875000000000003
|
141 |
+
],
|
142 |
+
[
|
143 |
+
1.0,
|
144 |
+
0.0,
|
145 |
+
0.0,
|
146 |
+
0.0,
|
147 |
+
0.0,
|
148 |
+
1.0,
|
149 |
+
0.0,
|
150 |
+
0.0,
|
151 |
+
0.0,
|
152 |
+
0.0,
|
153 |
+
1.0,
|
154 |
+
-1.0750000000000002
|
155 |
+
],
|
156 |
+
[
|
157 |
+
1.0,
|
158 |
+
0.0,
|
159 |
+
0.0,
|
160 |
+
0.0,
|
161 |
+
0.0,
|
162 |
+
1.0,
|
163 |
+
0.0,
|
164 |
+
0.0,
|
165 |
+
0.0,
|
166 |
+
0.0,
|
167 |
+
1.0,
|
168 |
+
-1.1625000000000003
|
169 |
+
],
|
170 |
+
[
|
171 |
+
1.0,
|
172 |
+
0.0,
|
173 |
+
0.0,
|
174 |
+
0.0,
|
175 |
+
0.0,
|
176 |
+
1.0,
|
177 |
+
0.0,
|
178 |
+
0.0,
|
179 |
+
0.0,
|
180 |
+
0.0,
|
181 |
+
1.0,
|
182 |
+
-1.2500000000000002
|
183 |
+
],
|
184 |
+
[
|
185 |
+
1.0,
|
186 |
+
0.0,
|
187 |
+
0.0,
|
188 |
+
0.0,
|
189 |
+
0.0,
|
190 |
+
1.0,
|
191 |
+
0.0,
|
192 |
+
0.0,
|
193 |
+
0.0,
|
194 |
+
0.0,
|
195 |
+
1.0,
|
196 |
+
-1.3375000000000001
|
197 |
+
],
|
198 |
+
[
|
199 |
+
1.0,
|
200 |
+
0.0,
|
201 |
+
0.0,
|
202 |
+
0.0,
|
203 |
+
0.0,
|
204 |
+
1.0,
|
205 |
+
0.0,
|
206 |
+
0.0,
|
207 |
+
0.0,
|
208 |
+
0.0,
|
209 |
+
1.0,
|
210 |
+
-1.4250000000000003
|
211 |
+
],
|
212 |
+
[
|
213 |
+
1.0,
|
214 |
+
0.0,
|
215 |
+
0.0,
|
216 |
+
0.0,
|
217 |
+
0.0,
|
218 |
+
1.0,
|
219 |
+
0.0,
|
220 |
+
0.0,
|
221 |
+
0.0,
|
222 |
+
0.0,
|
223 |
+
1.0,
|
224 |
+
-1.5125000000000004
|
225 |
+
]
|
226 |
+
]
|
examples/camera_poses/test_camera_I_0.2x.json
ADDED
@@ -0,0 +1,226 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
[
|
3 |
+
1.0,
|
4 |
+
0.0,
|
5 |
+
0.0,
|
6 |
+
0.0,
|
7 |
+
0.0,
|
8 |
+
1.0,
|
9 |
+
0.0,
|
10 |
+
0.0,
|
11 |
+
0.0,
|
12 |
+
0.0,
|
13 |
+
1.0,
|
14 |
+
-0.0
|
15 |
+
],
|
16 |
+
[
|
17 |
+
1.0,
|
18 |
+
0.0,
|
19 |
+
0.0,
|
20 |
+
0.0,
|
21 |
+
0.0,
|
22 |
+
1.0,
|
23 |
+
0.0,
|
24 |
+
0.0,
|
25 |
+
0.0,
|
26 |
+
0.0,
|
27 |
+
1.0,
|
28 |
+
-0.022500000000000003
|
29 |
+
],
|
30 |
+
[
|
31 |
+
1.0,
|
32 |
+
0.0,
|
33 |
+
0.0,
|
34 |
+
0.0,
|
35 |
+
0.0,
|
36 |
+
1.0,
|
37 |
+
0.0,
|
38 |
+
0.0,
|
39 |
+
0.0,
|
40 |
+
0.0,
|
41 |
+
1.0,
|
42 |
+
-0.045000000000000005
|
43 |
+
],
|
44 |
+
[
|
45 |
+
1.0,
|
46 |
+
0.0,
|
47 |
+
0.0,
|
48 |
+
0.0,
|
49 |
+
0.0,
|
50 |
+
1.0,
|
51 |
+
0.0,
|
52 |
+
0.0,
|
53 |
+
0.0,
|
54 |
+
0.0,
|
55 |
+
1.0,
|
56 |
+
-0.0675
|
57 |
+
],
|
58 |
+
[
|
59 |
+
1.0,
|
60 |
+
0.0,
|
61 |
+
0.0,
|
62 |
+
0.0,
|
63 |
+
0.0,
|
64 |
+
1.0,
|
65 |
+
0.0,
|
66 |
+
0.0,
|
67 |
+
0.0,
|
68 |
+
0.0,
|
69 |
+
1.0,
|
70 |
+
-0.09000000000000001
|
71 |
+
],
|
72 |
+
[
|
73 |
+
1.0,
|
74 |
+
0.0,
|
75 |
+
0.0,
|
76 |
+
0.0,
|
77 |
+
0.0,
|
78 |
+
1.0,
|
79 |
+
0.0,
|
80 |
+
0.0,
|
81 |
+
0.0,
|
82 |
+
0.0,
|
83 |
+
1.0,
|
84 |
+
-0.11250000000000002
|
85 |
+
],
|
86 |
+
[
|
87 |
+
1.0,
|
88 |
+
0.0,
|
89 |
+
0.0,
|
90 |
+
0.0,
|
91 |
+
0.0,
|
92 |
+
1.0,
|
93 |
+
0.0,
|
94 |
+
0.0,
|
95 |
+
0.0,
|
96 |
+
0.0,
|
97 |
+
1.0,
|
98 |
+
-0.135
|
99 |
+
],
|
100 |
+
[
|
101 |
+
1.0,
|
102 |
+
0.0,
|
103 |
+
0.0,
|
104 |
+
0.0,
|
105 |
+
0.0,
|
106 |
+
1.0,
|
107 |
+
0.0,
|
108 |
+
0.0,
|
109 |
+
0.0,
|
110 |
+
0.0,
|
111 |
+
1.0,
|
112 |
+
-0.15750000000000003
|
113 |
+
],
|
114 |
+
[
|
115 |
+
1.0,
|
116 |
+
0.0,
|
117 |
+
0.0,
|
118 |
+
0.0,
|
119 |
+
0.0,
|
120 |
+
1.0,
|
121 |
+
0.0,
|
122 |
+
0.0,
|
123 |
+
0.0,
|
124 |
+
0.0,
|
125 |
+
1.0,
|
126 |
+
-0.18000000000000002
|
127 |
+
],
|
128 |
+
[
|
129 |
+
1.0,
|
130 |
+
0.0,
|
131 |
+
0.0,
|
132 |
+
0.0,
|
133 |
+
0.0,
|
134 |
+
1.0,
|
135 |
+
0.0,
|
136 |
+
0.0,
|
137 |
+
0.0,
|
138 |
+
0.0,
|
139 |
+
1.0,
|
140 |
+
-0.2025
|
141 |
+
],
|
142 |
+
[
|
143 |
+
1.0,
|
144 |
+
0.0,
|
145 |
+
0.0,
|
146 |
+
0.0,
|
147 |
+
0.0,
|
148 |
+
1.0,
|
149 |
+
0.0,
|
150 |
+
0.0,
|
151 |
+
0.0,
|
152 |
+
0.0,
|
153 |
+
1.0,
|
154 |
+
-0.22500000000000003
|
155 |
+
],
|
156 |
+
[
|
157 |
+
1.0,
|
158 |
+
0.0,
|
159 |
+
0.0,
|
160 |
+
0.0,
|
161 |
+
0.0,
|
162 |
+
1.0,
|
163 |
+
0.0,
|
164 |
+
0.0,
|
165 |
+
0.0,
|
166 |
+
0.0,
|
167 |
+
1.0,
|
168 |
+
-0.24750000000000003
|
169 |
+
],
|
170 |
+
[
|
171 |
+
1.0,
|
172 |
+
0.0,
|
173 |
+
0.0,
|
174 |
+
0.0,
|
175 |
+
0.0,
|
176 |
+
1.0,
|
177 |
+
0.0,
|
178 |
+
0.0,
|
179 |
+
0.0,
|
180 |
+
0.0,
|
181 |
+
1.0,
|
182 |
+
-0.27
|
183 |
+
],
|
184 |
+
[
|
185 |
+
1.0,
|
186 |
+
0.0,
|
187 |
+
0.0,
|
188 |
+
0.0,
|
189 |
+
0.0,
|
190 |
+
1.0,
|
191 |
+
0.0,
|
192 |
+
0.0,
|
193 |
+
0.0,
|
194 |
+
0.0,
|
195 |
+
1.0,
|
196 |
+
-0.29250000000000004
|
197 |
+
],
|
198 |
+
[
|
199 |
+
1.0,
|
200 |
+
0.0,
|
201 |
+
0.0,
|
202 |
+
0.0,
|
203 |
+
0.0,
|
204 |
+
1.0,
|
205 |
+
0.0,
|
206 |
+
0.0,
|
207 |
+
0.0,
|
208 |
+
0.0,
|
209 |
+
1.0,
|
210 |
+
-0.31500000000000006
|
211 |
+
],
|
212 |
+
[
|
213 |
+
1.0,
|
214 |
+
0.0,
|
215 |
+
0.0,
|
216 |
+
0.0,
|
217 |
+
0.0,
|
218 |
+
1.0,
|
219 |
+
0.0,
|
220 |
+
0.0,
|
221 |
+
0.0,
|
222 |
+
0.0,
|
223 |
+
1.0,
|
224 |
+
-0.3375
|
225 |
+
]
|
226 |
+
]
|
examples/camera_poses/test_camera_I_0.4x.json
ADDED
@@ -0,0 +1,226 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
[
|
3 |
+
1.0,
|
4 |
+
0.0,
|
5 |
+
0.0,
|
6 |
+
0.0,
|
7 |
+
0.0,
|
8 |
+
1.0,
|
9 |
+
0.0,
|
10 |
+
0.0,
|
11 |
+
0.0,
|
12 |
+
0.0,
|
13 |
+
1.0,
|
14 |
+
-0.0
|
15 |
+
],
|
16 |
+
[
|
17 |
+
1.0,
|
18 |
+
0.0,
|
19 |
+
0.0,
|
20 |
+
0.0,
|
21 |
+
0.0,
|
22 |
+
1.0,
|
23 |
+
0.0,
|
24 |
+
0.0,
|
25 |
+
0.0,
|
26 |
+
0.0,
|
27 |
+
1.0,
|
28 |
+
-0.045000000000000005
|
29 |
+
],
|
30 |
+
[
|
31 |
+
1.0,
|
32 |
+
0.0,
|
33 |
+
0.0,
|
34 |
+
0.0,
|
35 |
+
0.0,
|
36 |
+
1.0,
|
37 |
+
0.0,
|
38 |
+
0.0,
|
39 |
+
0.0,
|
40 |
+
0.0,
|
41 |
+
1.0,
|
42 |
+
-0.09000000000000001
|
43 |
+
],
|
44 |
+
[
|
45 |
+
1.0,
|
46 |
+
0.0,
|
47 |
+
0.0,
|
48 |
+
0.0,
|
49 |
+
0.0,
|
50 |
+
1.0,
|
51 |
+
0.0,
|
52 |
+
0.0,
|
53 |
+
0.0,
|
54 |
+
0.0,
|
55 |
+
1.0,
|
56 |
+
-0.135
|
57 |
+
],
|
58 |
+
[
|
59 |
+
1.0,
|
60 |
+
0.0,
|
61 |
+
0.0,
|
62 |
+
0.0,
|
63 |
+
0.0,
|
64 |
+
1.0,
|
65 |
+
0.0,
|
66 |
+
0.0,
|
67 |
+
0.0,
|
68 |
+
0.0,
|
69 |
+
1.0,
|
70 |
+
-0.18000000000000002
|
71 |
+
],
|
72 |
+
[
|
73 |
+
1.0,
|
74 |
+
0.0,
|
75 |
+
0.0,
|
76 |
+
0.0,
|
77 |
+
0.0,
|
78 |
+
1.0,
|
79 |
+
0.0,
|
80 |
+
0.0,
|
81 |
+
0.0,
|
82 |
+
0.0,
|
83 |
+
1.0,
|
84 |
+
-0.22500000000000003
|
85 |
+
],
|
86 |
+
[
|
87 |
+
1.0,
|
88 |
+
0.0,
|
89 |
+
0.0,
|
90 |
+
0.0,
|
91 |
+
0.0,
|
92 |
+
1.0,
|
93 |
+
0.0,
|
94 |
+
0.0,
|
95 |
+
0.0,
|
96 |
+
0.0,
|
97 |
+
1.0,
|
98 |
+
-0.27
|
99 |
+
],
|
100 |
+
[
|
101 |
+
1.0,
|
102 |
+
0.0,
|
103 |
+
0.0,
|
104 |
+
0.0,
|
105 |
+
0.0,
|
106 |
+
1.0,
|
107 |
+
0.0,
|
108 |
+
0.0,
|
109 |
+
0.0,
|
110 |
+
0.0,
|
111 |
+
1.0,
|
112 |
+
-0.31500000000000006
|
113 |
+
],
|
114 |
+
[
|
115 |
+
1.0,
|
116 |
+
0.0,
|
117 |
+
0.0,
|
118 |
+
0.0,
|
119 |
+
0.0,
|
120 |
+
1.0,
|
121 |
+
0.0,
|
122 |
+
0.0,
|
123 |
+
0.0,
|
124 |
+
0.0,
|
125 |
+
1.0,
|
126 |
+
-0.36000000000000004
|
127 |
+
],
|
128 |
+
[
|
129 |
+
1.0,
|
130 |
+
0.0,
|
131 |
+
0.0,
|
132 |
+
0.0,
|
133 |
+
0.0,
|
134 |
+
1.0,
|
135 |
+
0.0,
|
136 |
+
0.0,
|
137 |
+
0.0,
|
138 |
+
0.0,
|
139 |
+
1.0,
|
140 |
+
-0.405
|
141 |
+
],
|
142 |
+
[
|
143 |
+
1.0,
|
144 |
+
0.0,
|
145 |
+
0.0,
|
146 |
+
0.0,
|
147 |
+
0.0,
|
148 |
+
1.0,
|
149 |
+
0.0,
|
150 |
+
0.0,
|
151 |
+
0.0,
|
152 |
+
0.0,
|
153 |
+
1.0,
|
154 |
+
-0.45000000000000007
|
155 |
+
],
|
156 |
+
[
|
157 |
+
1.0,
|
158 |
+
0.0,
|
159 |
+
0.0,
|
160 |
+
0.0,
|
161 |
+
0.0,
|
162 |
+
1.0,
|
163 |
+
0.0,
|
164 |
+
0.0,
|
165 |
+
0.0,
|
166 |
+
0.0,
|
167 |
+
1.0,
|
168 |
+
-0.49500000000000005
|
169 |
+
],
|
170 |
+
[
|
171 |
+
1.0,
|
172 |
+
0.0,
|
173 |
+
0.0,
|
174 |
+
0.0,
|
175 |
+
0.0,
|
176 |
+
1.0,
|
177 |
+
0.0,
|
178 |
+
0.0,
|
179 |
+
0.0,
|
180 |
+
0.0,
|
181 |
+
1.0,
|
182 |
+
-0.54
|
183 |
+
],
|
184 |
+
[
|
185 |
+
1.0,
|
186 |
+
0.0,
|
187 |
+
0.0,
|
188 |
+
0.0,
|
189 |
+
0.0,
|
190 |
+
1.0,
|
191 |
+
0.0,
|
192 |
+
0.0,
|
193 |
+
0.0,
|
194 |
+
0.0,
|
195 |
+
1.0,
|
196 |
+
-0.5850000000000001
|
197 |
+
],
|
198 |
+
[
|
199 |
+
1.0,
|
200 |
+
0.0,
|
201 |
+
0.0,
|
202 |
+
0.0,
|
203 |
+
0.0,
|
204 |
+
1.0,
|
205 |
+
0.0,
|
206 |
+
0.0,
|
207 |
+
0.0,
|
208 |
+
0.0,
|
209 |
+
1.0,
|
210 |
+
-0.6300000000000001
|
211 |
+
],
|
212 |
+
[
|
213 |
+
1.0,
|
214 |
+
0.0,
|
215 |
+
0.0,
|
216 |
+
0.0,
|
217 |
+
0.0,
|
218 |
+
1.0,
|
219 |
+
0.0,
|
220 |
+
0.0,
|
221 |
+
0.0,
|
222 |
+
0.0,
|
223 |
+
1.0,
|
224 |
+
-0.675
|
225 |
+
]
|
226 |
+
]
|
examples/camera_poses/test_camera_I_1.0x.json
ADDED
@@ -0,0 +1,226 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
[
|
3 |
+
1.0,
|
4 |
+
0.0,
|
5 |
+
0.0,
|
6 |
+
0.0,
|
7 |
+
0.0,
|
8 |
+
1.0,
|
9 |
+
0.0,
|
10 |
+
0.0,
|
11 |
+
0.0,
|
12 |
+
0.0,
|
13 |
+
1.0,
|
14 |
+
-0.0
|
15 |
+
],
|
16 |
+
[
|
17 |
+
1.0,
|
18 |
+
0.0,
|
19 |
+
0.0,
|
20 |
+
0.0,
|
21 |
+
0.0,
|
22 |
+
1.0,
|
23 |
+
0.0,
|
24 |
+
0.0,
|
25 |
+
0.0,
|
26 |
+
0.0,
|
27 |
+
1.0,
|
28 |
+
-0.1125
|
29 |
+
],
|
30 |
+
[
|
31 |
+
1.0,
|
32 |
+
0.0,
|
33 |
+
0.0,
|
34 |
+
0.0,
|
35 |
+
0.0,
|
36 |
+
1.0,
|
37 |
+
0.0,
|
38 |
+
0.0,
|
39 |
+
0.0,
|
40 |
+
0.0,
|
41 |
+
1.0,
|
42 |
+
-0.225
|
43 |
+
],
|
44 |
+
[
|
45 |
+
1.0,
|
46 |
+
0.0,
|
47 |
+
0.0,
|
48 |
+
0.0,
|
49 |
+
0.0,
|
50 |
+
1.0,
|
51 |
+
0.0,
|
52 |
+
0.0,
|
53 |
+
0.0,
|
54 |
+
0.0,
|
55 |
+
1.0,
|
56 |
+
-0.3375
|
57 |
+
],
|
58 |
+
[
|
59 |
+
1.0,
|
60 |
+
0.0,
|
61 |
+
0.0,
|
62 |
+
0.0,
|
63 |
+
0.0,
|
64 |
+
1.0,
|
65 |
+
0.0,
|
66 |
+
0.0,
|
67 |
+
0.0,
|
68 |
+
0.0,
|
69 |
+
1.0,
|
70 |
+
-0.45
|
71 |
+
],
|
72 |
+
[
|
73 |
+
1.0,
|
74 |
+
0.0,
|
75 |
+
0.0,
|
76 |
+
0.0,
|
77 |
+
0.0,
|
78 |
+
1.0,
|
79 |
+
0.0,
|
80 |
+
0.0,
|
81 |
+
0.0,
|
82 |
+
0.0,
|
83 |
+
1.0,
|
84 |
+
-0.5625
|
85 |
+
],
|
86 |
+
[
|
87 |
+
1.0,
|
88 |
+
0.0,
|
89 |
+
0.0,
|
90 |
+
0.0,
|
91 |
+
0.0,
|
92 |
+
1.0,
|
93 |
+
0.0,
|
94 |
+
0.0,
|
95 |
+
0.0,
|
96 |
+
0.0,
|
97 |
+
1.0,
|
98 |
+
-0.675
|
99 |
+
],
|
100 |
+
[
|
101 |
+
1.0,
|
102 |
+
0.0,
|
103 |
+
0.0,
|
104 |
+
0.0,
|
105 |
+
0.0,
|
106 |
+
1.0,
|
107 |
+
0.0,
|
108 |
+
0.0,
|
109 |
+
0.0,
|
110 |
+
0.0,
|
111 |
+
1.0,
|
112 |
+
-0.7875
|
113 |
+
],
|
114 |
+
[
|
115 |
+
1.0,
|
116 |
+
0.0,
|
117 |
+
0.0,
|
118 |
+
0.0,
|
119 |
+
0.0,
|
120 |
+
1.0,
|
121 |
+
0.0,
|
122 |
+
0.0,
|
123 |
+
0.0,
|
124 |
+
0.0,
|
125 |
+
1.0,
|
126 |
+
-0.9
|
127 |
+
],
|
128 |
+
[
|
129 |
+
1.0,
|
130 |
+
0.0,
|
131 |
+
0.0,
|
132 |
+
0.0,
|
133 |
+
0.0,
|
134 |
+
1.0,
|
135 |
+
0.0,
|
136 |
+
0.0,
|
137 |
+
0.0,
|
138 |
+
0.0,
|
139 |
+
1.0,
|
140 |
+
-1.0125
|
141 |
+
],
|
142 |
+
[
|
143 |
+
1.0,
|
144 |
+
0.0,
|
145 |
+
0.0,
|
146 |
+
0.0,
|
147 |
+
0.0,
|
148 |
+
1.0,
|
149 |
+
0.0,
|
150 |
+
0.0,
|
151 |
+
0.0,
|
152 |
+
0.0,
|
153 |
+
1.0,
|
154 |
+
-1.125
|
155 |
+
],
|
156 |
+
[
|
157 |
+
1.0,
|
158 |
+
0.0,
|
159 |
+
0.0,
|
160 |
+
0.0,
|
161 |
+
0.0,
|
162 |
+
1.0,
|
163 |
+
0.0,
|
164 |
+
0.0,
|
165 |
+
0.0,
|
166 |
+
0.0,
|
167 |
+
1.0,
|
168 |
+
-1.2375
|
169 |
+
],
|
170 |
+
[
|
171 |
+
1.0,
|
172 |
+
0.0,
|
173 |
+
0.0,
|
174 |
+
0.0,
|
175 |
+
0.0,
|
176 |
+
1.0,
|
177 |
+
0.0,
|
178 |
+
0.0,
|
179 |
+
0.0,
|
180 |
+
0.0,
|
181 |
+
1.0,
|
182 |
+
-1.35
|
183 |
+
],
|
184 |
+
[
|
185 |
+
1.0,
|
186 |
+
0.0,
|
187 |
+
0.0,
|
188 |
+
0.0,
|
189 |
+
0.0,
|
190 |
+
1.0,
|
191 |
+
0.0,
|
192 |
+
0.0,
|
193 |
+
0.0,
|
194 |
+
0.0,
|
195 |
+
1.0,
|
196 |
+
-1.4625000000000001
|
197 |
+
],
|
198 |
+
[
|
199 |
+
1.0,
|
200 |
+
0.0,
|
201 |
+
0.0,
|
202 |
+
0.0,
|
203 |
+
0.0,
|
204 |
+
1.0,
|
205 |
+
0.0,
|
206 |
+
0.0,
|
207 |
+
0.0,
|
208 |
+
0.0,
|
209 |
+
1.0,
|
210 |
+
-1.575
|
211 |
+
],
|
212 |
+
[
|
213 |
+
1.0,
|
214 |
+
0.0,
|
215 |
+
0.0,
|
216 |
+
0.0,
|
217 |
+
0.0,
|
218 |
+
1.0,
|
219 |
+
0.0,
|
220 |
+
0.0,
|
221 |
+
0.0,
|
222 |
+
0.0,
|
223 |
+
1.0,
|
224 |
+
-1.6875
|
225 |
+
]
|
226 |
+
]
|
examples/camera_poses/test_camera_I_2.0x.json
ADDED
@@ -0,0 +1,226 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
[
|
3 |
+
1.0,
|
4 |
+
0.0,
|
5 |
+
0.0,
|
6 |
+
0.0,
|
7 |
+
0.0,
|
8 |
+
1.0,
|
9 |
+
0.0,
|
10 |
+
0.0,
|
11 |
+
0.0,
|
12 |
+
0.0,
|
13 |
+
1.0,
|
14 |
+
-0.0
|
15 |
+
],
|
16 |
+
[
|
17 |
+
1.0,
|
18 |
+
0.0,
|
19 |
+
0.0,
|
20 |
+
0.0,
|
21 |
+
0.0,
|
22 |
+
1.0,
|
23 |
+
0.0,
|
24 |
+
0.0,
|
25 |
+
0.0,
|
26 |
+
0.0,
|
27 |
+
1.0,
|
28 |
+
-0.225
|
29 |
+
],
|
30 |
+
[
|
31 |
+
1.0,
|
32 |
+
0.0,
|
33 |
+
0.0,
|
34 |
+
0.0,
|
35 |
+
0.0,
|
36 |
+
1.0,
|
37 |
+
0.0,
|
38 |
+
0.0,
|
39 |
+
0.0,
|
40 |
+
0.0,
|
41 |
+
1.0,
|
42 |
+
-0.45
|
43 |
+
],
|
44 |
+
[
|
45 |
+
1.0,
|
46 |
+
0.0,
|
47 |
+
0.0,
|
48 |
+
0.0,
|
49 |
+
0.0,
|
50 |
+
1.0,
|
51 |
+
0.0,
|
52 |
+
0.0,
|
53 |
+
0.0,
|
54 |
+
0.0,
|
55 |
+
1.0,
|
56 |
+
-0.675
|
57 |
+
],
|
58 |
+
[
|
59 |
+
1.0,
|
60 |
+
0.0,
|
61 |
+
0.0,
|
62 |
+
0.0,
|
63 |
+
0.0,
|
64 |
+
1.0,
|
65 |
+
0.0,
|
66 |
+
0.0,
|
67 |
+
0.0,
|
68 |
+
0.0,
|
69 |
+
1.0,
|
70 |
+
-0.9
|
71 |
+
],
|
72 |
+
[
|
73 |
+
1.0,
|
74 |
+
0.0,
|
75 |
+
0.0,
|
76 |
+
0.0,
|
77 |
+
0.0,
|
78 |
+
1.0,
|
79 |
+
0.0,
|
80 |
+
0.0,
|
81 |
+
0.0,
|
82 |
+
0.0,
|
83 |
+
1.0,
|
84 |
+
-1.125
|
85 |
+
],
|
86 |
+
[
|
87 |
+
1.0,
|
88 |
+
0.0,
|
89 |
+
0.0,
|
90 |
+
0.0,
|
91 |
+
0.0,
|
92 |
+
1.0,
|
93 |
+
0.0,
|
94 |
+
0.0,
|
95 |
+
0.0,
|
96 |
+
0.0,
|
97 |
+
1.0,
|
98 |
+
-1.35
|
99 |
+
],
|
100 |
+
[
|
101 |
+
1.0,
|
102 |
+
0.0,
|
103 |
+
0.0,
|
104 |
+
0.0,
|
105 |
+
0.0,
|
106 |
+
1.0,
|
107 |
+
0.0,
|
108 |
+
0.0,
|
109 |
+
0.0,
|
110 |
+
0.0,
|
111 |
+
1.0,
|
112 |
+
-1.575
|
113 |
+
],
|
114 |
+
[
|
115 |
+
1.0,
|
116 |
+
0.0,
|
117 |
+
0.0,
|
118 |
+
0.0,
|
119 |
+
0.0,
|
120 |
+
1.0,
|
121 |
+
0.0,
|
122 |
+
0.0,
|
123 |
+
0.0,
|
124 |
+
0.0,
|
125 |
+
1.0,
|
126 |
+
-1.8
|
127 |
+
],
|
128 |
+
[
|
129 |
+
1.0,
|
130 |
+
0.0,
|
131 |
+
0.0,
|
132 |
+
0.0,
|
133 |
+
0.0,
|
134 |
+
1.0,
|
135 |
+
0.0,
|
136 |
+
0.0,
|
137 |
+
0.0,
|
138 |
+
0.0,
|
139 |
+
1.0,
|
140 |
+
-2.025
|
141 |
+
],
|
142 |
+
[
|
143 |
+
1.0,
|
144 |
+
0.0,
|
145 |
+
0.0,
|
146 |
+
0.0,
|
147 |
+
0.0,
|
148 |
+
1.0,
|
149 |
+
0.0,
|
150 |
+
0.0,
|
151 |
+
0.0,
|
152 |
+
0.0,
|
153 |
+
1.0,
|
154 |
+
-2.25
|
155 |
+
],
|
156 |
+
[
|
157 |
+
1.0,
|
158 |
+
0.0,
|
159 |
+
0.0,
|
160 |
+
0.0,
|
161 |
+
0.0,
|
162 |
+
1.0,
|
163 |
+
0.0,
|
164 |
+
0.0,
|
165 |
+
0.0,
|
166 |
+
0.0,
|
167 |
+
1.0,
|
168 |
+
-2.475
|
169 |
+
],
|
170 |
+
[
|
171 |
+
1.0,
|
172 |
+
0.0,
|
173 |
+
0.0,
|
174 |
+
0.0,
|
175 |
+
0.0,
|
176 |
+
1.0,
|
177 |
+
0.0,
|
178 |
+
0.0,
|
179 |
+
0.0,
|
180 |
+
0.0,
|
181 |
+
1.0,
|
182 |
+
-2.7
|
183 |
+
],
|
184 |
+
[
|
185 |
+
1.0,
|
186 |
+
0.0,
|
187 |
+
0.0,
|
188 |
+
0.0,
|
189 |
+
0.0,
|
190 |
+
1.0,
|
191 |
+
0.0,
|
192 |
+
0.0,
|
193 |
+
0.0,
|
194 |
+
0.0,
|
195 |
+
1.0,
|
196 |
+
-2.9250000000000003
|
197 |
+
],
|
198 |
+
[
|
199 |
+
1.0,
|
200 |
+
0.0,
|
201 |
+
0.0,
|
202 |
+
0.0,
|
203 |
+
0.0,
|
204 |
+
1.0,
|
205 |
+
0.0,
|
206 |
+
0.0,
|
207 |
+
0.0,
|
208 |
+
0.0,
|
209 |
+
1.0,
|
210 |
+
-3.15
|
211 |
+
],
|
212 |
+
[
|
213 |
+
1.0,
|
214 |
+
0.0,
|
215 |
+
0.0,
|
216 |
+
0.0,
|
217 |
+
0.0,
|
218 |
+
1.0,
|
219 |
+
0.0,
|
220 |
+
0.0,
|
221 |
+
0.0,
|
222 |
+
0.0,
|
223 |
+
1.0,
|
224 |
+
-3.375
|
225 |
+
]
|
226 |
+
]
|
examples/camera_poses/test_camera_L.json
ADDED
@@ -0,0 +1,226 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
[
|
3 |
+
1.0,
|
4 |
+
0.0,
|
5 |
+
0.0,
|
6 |
+
0.2,
|
7 |
+
0.0,
|
8 |
+
1.0,
|
9 |
+
0.0,
|
10 |
+
0.0,
|
11 |
+
0.0,
|
12 |
+
0.0,
|
13 |
+
1.0,
|
14 |
+
0.0
|
15 |
+
],
|
16 |
+
[
|
17 |
+
1.0,
|
18 |
+
0.0,
|
19 |
+
0.0,
|
20 |
+
0.28750000000000003,
|
21 |
+
0.0,
|
22 |
+
1.0,
|
23 |
+
0.0,
|
24 |
+
0.0,
|
25 |
+
0.0,
|
26 |
+
0.0,
|
27 |
+
1.0,
|
28 |
+
0.0
|
29 |
+
],
|
30 |
+
[
|
31 |
+
1.0,
|
32 |
+
0.0,
|
33 |
+
0.0,
|
34 |
+
0.37500000000000006,
|
35 |
+
0.0,
|
36 |
+
1.0,
|
37 |
+
0.0,
|
38 |
+
0.0,
|
39 |
+
0.0,
|
40 |
+
0.0,
|
41 |
+
1.0,
|
42 |
+
0.0
|
43 |
+
],
|
44 |
+
[
|
45 |
+
1.0,
|
46 |
+
0.0,
|
47 |
+
0.0,
|
48 |
+
0.4625000000000001,
|
49 |
+
0.0,
|
50 |
+
1.0,
|
51 |
+
0.0,
|
52 |
+
0.0,
|
53 |
+
0.0,
|
54 |
+
0.0,
|
55 |
+
1.0,
|
56 |
+
0.0
|
57 |
+
],
|
58 |
+
[
|
59 |
+
1.0,
|
60 |
+
0.0,
|
61 |
+
0.0,
|
62 |
+
0.55,
|
63 |
+
0.0,
|
64 |
+
1.0,
|
65 |
+
0.0,
|
66 |
+
0.0,
|
67 |
+
0.0,
|
68 |
+
0.0,
|
69 |
+
1.0,
|
70 |
+
0.0
|
71 |
+
],
|
72 |
+
[
|
73 |
+
1.0,
|
74 |
+
0.0,
|
75 |
+
0.0,
|
76 |
+
0.6375000000000002,
|
77 |
+
0.0,
|
78 |
+
1.0,
|
79 |
+
0.0,
|
80 |
+
0.0,
|
81 |
+
0.0,
|
82 |
+
0.0,
|
83 |
+
1.0,
|
84 |
+
0.0
|
85 |
+
],
|
86 |
+
[
|
87 |
+
1.0,
|
88 |
+
0.0,
|
89 |
+
0.0,
|
90 |
+
0.7250000000000001,
|
91 |
+
0.0,
|
92 |
+
1.0,
|
93 |
+
0.0,
|
94 |
+
0.0,
|
95 |
+
0.0,
|
96 |
+
0.0,
|
97 |
+
1.0,
|
98 |
+
0.0
|
99 |
+
],
|
100 |
+
[
|
101 |
+
1.0,
|
102 |
+
0.0,
|
103 |
+
0.0,
|
104 |
+
0.8125000000000002,
|
105 |
+
0.0,
|
106 |
+
1.0,
|
107 |
+
0.0,
|
108 |
+
0.0,
|
109 |
+
0.0,
|
110 |
+
0.0,
|
111 |
+
1.0,
|
112 |
+
0.0
|
113 |
+
],
|
114 |
+
[
|
115 |
+
1.0,
|
116 |
+
0.0,
|
117 |
+
0.0,
|
118 |
+
0.9000000000000001,
|
119 |
+
0.0,
|
120 |
+
1.0,
|
121 |
+
0.0,
|
122 |
+
0.0,
|
123 |
+
0.0,
|
124 |
+
0.0,
|
125 |
+
1.0,
|
126 |
+
0.0
|
127 |
+
],
|
128 |
+
[
|
129 |
+
1.0,
|
130 |
+
0.0,
|
131 |
+
0.0,
|
132 |
+
0.9875000000000003,
|
133 |
+
0.0,
|
134 |
+
1.0,
|
135 |
+
0.0,
|
136 |
+
0.0,
|
137 |
+
0.0,
|
138 |
+
0.0,
|
139 |
+
1.0,
|
140 |
+
0.0
|
141 |
+
],
|
142 |
+
[
|
143 |
+
1.0,
|
144 |
+
0.0,
|
145 |
+
0.0,
|
146 |
+
1.0750000000000002,
|
147 |
+
0.0,
|
148 |
+
1.0,
|
149 |
+
0.0,
|
150 |
+
0.0,
|
151 |
+
0.0,
|
152 |
+
0.0,
|
153 |
+
1.0,
|
154 |
+
0.0
|
155 |
+
],
|
156 |
+
[
|
157 |
+
1.0,
|
158 |
+
0.0,
|
159 |
+
0.0,
|
160 |
+
1.1625000000000003,
|
161 |
+
0.0,
|
162 |
+
1.0,
|
163 |
+
0.0,
|
164 |
+
0.0,
|
165 |
+
0.0,
|
166 |
+
0.0,
|
167 |
+
1.0,
|
168 |
+
0.0
|
169 |
+
],
|
170 |
+
[
|
171 |
+
1.0,
|
172 |
+
0.0,
|
173 |
+
0.0,
|
174 |
+
1.2500000000000002,
|
175 |
+
0.0,
|
176 |
+
1.0,
|
177 |
+
0.0,
|
178 |
+
0.0,
|
179 |
+
0.0,
|
180 |
+
0.0,
|
181 |
+
1.0,
|
182 |
+
0.0
|
183 |
+
],
|
184 |
+
[
|
185 |
+
1.0,
|
186 |
+
0.0,
|
187 |
+
0.0,
|
188 |
+
1.3375000000000001,
|
189 |
+
0.0,
|
190 |
+
1.0,
|
191 |
+
0.0,
|
192 |
+
0.0,
|
193 |
+
0.0,
|
194 |
+
0.0,
|
195 |
+
1.0,
|
196 |
+
0.0
|
197 |
+
],
|
198 |
+
[
|
199 |
+
1.0,
|
200 |
+
0.0,
|
201 |
+
0.0,
|
202 |
+
1.4250000000000003,
|
203 |
+
0.0,
|
204 |
+
1.0,
|
205 |
+
0.0,
|
206 |
+
0.0,
|
207 |
+
0.0,
|
208 |
+
0.0,
|
209 |
+
1.0,
|
210 |
+
0.0
|
211 |
+
],
|
212 |
+
[
|
213 |
+
1.0,
|
214 |
+
0.0,
|
215 |
+
0.0,
|
216 |
+
1.5125000000000004,
|
217 |
+
0.0,
|
218 |
+
1.0,
|
219 |
+
0.0,
|
220 |
+
0.0,
|
221 |
+
0.0,
|
222 |
+
0.0,
|
223 |
+
1.0,
|
224 |
+
0.0
|
225 |
+
]
|
226 |
+
]
|
examples/camera_poses/test_camera_O.json
ADDED
@@ -0,0 +1,226 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
[
|
3 |
+
1.0,
|
4 |
+
0.0,
|
5 |
+
0.0,
|
6 |
+
0.0,
|
7 |
+
0.0,
|
8 |
+
1.0,
|
9 |
+
0.0,
|
10 |
+
0.0,
|
11 |
+
0.0,
|
12 |
+
0.0,
|
13 |
+
1.0,
|
14 |
+
0.2
|
15 |
+
],
|
16 |
+
[
|
17 |
+
1.0,
|
18 |
+
0.0,
|
19 |
+
0.0,
|
20 |
+
0.0,
|
21 |
+
0.0,
|
22 |
+
1.0,
|
23 |
+
0.0,
|
24 |
+
0.0,
|
25 |
+
0.0,
|
26 |
+
0.0,
|
27 |
+
1.0,
|
28 |
+
0.28750000000000003
|
29 |
+
],
|
30 |
+
[
|
31 |
+
1.0,
|
32 |
+
0.0,
|
33 |
+
0.0,
|
34 |
+
0.0,
|
35 |
+
0.0,
|
36 |
+
1.0,
|
37 |
+
0.0,
|
38 |
+
0.0,
|
39 |
+
0.0,
|
40 |
+
0.0,
|
41 |
+
1.0,
|
42 |
+
0.37500000000000006
|
43 |
+
],
|
44 |
+
[
|
45 |
+
1.0,
|
46 |
+
0.0,
|
47 |
+
0.0,
|
48 |
+
0.0,
|
49 |
+
0.0,
|
50 |
+
1.0,
|
51 |
+
0.0,
|
52 |
+
0.0,
|
53 |
+
0.0,
|
54 |
+
0.0,
|
55 |
+
1.0,
|
56 |
+
0.4625000000000001
|
57 |
+
],
|
58 |
+
[
|
59 |
+
1.0,
|
60 |
+
0.0,
|
61 |
+
0.0,
|
62 |
+
0.0,
|
63 |
+
0.0,
|
64 |
+
1.0,
|
65 |
+
0.0,
|
66 |
+
0.0,
|
67 |
+
0.0,
|
68 |
+
0.0,
|
69 |
+
1.0,
|
70 |
+
0.55
|
71 |
+
],
|
72 |
+
[
|
73 |
+
1.0,
|
74 |
+
0.0,
|
75 |
+
0.0,
|
76 |
+
0.0,
|
77 |
+
0.0,
|
78 |
+
1.0,
|
79 |
+
0.0,
|
80 |
+
0.0,
|
81 |
+
0.0,
|
82 |
+
0.0,
|
83 |
+
1.0,
|
84 |
+
0.6375000000000002
|
85 |
+
],
|
86 |
+
[
|
87 |
+
1.0,
|
88 |
+
0.0,
|
89 |
+
0.0,
|
90 |
+
0.0,
|
91 |
+
0.0,
|
92 |
+
1.0,
|
93 |
+
0.0,
|
94 |
+
0.0,
|
95 |
+
0.0,
|
96 |
+
0.0,
|
97 |
+
1.0,
|
98 |
+
0.7250000000000001
|
99 |
+
],
|
100 |
+
[
|
101 |
+
1.0,
|
102 |
+
0.0,
|
103 |
+
0.0,
|
104 |
+
0.0,
|
105 |
+
0.0,
|
106 |
+
1.0,
|
107 |
+
0.0,
|
108 |
+
0.0,
|
109 |
+
0.0,
|
110 |
+
0.0,
|
111 |
+
1.0,
|
112 |
+
0.8125000000000002
|
113 |
+
],
|
114 |
+
[
|
115 |
+
1.0,
|
116 |
+
0.0,
|
117 |
+
0.0,
|
118 |
+
0.0,
|
119 |
+
0.0,
|
120 |
+
1.0,
|
121 |
+
0.0,
|
122 |
+
0.0,
|
123 |
+
0.0,
|
124 |
+
0.0,
|
125 |
+
1.0,
|
126 |
+
0.9000000000000001
|
127 |
+
],
|
128 |
+
[
|
129 |
+
1.0,
|
130 |
+
0.0,
|
131 |
+
0.0,
|
132 |
+
0.0,
|
133 |
+
0.0,
|
134 |
+
1.0,
|
135 |
+
0.0,
|
136 |
+
0.0,
|
137 |
+
0.0,
|
138 |
+
0.0,
|
139 |
+
1.0,
|
140 |
+
0.9875000000000003
|
141 |
+
],
|
142 |
+
[
|
143 |
+
1.0,
|
144 |
+
0.0,
|
145 |
+
0.0,
|
146 |
+
0.0,
|
147 |
+
0.0,
|
148 |
+
1.0,
|
149 |
+
0.0,
|
150 |
+
0.0,
|
151 |
+
0.0,
|
152 |
+
0.0,
|
153 |
+
1.0,
|
154 |
+
1.0750000000000002
|
155 |
+
],
|
156 |
+
[
|
157 |
+
1.0,
|
158 |
+
0.0,
|
159 |
+
0.0,
|
160 |
+
0.0,
|
161 |
+
0.0,
|
162 |
+
1.0,
|
163 |
+
0.0,
|
164 |
+
0.0,
|
165 |
+
0.0,
|
166 |
+
0.0,
|
167 |
+
1.0,
|
168 |
+
1.1625000000000003
|
169 |
+
],
|
170 |
+
[
|
171 |
+
1.0,
|
172 |
+
0.0,
|
173 |
+
0.0,
|
174 |
+
0.0,
|
175 |
+
0.0,
|
176 |
+
1.0,
|
177 |
+
0.0,
|
178 |
+
0.0,
|
179 |
+
0.0,
|
180 |
+
0.0,
|
181 |
+
1.0,
|
182 |
+
1.2500000000000002
|
183 |
+
],
|
184 |
+
[
|
185 |
+
1.0,
|
186 |
+
0.0,
|
187 |
+
0.0,
|
188 |
+
0.0,
|
189 |
+
0.0,
|
190 |
+
1.0,
|
191 |
+
0.0,
|
192 |
+
0.0,
|
193 |
+
0.0,
|
194 |
+
0.0,
|
195 |
+
1.0,
|
196 |
+
1.3375000000000001
|
197 |
+
],
|
198 |
+
[
|
199 |
+
1.0,
|
200 |
+
0.0,
|
201 |
+
0.0,
|
202 |
+
0.0,
|
203 |
+
0.0,
|
204 |
+
1.0,
|
205 |
+
0.0,
|
206 |
+
0.0,
|
207 |
+
0.0,
|
208 |
+
0.0,
|
209 |
+
1.0,
|
210 |
+
1.4250000000000003
|
211 |
+
],
|
212 |
+
[
|
213 |
+
1.0,
|
214 |
+
0.0,
|
215 |
+
0.0,
|
216 |
+
0.0,
|
217 |
+
0.0,
|
218 |
+
1.0,
|
219 |
+
0.0,
|
220 |
+
0.0,
|
221 |
+
0.0,
|
222 |
+
0.0,
|
223 |
+
1.0,
|
224 |
+
1.5125000000000004
|
225 |
+
]
|
226 |
+
]
|
examples/camera_poses/test_camera_O_0.2x.json
ADDED
@@ -0,0 +1,226 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
[
|
3 |
+
1.0,
|
4 |
+
0.0,
|
5 |
+
0.0,
|
6 |
+
0.0,
|
7 |
+
0.0,
|
8 |
+
1.0,
|
9 |
+
0.0,
|
10 |
+
0.0,
|
11 |
+
0.0,
|
12 |
+
0.0,
|
13 |
+
1.0,
|
14 |
+
0.0
|
15 |
+
],
|
16 |
+
[
|
17 |
+
1.0,
|
18 |
+
0.0,
|
19 |
+
0.0,
|
20 |
+
0.0,
|
21 |
+
0.0,
|
22 |
+
1.0,
|
23 |
+
0.0,
|
24 |
+
0.0,
|
25 |
+
0.0,
|
26 |
+
0.0,
|
27 |
+
1.0,
|
28 |
+
0.022500000000000003
|
29 |
+
],
|
30 |
+
[
|
31 |
+
1.0,
|
32 |
+
0.0,
|
33 |
+
0.0,
|
34 |
+
0.0,
|
35 |
+
0.0,
|
36 |
+
1.0,
|
37 |
+
0.0,
|
38 |
+
0.0,
|
39 |
+
0.0,
|
40 |
+
0.0,
|
41 |
+
1.0,
|
42 |
+
0.045000000000000005
|
43 |
+
],
|
44 |
+
[
|
45 |
+
1.0,
|
46 |
+
0.0,
|
47 |
+
0.0,
|
48 |
+
0.0,
|
49 |
+
0.0,
|
50 |
+
1.0,
|
51 |
+
0.0,
|
52 |
+
0.0,
|
53 |
+
0.0,
|
54 |
+
0.0,
|
55 |
+
1.0,
|
56 |
+
0.0675
|
57 |
+
],
|
58 |
+
[
|
59 |
+
1.0,
|
60 |
+
0.0,
|
61 |
+
0.0,
|
62 |
+
0.0,
|
63 |
+
0.0,
|
64 |
+
1.0,
|
65 |
+
0.0,
|
66 |
+
0.0,
|
67 |
+
0.0,
|
68 |
+
0.0,
|
69 |
+
1.0,
|
70 |
+
0.09000000000000001
|
71 |
+
],
|
72 |
+
[
|
73 |
+
1.0,
|
74 |
+
0.0,
|
75 |
+
0.0,
|
76 |
+
0.0,
|
77 |
+
0.0,
|
78 |
+
1.0,
|
79 |
+
0.0,
|
80 |
+
0.0,
|
81 |
+
0.0,
|
82 |
+
0.0,
|
83 |
+
1.0,
|
84 |
+
0.11250000000000002
|
85 |
+
],
|
86 |
+
[
|
87 |
+
1.0,
|
88 |
+
0.0,
|
89 |
+
0.0,
|
90 |
+
0.0,
|
91 |
+
0.0,
|
92 |
+
1.0,
|
93 |
+
0.0,
|
94 |
+
0.0,
|
95 |
+
0.0,
|
96 |
+
0.0,
|
97 |
+
1.0,
|
98 |
+
0.135
|
99 |
+
],
|
100 |
+
[
|
101 |
+
1.0,
|
102 |
+
0.0,
|
103 |
+
0.0,
|
104 |
+
0.0,
|
105 |
+
0.0,
|
106 |
+
1.0,
|
107 |
+
0.0,
|
108 |
+
0.0,
|
109 |
+
0.0,
|
110 |
+
0.0,
|
111 |
+
1.0,
|
112 |
+
0.15750000000000003
|
113 |
+
],
|
114 |
+
[
|
115 |
+
1.0,
|
116 |
+
0.0,
|
117 |
+
0.0,
|
118 |
+
0.0,
|
119 |
+
0.0,
|
120 |
+
1.0,
|
121 |
+
0.0,
|
122 |
+
0.0,
|
123 |
+
0.0,
|
124 |
+
0.0,
|
125 |
+
1.0,
|
126 |
+
0.18000000000000002
|
127 |
+
],
|
128 |
+
[
|
129 |
+
1.0,
|
130 |
+
0.0,
|
131 |
+
0.0,
|
132 |
+
0.0,
|
133 |
+
0.0,
|
134 |
+
1.0,
|
135 |
+
0.0,
|
136 |
+
0.0,
|
137 |
+
0.0,
|
138 |
+
0.0,
|
139 |
+
1.0,
|
140 |
+
0.2025
|
141 |
+
],
|
142 |
+
[
|
143 |
+
1.0,
|
144 |
+
0.0,
|
145 |
+
0.0,
|
146 |
+
0.0,
|
147 |
+
0.0,
|
148 |
+
1.0,
|
149 |
+
0.0,
|
150 |
+
0.0,
|
151 |
+
0.0,
|
152 |
+
0.0,
|
153 |
+
1.0,
|
154 |
+
0.22500000000000003
|
155 |
+
],
|
156 |
+
[
|
157 |
+
1.0,
|
158 |
+
0.0,
|
159 |
+
0.0,
|
160 |
+
0.0,
|
161 |
+
0.0,
|
162 |
+
1.0,
|
163 |
+
0.0,
|
164 |
+
0.0,
|
165 |
+
0.0,
|
166 |
+
0.0,
|
167 |
+
1.0,
|
168 |
+
0.24750000000000003
|
169 |
+
],
|
170 |
+
[
|
171 |
+
1.0,
|
172 |
+
0.0,
|
173 |
+
0.0,
|
174 |
+
0.0,
|
175 |
+
0.0,
|
176 |
+
1.0,
|
177 |
+
0.0,
|
178 |
+
0.0,
|
179 |
+
0.0,
|
180 |
+
0.0,
|
181 |
+
1.0,
|
182 |
+
0.27
|
183 |
+
],
|
184 |
+
[
|
185 |
+
1.0,
|
186 |
+
0.0,
|
187 |
+
0.0,
|
188 |
+
0.0,
|
189 |
+
0.0,
|
190 |
+
1.0,
|
191 |
+
0.0,
|
192 |
+
0.0,
|
193 |
+
0.0,
|
194 |
+
0.0,
|
195 |
+
1.0,
|
196 |
+
0.29250000000000004
|
197 |
+
],
|
198 |
+
[
|
199 |
+
1.0,
|
200 |
+
0.0,
|
201 |
+
0.0,
|
202 |
+
0.0,
|
203 |
+
0.0,
|
204 |
+
1.0,
|
205 |
+
0.0,
|
206 |
+
0.0,
|
207 |
+
0.0,
|
208 |
+
0.0,
|
209 |
+
1.0,
|
210 |
+
0.31500000000000006
|
211 |
+
],
|
212 |
+
[
|
213 |
+
1.0,
|
214 |
+
0.0,
|
215 |
+
0.0,
|
216 |
+
0.0,
|
217 |
+
0.0,
|
218 |
+
1.0,
|
219 |
+
0.0,
|
220 |
+
0.0,
|
221 |
+
0.0,
|
222 |
+
0.0,
|
223 |
+
1.0,
|
224 |
+
0.3375
|
225 |
+
]
|
226 |
+
]
|
examples/camera_poses/test_camera_O_0.4x.json
ADDED
@@ -0,0 +1,226 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
[
|
3 |
+
1.0,
|
4 |
+
0.0,
|
5 |
+
0.0,
|
6 |
+
0.0,
|
7 |
+
0.0,
|
8 |
+
1.0,
|
9 |
+
0.0,
|
10 |
+
0.0,
|
11 |
+
0.0,
|
12 |
+
0.0,
|
13 |
+
1.0,
|
14 |
+
0.0
|
15 |
+
],
|
16 |
+
[
|
17 |
+
1.0,
|
18 |
+
0.0,
|
19 |
+
0.0,
|
20 |
+
0.0,
|
21 |
+
0.0,
|
22 |
+
1.0,
|
23 |
+
0.0,
|
24 |
+
0.0,
|
25 |
+
0.0,
|
26 |
+
0.0,
|
27 |
+
1.0,
|
28 |
+
0.045000000000000005
|
29 |
+
],
|
30 |
+
[
|
31 |
+
1.0,
|
32 |
+
0.0,
|
33 |
+
0.0,
|
34 |
+
0.0,
|
35 |
+
0.0,
|
36 |
+
1.0,
|
37 |
+
0.0,
|
38 |
+
0.0,
|
39 |
+
0.0,
|
40 |
+
0.0,
|
41 |
+
1.0,
|
42 |
+
0.09000000000000001
|
43 |
+
],
|
44 |
+
[
|
45 |
+
1.0,
|
46 |
+
0.0,
|
47 |
+
0.0,
|
48 |
+
0.0,
|
49 |
+
0.0,
|
50 |
+
1.0,
|
51 |
+
0.0,
|
52 |
+
0.0,
|
53 |
+
0.0,
|
54 |
+
0.0,
|
55 |
+
1.0,
|
56 |
+
0.135
|
57 |
+
],
|
58 |
+
[
|
59 |
+
1.0,
|
60 |
+
0.0,
|
61 |
+
0.0,
|
62 |
+
0.0,
|
63 |
+
0.0,
|
64 |
+
1.0,
|
65 |
+
0.0,
|
66 |
+
0.0,
|
67 |
+
0.0,
|
68 |
+
0.0,
|
69 |
+
1.0,
|
70 |
+
0.18000000000000002
|
71 |
+
],
|
72 |
+
[
|
73 |
+
1.0,
|
74 |
+
0.0,
|
75 |
+
0.0,
|
76 |
+
0.0,
|
77 |
+
0.0,
|
78 |
+
1.0,
|
79 |
+
0.0,
|
80 |
+
0.0,
|
81 |
+
0.0,
|
82 |
+
0.0,
|
83 |
+
1.0,
|
84 |
+
0.22500000000000003
|
85 |
+
],
|
86 |
+
[
|
87 |
+
1.0,
|
88 |
+
0.0,
|
89 |
+
0.0,
|
90 |
+
0.0,
|
91 |
+
0.0,
|
92 |
+
1.0,
|
93 |
+
0.0,
|
94 |
+
0.0,
|
95 |
+
0.0,
|
96 |
+
0.0,
|
97 |
+
1.0,
|
98 |
+
0.27
|
99 |
+
],
|
100 |
+
[
|
101 |
+
1.0,
|
102 |
+
0.0,
|
103 |
+
0.0,
|
104 |
+
0.0,
|
105 |
+
0.0,
|
106 |
+
1.0,
|
107 |
+
0.0,
|
108 |
+
0.0,
|
109 |
+
0.0,
|
110 |
+
0.0,
|
111 |
+
1.0,
|
112 |
+
0.31500000000000006
|
113 |
+
],
|
114 |
+
[
|
115 |
+
1.0,
|
116 |
+
0.0,
|
117 |
+
0.0,
|
118 |
+
0.0,
|
119 |
+
0.0,
|
120 |
+
1.0,
|
121 |
+
0.0,
|
122 |
+
0.0,
|
123 |
+
0.0,
|
124 |
+
0.0,
|
125 |
+
1.0,
|
126 |
+
0.36000000000000004
|
127 |
+
],
|
128 |
+
[
|
129 |
+
1.0,
|
130 |
+
0.0,
|
131 |
+
0.0,
|
132 |
+
0.0,
|
133 |
+
0.0,
|
134 |
+
1.0,
|
135 |
+
0.0,
|
136 |
+
0.0,
|
137 |
+
0.0,
|
138 |
+
0.0,
|
139 |
+
1.0,
|
140 |
+
0.405
|
141 |
+
],
|
142 |
+
[
|
143 |
+
1.0,
|
144 |
+
0.0,
|
145 |
+
0.0,
|
146 |
+
0.0,
|
147 |
+
0.0,
|
148 |
+
1.0,
|
149 |
+
0.0,
|
150 |
+
0.0,
|
151 |
+
0.0,
|
152 |
+
0.0,
|
153 |
+
1.0,
|
154 |
+
0.45000000000000007
|
155 |
+
],
|
156 |
+
[
|
157 |
+
1.0,
|
158 |
+
0.0,
|
159 |
+
0.0,
|
160 |
+
0.0,
|
161 |
+
0.0,
|
162 |
+
1.0,
|
163 |
+
0.0,
|
164 |
+
0.0,
|
165 |
+
0.0,
|
166 |
+
0.0,
|
167 |
+
1.0,
|
168 |
+
0.49500000000000005
|
169 |
+
],
|
170 |
+
[
|
171 |
+
1.0,
|
172 |
+
0.0,
|
173 |
+
0.0,
|
174 |
+
0.0,
|
175 |
+
0.0,
|
176 |
+
1.0,
|
177 |
+
0.0,
|
178 |
+
0.0,
|
179 |
+
0.0,
|
180 |
+
0.0,
|
181 |
+
1.0,
|
182 |
+
0.54
|
183 |
+
],
|
184 |
+
[
|
185 |
+
1.0,
|
186 |
+
0.0,
|
187 |
+
0.0,
|
188 |
+
0.0,
|
189 |
+
0.0,
|
190 |
+
1.0,
|
191 |
+
0.0,
|
192 |
+
0.0,
|
193 |
+
0.0,
|
194 |
+
0.0,
|
195 |
+
1.0,
|
196 |
+
0.5850000000000001
|
197 |
+
],
|
198 |
+
[
|
199 |
+
1.0,
|
200 |
+
0.0,
|
201 |
+
0.0,
|
202 |
+
0.0,
|
203 |
+
0.0,
|
204 |
+
1.0,
|
205 |
+
0.0,
|
206 |
+
0.0,
|
207 |
+
0.0,
|
208 |
+
0.0,
|
209 |
+
1.0,
|
210 |
+
0.6300000000000001
|
211 |
+
],
|
212 |
+
[
|
213 |
+
1.0,
|
214 |
+
0.0,
|
215 |
+
0.0,
|
216 |
+
0.0,
|
217 |
+
0.0,
|
218 |
+
1.0,
|
219 |
+
0.0,
|
220 |
+
0.0,
|
221 |
+
0.0,
|
222 |
+
0.0,
|
223 |
+
1.0,
|
224 |
+
0.675
|
225 |
+
]
|
226 |
+
]
|
examples/camera_poses/test_camera_O_1.0x.json
ADDED
@@ -0,0 +1,226 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
[
|
3 |
+
1.0,
|
4 |
+
0.0,
|
5 |
+
0.0,
|
6 |
+
0.0,
|
7 |
+
0.0,
|
8 |
+
1.0,
|
9 |
+
0.0,
|
10 |
+
0.0,
|
11 |
+
0.0,
|
12 |
+
0.0,
|
13 |
+
1.0,
|
14 |
+
0.0
|
15 |
+
],
|
16 |
+
[
|
17 |
+
1.0,
|
18 |
+
0.0,
|
19 |
+
0.0,
|
20 |
+
0.0,
|
21 |
+
0.0,
|
22 |
+
1.0,
|
23 |
+
0.0,
|
24 |
+
0.0,
|
25 |
+
0.0,
|
26 |
+
0.0,
|
27 |
+
1.0,
|
28 |
+
0.1125
|
29 |
+
],
|
30 |
+
[
|
31 |
+
1.0,
|
32 |
+
0.0,
|
33 |
+
0.0,
|
34 |
+
0.0,
|
35 |
+
0.0,
|
36 |
+
1.0,
|
37 |
+
0.0,
|
38 |
+
0.0,
|
39 |
+
0.0,
|
40 |
+
0.0,
|
41 |
+
1.0,
|
42 |
+
0.225
|
43 |
+
],
|
44 |
+
[
|
45 |
+
1.0,
|
46 |
+
0.0,
|
47 |
+
0.0,
|
48 |
+
0.0,
|
49 |
+
0.0,
|
50 |
+
1.0,
|
51 |
+
0.0,
|
52 |
+
0.0,
|
53 |
+
0.0,
|
54 |
+
0.0,
|
55 |
+
1.0,
|
56 |
+
0.3375
|
57 |
+
],
|
58 |
+
[
|
59 |
+
1.0,
|
60 |
+
0.0,
|
61 |
+
0.0,
|
62 |
+
0.0,
|
63 |
+
0.0,
|
64 |
+
1.0,
|
65 |
+
0.0,
|
66 |
+
0.0,
|
67 |
+
0.0,
|
68 |
+
0.0,
|
69 |
+
1.0,
|
70 |
+
0.45
|
71 |
+
],
|
72 |
+
[
|
73 |
+
1.0,
|
74 |
+
0.0,
|
75 |
+
0.0,
|
76 |
+
0.0,
|
77 |
+
0.0,
|
78 |
+
1.0,
|
79 |
+
0.0,
|
80 |
+
0.0,
|
81 |
+
0.0,
|
82 |
+
0.0,
|
83 |
+
1.0,
|
84 |
+
0.5625
|
85 |
+
],
|
86 |
+
[
|
87 |
+
1.0,
|
88 |
+
0.0,
|
89 |
+
0.0,
|
90 |
+
0.0,
|
91 |
+
0.0,
|
92 |
+
1.0,
|
93 |
+
0.0,
|
94 |
+
0.0,
|
95 |
+
0.0,
|
96 |
+
0.0,
|
97 |
+
1.0,
|
98 |
+
0.675
|
99 |
+
],
|
100 |
+
[
|
101 |
+
1.0,
|
102 |
+
0.0,
|
103 |
+
0.0,
|
104 |
+
0.0,
|
105 |
+
0.0,
|
106 |
+
1.0,
|
107 |
+
0.0,
|
108 |
+
0.0,
|
109 |
+
0.0,
|
110 |
+
0.0,
|
111 |
+
1.0,
|
112 |
+
0.7875
|
113 |
+
],
|
114 |
+
[
|
115 |
+
1.0,
|
116 |
+
0.0,
|
117 |
+
0.0,
|
118 |
+
0.0,
|
119 |
+
0.0,
|
120 |
+
1.0,
|
121 |
+
0.0,
|
122 |
+
0.0,
|
123 |
+
0.0,
|
124 |
+
0.0,
|
125 |
+
1.0,
|
126 |
+
0.9
|
127 |
+
],
|
128 |
+
[
|
129 |
+
1.0,
|
130 |
+
0.0,
|
131 |
+
0.0,
|
132 |
+
0.0,
|
133 |
+
0.0,
|
134 |
+
1.0,
|
135 |
+
0.0,
|
136 |
+
0.0,
|
137 |
+
0.0,
|
138 |
+
0.0,
|
139 |
+
1.0,
|
140 |
+
1.0125
|
141 |
+
],
|
142 |
+
[
|
143 |
+
1.0,
|
144 |
+
0.0,
|
145 |
+
0.0,
|
146 |
+
0.0,
|
147 |
+
0.0,
|
148 |
+
1.0,
|
149 |
+
0.0,
|
150 |
+
0.0,
|
151 |
+
0.0,
|
152 |
+
0.0,
|
153 |
+
1.0,
|
154 |
+
1.125
|
155 |
+
],
|
156 |
+
[
|
157 |
+
1.0,
|
158 |
+
0.0,
|
159 |
+
0.0,
|
160 |
+
0.0,
|
161 |
+
0.0,
|
162 |
+
1.0,
|
163 |
+
0.0,
|
164 |
+
0.0,
|
165 |
+
0.0,
|
166 |
+
0.0,
|
167 |
+
1.0,
|
168 |
+
1.2375
|
169 |
+
],
|
170 |
+
[
|
171 |
+
1.0,
|
172 |
+
0.0,
|
173 |
+
0.0,
|
174 |
+
0.0,
|
175 |
+
0.0,
|
176 |
+
1.0,
|
177 |
+
0.0,
|
178 |
+
0.0,
|
179 |
+
0.0,
|
180 |
+
0.0,
|
181 |
+
1.0,
|
182 |
+
1.35
|
183 |
+
],
|
184 |
+
[
|
185 |
+
1.0,
|
186 |
+
0.0,
|
187 |
+
0.0,
|
188 |
+
0.0,
|
189 |
+
0.0,
|
190 |
+
1.0,
|
191 |
+
0.0,
|
192 |
+
0.0,
|
193 |
+
0.0,
|
194 |
+
0.0,
|
195 |
+
1.0,
|
196 |
+
1.4625000000000001
|
197 |
+
],
|
198 |
+
[
|
199 |
+
1.0,
|
200 |
+
0.0,
|
201 |
+
0.0,
|
202 |
+
0.0,
|
203 |
+
0.0,
|
204 |
+
1.0,
|
205 |
+
0.0,
|
206 |
+
0.0,
|
207 |
+
0.0,
|
208 |
+
0.0,
|
209 |
+
1.0,
|
210 |
+
1.575
|
211 |
+
],
|
212 |
+
[
|
213 |
+
1.0,
|
214 |
+
0.0,
|
215 |
+
0.0,
|
216 |
+
0.0,
|
217 |
+
0.0,
|
218 |
+
1.0,
|
219 |
+
0.0,
|
220 |
+
0.0,
|
221 |
+
0.0,
|
222 |
+
0.0,
|
223 |
+
1.0,
|
224 |
+
1.6875
|
225 |
+
]
|
226 |
+
]
|
examples/camera_poses/test_camera_O_2.0x.json
ADDED
@@ -0,0 +1,226 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
[
|
3 |
+
1.0,
|
4 |
+
0.0,
|
5 |
+
0.0,
|
6 |
+
0.0,
|
7 |
+
0.0,
|
8 |
+
1.0,
|
9 |
+
0.0,
|
10 |
+
0.0,
|
11 |
+
0.0,
|
12 |
+
0.0,
|
13 |
+
1.0,
|
14 |
+
0.0
|
15 |
+
],
|
16 |
+
[
|
17 |
+
1.0,
|
18 |
+
0.0,
|
19 |
+
0.0,
|
20 |
+
0.0,
|
21 |
+
0.0,
|
22 |
+
1.0,
|
23 |
+
0.0,
|
24 |
+
0.0,
|
25 |
+
0.0,
|
26 |
+
0.0,
|
27 |
+
1.0,
|
28 |
+
0.225
|
29 |
+
],
|
30 |
+
[
|
31 |
+
1.0,
|
32 |
+
0.0,
|
33 |
+
0.0,
|
34 |
+
0.0,
|
35 |
+
0.0,
|
36 |
+
1.0,
|
37 |
+
0.0,
|
38 |
+
0.0,
|
39 |
+
0.0,
|
40 |
+
0.0,
|
41 |
+
1.0,
|
42 |
+
0.45
|
43 |
+
],
|
44 |
+
[
|
45 |
+
1.0,
|
46 |
+
0.0,
|
47 |
+
0.0,
|
48 |
+
0.0,
|
49 |
+
0.0,
|
50 |
+
1.0,
|
51 |
+
0.0,
|
52 |
+
0.0,
|
53 |
+
0.0,
|
54 |
+
0.0,
|
55 |
+
1.0,
|
56 |
+
0.675
|
57 |
+
],
|
58 |
+
[
|
59 |
+
1.0,
|
60 |
+
0.0,
|
61 |
+
0.0,
|
62 |
+
0.0,
|
63 |
+
0.0,
|
64 |
+
1.0,
|
65 |
+
0.0,
|
66 |
+
0.0,
|
67 |
+
0.0,
|
68 |
+
0.0,
|
69 |
+
1.0,
|
70 |
+
0.9
|
71 |
+
],
|
72 |
+
[
|
73 |
+
1.0,
|
74 |
+
0.0,
|
75 |
+
0.0,
|
76 |
+
0.0,
|
77 |
+
0.0,
|
78 |
+
1.0,
|
79 |
+
0.0,
|
80 |
+
0.0,
|
81 |
+
0.0,
|
82 |
+
0.0,
|
83 |
+
1.0,
|
84 |
+
1.125
|
85 |
+
],
|
86 |
+
[
|
87 |
+
1.0,
|
88 |
+
0.0,
|
89 |
+
0.0,
|
90 |
+
0.0,
|
91 |
+
0.0,
|
92 |
+
1.0,
|
93 |
+
0.0,
|
94 |
+
0.0,
|
95 |
+
0.0,
|
96 |
+
0.0,
|
97 |
+
1.0,
|
98 |
+
1.35
|
99 |
+
],
|
100 |
+
[
|
101 |
+
1.0,
|
102 |
+
0.0,
|
103 |
+
0.0,
|
104 |
+
0.0,
|
105 |
+
0.0,
|
106 |
+
1.0,
|
107 |
+
0.0,
|
108 |
+
0.0,
|
109 |
+
0.0,
|
110 |
+
0.0,
|
111 |
+
1.0,
|
112 |
+
1.575
|
113 |
+
],
|
114 |
+
[
|
115 |
+
1.0,
|
116 |
+
0.0,
|
117 |
+
0.0,
|
118 |
+
0.0,
|
119 |
+
0.0,
|
120 |
+
1.0,
|
121 |
+
0.0,
|
122 |
+
0.0,
|
123 |
+
0.0,
|
124 |
+
0.0,
|
125 |
+
1.0,
|
126 |
+
1.8
|
127 |
+
],
|
128 |
+
[
|
129 |
+
1.0,
|
130 |
+
0.0,
|
131 |
+
0.0,
|
132 |
+
0.0,
|
133 |
+
0.0,
|
134 |
+
1.0,
|
135 |
+
0.0,
|
136 |
+
0.0,
|
137 |
+
0.0,
|
138 |
+
0.0,
|
139 |
+
1.0,
|
140 |
+
2.025
|
141 |
+
],
|
142 |
+
[
|
143 |
+
1.0,
|
144 |
+
0.0,
|
145 |
+
0.0,
|
146 |
+
0.0,
|
147 |
+
0.0,
|
148 |
+
1.0,
|
149 |
+
0.0,
|
150 |
+
0.0,
|
151 |
+
0.0,
|
152 |
+
0.0,
|
153 |
+
1.0,
|
154 |
+
2.25
|
155 |
+
],
|
156 |
+
[
|
157 |
+
1.0,
|
158 |
+
0.0,
|
159 |
+
0.0,
|
160 |
+
0.0,
|
161 |
+
0.0,
|
162 |
+
1.0,
|
163 |
+
0.0,
|
164 |
+
0.0,
|
165 |
+
0.0,
|
166 |
+
0.0,
|
167 |
+
1.0,
|
168 |
+
2.475
|
169 |
+
],
|
170 |
+
[
|
171 |
+
1.0,
|
172 |
+
0.0,
|
173 |
+
0.0,
|
174 |
+
0.0,
|
175 |
+
0.0,
|
176 |
+
1.0,
|
177 |
+
0.0,
|
178 |
+
0.0,
|
179 |
+
0.0,
|
180 |
+
0.0,
|
181 |
+
1.0,
|
182 |
+
2.7
|
183 |
+
],
|
184 |
+
[
|
185 |
+
1.0,
|
186 |
+
0.0,
|
187 |
+
0.0,
|
188 |
+
0.0,
|
189 |
+
0.0,
|
190 |
+
1.0,
|
191 |
+
0.0,
|
192 |
+
0.0,
|
193 |
+
0.0,
|
194 |
+
0.0,
|
195 |
+
1.0,
|
196 |
+
2.9250000000000003
|
197 |
+
],
|
198 |
+
[
|
199 |
+
1.0,
|
200 |
+
0.0,
|
201 |
+
0.0,
|
202 |
+
0.0,
|
203 |
+
0.0,
|
204 |
+
1.0,
|
205 |
+
0.0,
|
206 |
+
0.0,
|
207 |
+
0.0,
|
208 |
+
0.0,
|
209 |
+
1.0,
|
210 |
+
3.15
|
211 |
+
],
|
212 |
+
[
|
213 |
+
1.0,
|
214 |
+
0.0,
|
215 |
+
0.0,
|
216 |
+
0.0,
|
217 |
+
0.0,
|
218 |
+
1.0,
|
219 |
+
0.0,
|
220 |
+
0.0,
|
221 |
+
0.0,
|
222 |
+
0.0,
|
223 |
+
1.0,
|
224 |
+
3.375
|
225 |
+
]
|
226 |
+
]
|
examples/camera_poses/test_camera_R.json
ADDED
@@ -0,0 +1,226 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
[
|
3 |
+
1.0,
|
4 |
+
0.0,
|
5 |
+
0.0,
|
6 |
+
-0.2,
|
7 |
+
0.0,
|
8 |
+
1.0,
|
9 |
+
0.0,
|
10 |
+
0.0,
|
11 |
+
0.0,
|
12 |
+
0.0,
|
13 |
+
1.0,
|
14 |
+
0.0
|
15 |
+
],
|
16 |
+
[
|
17 |
+
1.0,
|
18 |
+
0.0,
|
19 |
+
0.0,
|
20 |
+
-0.28750000000000003,
|
21 |
+
0.0,
|
22 |
+
1.0,
|
23 |
+
0.0,
|
24 |
+
0.0,
|
25 |
+
0.0,
|
26 |
+
0.0,
|
27 |
+
1.0,
|
28 |
+
0.0
|
29 |
+
],
|
30 |
+
[
|
31 |
+
1.0,
|
32 |
+
0.0,
|
33 |
+
0.0,
|
34 |
+
-0.37500000000000006,
|
35 |
+
0.0,
|
36 |
+
1.0,
|
37 |
+
0.0,
|
38 |
+
0.0,
|
39 |
+
0.0,
|
40 |
+
0.0,
|
41 |
+
1.0,
|
42 |
+
0.0
|
43 |
+
],
|
44 |
+
[
|
45 |
+
1.0,
|
46 |
+
0.0,
|
47 |
+
0.0,
|
48 |
+
-0.4625000000000001,
|
49 |
+
0.0,
|
50 |
+
1.0,
|
51 |
+
0.0,
|
52 |
+
0.0,
|
53 |
+
0.0,
|
54 |
+
0.0,
|
55 |
+
1.0,
|
56 |
+
0.0
|
57 |
+
],
|
58 |
+
[
|
59 |
+
1.0,
|
60 |
+
0.0,
|
61 |
+
0.0,
|
62 |
+
-0.55,
|
63 |
+
0.0,
|
64 |
+
1.0,
|
65 |
+
0.0,
|
66 |
+
0.0,
|
67 |
+
0.0,
|
68 |
+
0.0,
|
69 |
+
1.0,
|
70 |
+
0.0
|
71 |
+
],
|
72 |
+
[
|
73 |
+
1.0,
|
74 |
+
0.0,
|
75 |
+
0.0,
|
76 |
+
-0.6375000000000002,
|
77 |
+
0.0,
|
78 |
+
1.0,
|
79 |
+
0.0,
|
80 |
+
0.0,
|
81 |
+
0.0,
|
82 |
+
0.0,
|
83 |
+
1.0,
|
84 |
+
0.0
|
85 |
+
],
|
86 |
+
[
|
87 |
+
1.0,
|
88 |
+
0.0,
|
89 |
+
0.0,
|
90 |
+
-0.7250000000000001,
|
91 |
+
0.0,
|
92 |
+
1.0,
|
93 |
+
0.0,
|
94 |
+
0.0,
|
95 |
+
0.0,
|
96 |
+
0.0,
|
97 |
+
1.0,
|
98 |
+
0.0
|
99 |
+
],
|
100 |
+
[
|
101 |
+
1.0,
|
102 |
+
0.0,
|
103 |
+
0.0,
|
104 |
+
-0.8125000000000002,
|
105 |
+
0.0,
|
106 |
+
1.0,
|
107 |
+
0.0,
|
108 |
+
0.0,
|
109 |
+
0.0,
|
110 |
+
0.0,
|
111 |
+
1.0,
|
112 |
+
0.0
|
113 |
+
],
|
114 |
+
[
|
115 |
+
1.0,
|
116 |
+
0.0,
|
117 |
+
0.0,
|
118 |
+
-0.9000000000000001,
|
119 |
+
0.0,
|
120 |
+
1.0,
|
121 |
+
0.0,
|
122 |
+
0.0,
|
123 |
+
0.0,
|
124 |
+
0.0,
|
125 |
+
1.0,
|
126 |
+
0.0
|
127 |
+
],
|
128 |
+
[
|
129 |
+
1.0,
|
130 |
+
0.0,
|
131 |
+
0.0,
|
132 |
+
-0.9875000000000003,
|
133 |
+
0.0,
|
134 |
+
1.0,
|
135 |
+
0.0,
|
136 |
+
0.0,
|
137 |
+
0.0,
|
138 |
+
0.0,
|
139 |
+
1.0,
|
140 |
+
0.0
|
141 |
+
],
|
142 |
+
[
|
143 |
+
1.0,
|
144 |
+
0.0,
|
145 |
+
0.0,
|
146 |
+
-1.0750000000000002,
|
147 |
+
0.0,
|
148 |
+
1.0,
|
149 |
+
0.0,
|
150 |
+
0.0,
|
151 |
+
0.0,
|
152 |
+
0.0,
|
153 |
+
1.0,
|
154 |
+
0.0
|
155 |
+
],
|
156 |
+
[
|
157 |
+
1.0,
|
158 |
+
0.0,
|
159 |
+
0.0,
|
160 |
+
-1.1625000000000003,
|
161 |
+
0.0,
|
162 |
+
1.0,
|
163 |
+
0.0,
|
164 |
+
0.0,
|
165 |
+
0.0,
|
166 |
+
0.0,
|
167 |
+
1.0,
|
168 |
+
0.0
|
169 |
+
],
|
170 |
+
[
|
171 |
+
1.0,
|
172 |
+
0.0,
|
173 |
+
0.0,
|
174 |
+
-1.2500000000000002,
|
175 |
+
0.0,
|
176 |
+
1.0,
|
177 |
+
0.0,
|
178 |
+
0.0,
|
179 |
+
0.0,
|
180 |
+
0.0,
|
181 |
+
1.0,
|
182 |
+
0.0
|
183 |
+
],
|
184 |
+
[
|
185 |
+
1.0,
|
186 |
+
0.0,
|
187 |
+
0.0,
|
188 |
+
-1.3375000000000001,
|
189 |
+
0.0,
|
190 |
+
1.0,
|
191 |
+
0.0,
|
192 |
+
0.0,
|
193 |
+
0.0,
|
194 |
+
0.0,
|
195 |
+
1.0,
|
196 |
+
0.0
|
197 |
+
],
|
198 |
+
[
|
199 |
+
1.0,
|
200 |
+
0.0,
|
201 |
+
0.0,
|
202 |
+
-1.4250000000000003,
|
203 |
+
0.0,
|
204 |
+
1.0,
|
205 |
+
0.0,
|
206 |
+
0.0,
|
207 |
+
0.0,
|
208 |
+
0.0,
|
209 |
+
1.0,
|
210 |
+
0.0
|
211 |
+
],
|
212 |
+
[
|
213 |
+
1.0,
|
214 |
+
0.0,
|
215 |
+
0.0,
|
216 |
+
-1.5125000000000004,
|
217 |
+
0.0,
|
218 |
+
1.0,
|
219 |
+
0.0,
|
220 |
+
0.0,
|
221 |
+
0.0,
|
222 |
+
0.0,
|
223 |
+
1.0,
|
224 |
+
0.0
|
225 |
+
]
|
226 |
+
]
|
examples/camera_poses/test_camera_Round-RI-120.json
ADDED
@@ -0,0 +1,226 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
[
|
3 |
+
1.0,
|
4 |
+
0.0,
|
5 |
+
0.0,
|
6 |
+
0.0,
|
7 |
+
0.0,
|
8 |
+
1.0,
|
9 |
+
0.0,
|
10 |
+
0.0,
|
11 |
+
0.0,
|
12 |
+
0.0,
|
13 |
+
1.0,
|
14 |
+
1.8
|
15 |
+
],
|
16 |
+
[
|
17 |
+
0.9914448613738104,
|
18 |
+
0.0,
|
19 |
+
0.13052619222005157,
|
20 |
+
0.13052619222005157,
|
21 |
+
0.0,
|
22 |
+
1.0,
|
23 |
+
0.0,
|
24 |
+
0.0,
|
25 |
+
-0.13052619222005157,
|
26 |
+
0.0,
|
27 |
+
0.9914448613738104,
|
28 |
+
1.7914448613738103
|
29 |
+
],
|
30 |
+
[
|
31 |
+
0.9659258262890683,
|
32 |
+
0.0,
|
33 |
+
0.25881904510252074,
|
34 |
+
0.25881904510252074,
|
35 |
+
0.0,
|
36 |
+
1.0,
|
37 |
+
0.0,
|
38 |
+
0.0,
|
39 |
+
-0.25881904510252074,
|
40 |
+
0.0,
|
41 |
+
0.9659258262890683,
|
42 |
+
1.7659258262890685
|
43 |
+
],
|
44 |
+
[
|
45 |
+
0.9238795325112867,
|
46 |
+
0.0,
|
47 |
+
0.3826834323650898,
|
48 |
+
0.3826834323650898,
|
49 |
+
0.0,
|
50 |
+
1.0,
|
51 |
+
0.0,
|
52 |
+
0.0,
|
53 |
+
-0.3826834323650898,
|
54 |
+
0.0,
|
55 |
+
0.9238795325112867,
|
56 |
+
1.7238795325112868
|
57 |
+
],
|
58 |
+
[
|
59 |
+
0.8660254037844387,
|
60 |
+
0.0,
|
61 |
+
0.49999999999999994,
|
62 |
+
0.49999999999999994,
|
63 |
+
0.0,
|
64 |
+
1.0,
|
65 |
+
0.0,
|
66 |
+
0.0,
|
67 |
+
-0.49999999999999994,
|
68 |
+
0.0,
|
69 |
+
0.8660254037844387,
|
70 |
+
1.6660254037844386
|
71 |
+
],
|
72 |
+
[
|
73 |
+
0.7933533402912353,
|
74 |
+
0.0,
|
75 |
+
0.6087614290087205,
|
76 |
+
0.6087614290087205,
|
77 |
+
0.0,
|
78 |
+
1.0,
|
79 |
+
0.0,
|
80 |
+
0.0,
|
81 |
+
-0.6087614290087205,
|
82 |
+
0.0,
|
83 |
+
0.7933533402912353,
|
84 |
+
1.5933533402912352
|
85 |
+
],
|
86 |
+
[
|
87 |
+
0.7071067811865476,
|
88 |
+
0.0,
|
89 |
+
0.7071067811865476,
|
90 |
+
0.7071067811865476,
|
91 |
+
0.0,
|
92 |
+
1.0,
|
93 |
+
0.0,
|
94 |
+
0.0,
|
95 |
+
-0.7071067811865476,
|
96 |
+
0.0,
|
97 |
+
0.7071067811865476,
|
98 |
+
1.5071067811865477
|
99 |
+
],
|
100 |
+
[
|
101 |
+
0.6087614290087207,
|
102 |
+
0.0,
|
103 |
+
0.7933533402912352,
|
104 |
+
0.7933533402912352,
|
105 |
+
0.0,
|
106 |
+
1.0,
|
107 |
+
0.0,
|
108 |
+
0.0,
|
109 |
+
-0.7933533402912352,
|
110 |
+
0.0,
|
111 |
+
0.6087614290087207,
|
112 |
+
1.4087614290087207
|
113 |
+
],
|
114 |
+
[
|
115 |
+
0.5000000000000001,
|
116 |
+
0.0,
|
117 |
+
0.8660254037844386,
|
118 |
+
0.8660254037844386,
|
119 |
+
0.0,
|
120 |
+
1.0,
|
121 |
+
0.0,
|
122 |
+
0.0,
|
123 |
+
-0.8660254037844386,
|
124 |
+
0.0,
|
125 |
+
0.5000000000000001,
|
126 |
+
1.3000000000000003
|
127 |
+
],
|
128 |
+
[
|
129 |
+
0.38268343236508984,
|
130 |
+
0.0,
|
131 |
+
0.9238795325112867,
|
132 |
+
0.9238795325112867,
|
133 |
+
0.0,
|
134 |
+
1.0,
|
135 |
+
0.0,
|
136 |
+
0.0,
|
137 |
+
-0.9238795325112867,
|
138 |
+
0.0,
|
139 |
+
0.38268343236508984,
|
140 |
+
1.1826834323650899
|
141 |
+
],
|
142 |
+
[
|
143 |
+
0.25881904510252096,
|
144 |
+
0.0,
|
145 |
+
0.9659258262890682,
|
146 |
+
0.9659258262890682,
|
147 |
+
0.0,
|
148 |
+
1.0,
|
149 |
+
0.0,
|
150 |
+
0.0,
|
151 |
+
-0.9659258262890682,
|
152 |
+
0.0,
|
153 |
+
0.25881904510252096,
|
154 |
+
1.058819045102521
|
155 |
+
],
|
156 |
+
[
|
157 |
+
0.1305261922200517,
|
158 |
+
0.0,
|
159 |
+
0.9914448613738104,
|
160 |
+
0.9914448613738104,
|
161 |
+
0.0,
|
162 |
+
1.0,
|
163 |
+
0.0,
|
164 |
+
0.0,
|
165 |
+
-0.9914448613738104,
|
166 |
+
0.0,
|
167 |
+
0.1305261922200517,
|
168 |
+
0.9305261922200517
|
169 |
+
],
|
170 |
+
[
|
171 |
+
6.123233995736766e-17,
|
172 |
+
0.0,
|
173 |
+
1.0,
|
174 |
+
1.0,
|
175 |
+
0.0,
|
176 |
+
1.0,
|
177 |
+
0.0,
|
178 |
+
0.0,
|
179 |
+
-1.0,
|
180 |
+
0.0,
|
181 |
+
6.123233995736766e-17,
|
182 |
+
0.8000000000000002
|
183 |
+
],
|
184 |
+
[
|
185 |
+
-0.13052619222005138,
|
186 |
+
0.0,
|
187 |
+
0.9914448613738105,
|
188 |
+
0.9914448613738105,
|
189 |
+
0.0,
|
190 |
+
1.0,
|
191 |
+
0.0,
|
192 |
+
0.0,
|
193 |
+
-0.9914448613738105,
|
194 |
+
0.0,
|
195 |
+
-0.13052619222005138,
|
196 |
+
0.6694738077799487
|
197 |
+
],
|
198 |
+
[
|
199 |
+
-0.25881904510252063,
|
200 |
+
0.0,
|
201 |
+
0.9659258262890683,
|
202 |
+
0.9659258262890683,
|
203 |
+
0.0,
|
204 |
+
1.0,
|
205 |
+
0.0,
|
206 |
+
0.0,
|
207 |
+
-0.9659258262890683,
|
208 |
+
0.0,
|
209 |
+
-0.25881904510252063,
|
210 |
+
0.5411809548974794
|
211 |
+
],
|
212 |
+
[
|
213 |
+
-0.3826834323650895,
|
214 |
+
0.0,
|
215 |
+
0.9238795325112868,
|
216 |
+
0.9238795325112868,
|
217 |
+
0.0,
|
218 |
+
1.0,
|
219 |
+
0.0,
|
220 |
+
0.0,
|
221 |
+
-0.9238795325112868,
|
222 |
+
0.0,
|
223 |
+
-0.3826834323650895,
|
224 |
+
0.41731656763491054
|
225 |
+
]
|
226 |
+
]
|
examples/camera_poses/test_camera_Round-RI.json
ADDED
@@ -0,0 +1,226 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
[
|
3 |
+
1.0,
|
4 |
+
0.0,
|
5 |
+
0.0,
|
6 |
+
0.0,
|
7 |
+
0.0,
|
8 |
+
1.0,
|
9 |
+
0.0,
|
10 |
+
0.0,
|
11 |
+
0.0,
|
12 |
+
0.0,
|
13 |
+
1.0,
|
14 |
+
1.7000000000000002
|
15 |
+
],
|
16 |
+
[
|
17 |
+
0.9807852804032304,
|
18 |
+
0.0,
|
19 |
+
0.19509032201612825,
|
20 |
+
0.17558128981451543,
|
21 |
+
0.0,
|
22 |
+
1.0,
|
23 |
+
0.0,
|
24 |
+
0.0,
|
25 |
+
-0.19509032201612825,
|
26 |
+
0.0,
|
27 |
+
0.9807852804032304,
|
28 |
+
1.6827067523629076
|
29 |
+
],
|
30 |
+
[
|
31 |
+
0.9238795325112867,
|
32 |
+
0.0,
|
33 |
+
0.3826834323650898,
|
34 |
+
0.3444150891285808,
|
35 |
+
0.0,
|
36 |
+
1.0,
|
37 |
+
0.0,
|
38 |
+
0.0,
|
39 |
+
-0.3826834323650898,
|
40 |
+
0.0,
|
41 |
+
0.9238795325112867,
|
42 |
+
1.631491579260158
|
43 |
+
],
|
44 |
+
[
|
45 |
+
0.8314696123025452,
|
46 |
+
0.0,
|
47 |
+
0.5555702330196022,
|
48 |
+
0.500013209717642,
|
49 |
+
0.0,
|
50 |
+
1.0,
|
51 |
+
0.0,
|
52 |
+
0.0,
|
53 |
+
-0.5555702330196022,
|
54 |
+
0.0,
|
55 |
+
0.8314696123025452,
|
56 |
+
1.5483226510722907
|
57 |
+
],
|
58 |
+
[
|
59 |
+
0.7071067811865476,
|
60 |
+
0.0,
|
61 |
+
0.7071067811865476,
|
62 |
+
0.6363961030678928,
|
63 |
+
0.0,
|
64 |
+
1.0,
|
65 |
+
0.0,
|
66 |
+
0.0,
|
67 |
+
-0.7071067811865476,
|
68 |
+
0.0,
|
69 |
+
0.7071067811865476,
|
70 |
+
1.436396103067893
|
71 |
+
],
|
72 |
+
[
|
73 |
+
0.5555702330196023,
|
74 |
+
0.0,
|
75 |
+
0.8314696123025452,
|
76 |
+
0.7483226510722907,
|
77 |
+
0.0,
|
78 |
+
1.0,
|
79 |
+
0.0,
|
80 |
+
0.0,
|
81 |
+
-0.8314696123025452,
|
82 |
+
0.0,
|
83 |
+
0.5555702330196023,
|
84 |
+
1.3000132097176422
|
85 |
+
],
|
86 |
+
[
|
87 |
+
0.38268343236508984,
|
88 |
+
0.0,
|
89 |
+
0.9238795325112867,
|
90 |
+
0.831491579260158,
|
91 |
+
0.0,
|
92 |
+
1.0,
|
93 |
+
0.0,
|
94 |
+
0.0,
|
95 |
+
-0.9238795325112867,
|
96 |
+
0.0,
|
97 |
+
0.38268343236508984,
|
98 |
+
1.144415089128581
|
99 |
+
],
|
100 |
+
[
|
101 |
+
0.19509032201612833,
|
102 |
+
0.0,
|
103 |
+
0.9807852804032304,
|
104 |
+
0.8827067523629074,
|
105 |
+
0.0,
|
106 |
+
1.0,
|
107 |
+
0.0,
|
108 |
+
0.0,
|
109 |
+
-0.9807852804032304,
|
110 |
+
0.0,
|
111 |
+
0.19509032201612833,
|
112 |
+
0.9755812898145155
|
113 |
+
],
|
114 |
+
[
|
115 |
+
6.123233995736766e-17,
|
116 |
+
0.0,
|
117 |
+
1.0,
|
118 |
+
0.9,
|
119 |
+
0.0,
|
120 |
+
1.0,
|
121 |
+
0.0,
|
122 |
+
0.0,
|
123 |
+
-1.0,
|
124 |
+
0.0,
|
125 |
+
6.123233995736766e-17,
|
126 |
+
0.8
|
127 |
+
],
|
128 |
+
[
|
129 |
+
-0.1950903220161282,
|
130 |
+
0.0,
|
131 |
+
0.9807852804032304,
|
132 |
+
0.8827067523629074,
|
133 |
+
0.0,
|
134 |
+
1.0,
|
135 |
+
0.0,
|
136 |
+
0.0,
|
137 |
+
-0.9807852804032304,
|
138 |
+
0.0,
|
139 |
+
-0.1950903220161282,
|
140 |
+
0.6244187101854847
|
141 |
+
],
|
142 |
+
[
|
143 |
+
-0.3826834323650897,
|
144 |
+
0.0,
|
145 |
+
0.9238795325112867,
|
146 |
+
0.831491579260158,
|
147 |
+
0.0,
|
148 |
+
1.0,
|
149 |
+
0.0,
|
150 |
+
0.0,
|
151 |
+
-0.9238795325112867,
|
152 |
+
0.0,
|
153 |
+
-0.3826834323650897,
|
154 |
+
0.4555849108714193
|
155 |
+
],
|
156 |
+
[
|
157 |
+
-0.555570233019602,
|
158 |
+
0.0,
|
159 |
+
0.8314696123025453,
|
160 |
+
0.7483226510722908,
|
161 |
+
0.0,
|
162 |
+
1.0,
|
163 |
+
0.0,
|
164 |
+
0.0,
|
165 |
+
-0.8314696123025453,
|
166 |
+
0.0,
|
167 |
+
-0.555570233019602,
|
168 |
+
0.2999867902823583
|
169 |
+
],
|
170 |
+
[
|
171 |
+
-0.7071067811865475,
|
172 |
+
0.0,
|
173 |
+
0.7071067811865476,
|
174 |
+
0.6363961030678928,
|
175 |
+
0.0,
|
176 |
+
1.0,
|
177 |
+
0.0,
|
178 |
+
0.0,
|
179 |
+
-0.7071067811865476,
|
180 |
+
0.0,
|
181 |
+
-0.7071067811865475,
|
182 |
+
0.1636038969321073
|
183 |
+
],
|
184 |
+
[
|
185 |
+
-0.8314696123025453,
|
186 |
+
0.0,
|
187 |
+
0.5555702330196022,
|
188 |
+
0.500013209717642,
|
189 |
+
0.0,
|
190 |
+
1.0,
|
191 |
+
0.0,
|
192 |
+
0.0,
|
193 |
+
-0.5555702330196022,
|
194 |
+
0.0,
|
195 |
+
-0.8314696123025453,
|
196 |
+
0.051677348927709255
|
197 |
+
],
|
198 |
+
[
|
199 |
+
-0.9238795325112867,
|
200 |
+
0.0,
|
201 |
+
0.3826834323650899,
|
202 |
+
0.34441508912858093,
|
203 |
+
0.0,
|
204 |
+
1.0,
|
205 |
+
0.0,
|
206 |
+
0.0,
|
207 |
+
-0.3826834323650899,
|
208 |
+
0.0,
|
209 |
+
-0.9238795325112867,
|
210 |
+
-0.031491579260158
|
211 |
+
],
|
212 |
+
[
|
213 |
+
-0.9807852804032304,
|
214 |
+
0.0,
|
215 |
+
0.1950903220161286,
|
216 |
+
0.17558128981451576,
|
217 |
+
0.0,
|
218 |
+
1.0,
|
219 |
+
0.0,
|
220 |
+
0.0,
|
221 |
+
-0.1950903220161286,
|
222 |
+
0.0,
|
223 |
+
-0.9807852804032304,
|
224 |
+
-0.08270675236290737
|
225 |
+
]
|
226 |
+
]
|
examples/camera_poses/test_camera_Round-RI_90.json
ADDED
@@ -0,0 +1,226 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
[
|
3 |
+
1.0,
|
4 |
+
0.0,
|
5 |
+
0.0,
|
6 |
+
0.0,
|
7 |
+
0.0,
|
8 |
+
1.0,
|
9 |
+
0.0,
|
10 |
+
0.0,
|
11 |
+
0.0,
|
12 |
+
0.0,
|
13 |
+
1.0,
|
14 |
+
1.7000000000000002
|
15 |
+
],
|
16 |
+
[
|
17 |
+
0.9951847266721969,
|
18 |
+
0.0,
|
19 |
+
0.0980171403295606,
|
20 |
+
0.08821542629660455,
|
21 |
+
0.0,
|
22 |
+
1.0,
|
23 |
+
0.0,
|
24 |
+
0.0,
|
25 |
+
-0.0980171403295606,
|
26 |
+
0.0,
|
27 |
+
0.9951847266721969,
|
28 |
+
1.6956662540049772
|
29 |
+
],
|
30 |
+
[
|
31 |
+
0.9807852804032304,
|
32 |
+
0.0,
|
33 |
+
0.19509032201612825,
|
34 |
+
0.17558128981451543,
|
35 |
+
0.0,
|
36 |
+
1.0,
|
37 |
+
0.0,
|
38 |
+
0.0,
|
39 |
+
-0.19509032201612825,
|
40 |
+
0.0,
|
41 |
+
0.9807852804032304,
|
42 |
+
1.6827067523629076
|
43 |
+
],
|
44 |
+
[
|
45 |
+
0.9569403357322088,
|
46 |
+
0.0,
|
47 |
+
0.29028467725446233,
|
48 |
+
0.2612562095290161,
|
49 |
+
0.0,
|
50 |
+
1.0,
|
51 |
+
0.0,
|
52 |
+
0.0,
|
53 |
+
-0.29028467725446233,
|
54 |
+
0.0,
|
55 |
+
0.9569403357322088,
|
56 |
+
1.661246302158988
|
57 |
+
],
|
58 |
+
[
|
59 |
+
0.9238795325112867,
|
60 |
+
0.0,
|
61 |
+
0.3826834323650898,
|
62 |
+
0.3444150891285808,
|
63 |
+
0.0,
|
64 |
+
1.0,
|
65 |
+
0.0,
|
66 |
+
0.0,
|
67 |
+
-0.3826834323650898,
|
68 |
+
0.0,
|
69 |
+
0.9238795325112867,
|
70 |
+
1.631491579260158
|
71 |
+
],
|
72 |
+
[
|
73 |
+
0.881921264348355,
|
74 |
+
0.0,
|
75 |
+
0.47139673682599764,
|
76 |
+
0.4242570631433979,
|
77 |
+
0.0,
|
78 |
+
1.0,
|
79 |
+
0.0,
|
80 |
+
0.0,
|
81 |
+
-0.47139673682599764,
|
82 |
+
0.0,
|
83 |
+
0.881921264348355,
|
84 |
+
1.5937291379135194
|
85 |
+
],
|
86 |
+
[
|
87 |
+
0.8314696123025452,
|
88 |
+
0.0,
|
89 |
+
0.5555702330196022,
|
90 |
+
0.500013209717642,
|
91 |
+
0.0,
|
92 |
+
1.0,
|
93 |
+
0.0,
|
94 |
+
0.0,
|
95 |
+
-0.5555702330196022,
|
96 |
+
0.0,
|
97 |
+
0.8314696123025452,
|
98 |
+
1.5483226510722907
|
99 |
+
],
|
100 |
+
[
|
101 |
+
0.773010453362737,
|
102 |
+
0.0,
|
103 |
+
0.6343932841636455,
|
104 |
+
0.5709539557472809,
|
105 |
+
0.0,
|
106 |
+
1.0,
|
107 |
+
0.0,
|
108 |
+
0.0,
|
109 |
+
-0.6343932841636455,
|
110 |
+
0.0,
|
111 |
+
0.773010453362737,
|
112 |
+
1.4957094080264635
|
113 |
+
],
|
114 |
+
[
|
115 |
+
0.7071067811865476,
|
116 |
+
0.0,
|
117 |
+
0.7071067811865476,
|
118 |
+
0.6363961030678928,
|
119 |
+
0.0,
|
120 |
+
1.0,
|
121 |
+
0.0,
|
122 |
+
0.0,
|
123 |
+
-0.7071067811865476,
|
124 |
+
0.0,
|
125 |
+
0.7071067811865476,
|
126 |
+
1.436396103067893
|
127 |
+
],
|
128 |
+
[
|
129 |
+
0.6343932841636455,
|
130 |
+
0.0,
|
131 |
+
0.7730104533627369,
|
132 |
+
0.6957094080264632,
|
133 |
+
0.0,
|
134 |
+
1.0,
|
135 |
+
0.0,
|
136 |
+
0.0,
|
137 |
+
-0.7730104533627369,
|
138 |
+
0.0,
|
139 |
+
0.6343932841636455,
|
140 |
+
1.370953955747281
|
141 |
+
],
|
142 |
+
[
|
143 |
+
0.5555702330196023,
|
144 |
+
0.0,
|
145 |
+
0.8314696123025452,
|
146 |
+
0.7483226510722907,
|
147 |
+
0.0,
|
148 |
+
1.0,
|
149 |
+
0.0,
|
150 |
+
0.0,
|
151 |
+
-0.8314696123025452,
|
152 |
+
0.0,
|
153 |
+
0.5555702330196023,
|
154 |
+
1.3000132097176422
|
155 |
+
],
|
156 |
+
[
|
157 |
+
0.4713967368259978,
|
158 |
+
0.0,
|
159 |
+
0.8819212643483549,
|
160 |
+
0.7937291379135195,
|
161 |
+
0.0,
|
162 |
+
1.0,
|
163 |
+
0.0,
|
164 |
+
0.0,
|
165 |
+
-0.8819212643483549,
|
166 |
+
0.0,
|
167 |
+
0.4713967368259978,
|
168 |
+
1.2242570631433982
|
169 |
+
],
|
170 |
+
[
|
171 |
+
0.38268343236508984,
|
172 |
+
0.0,
|
173 |
+
0.9238795325112867,
|
174 |
+
0.831491579260158,
|
175 |
+
0.0,
|
176 |
+
1.0,
|
177 |
+
0.0,
|
178 |
+
0.0,
|
179 |
+
-0.9238795325112867,
|
180 |
+
0.0,
|
181 |
+
0.38268343236508984,
|
182 |
+
1.144415089128581
|
183 |
+
],
|
184 |
+
[
|
185 |
+
0.29028467725446233,
|
186 |
+
0.0,
|
187 |
+
0.9569403357322089,
|
188 |
+
0.861246302158988,
|
189 |
+
0.0,
|
190 |
+
1.0,
|
191 |
+
0.0,
|
192 |
+
0.0,
|
193 |
+
-0.9569403357322089,
|
194 |
+
0.0,
|
195 |
+
0.29028467725446233,
|
196 |
+
1.0612562095290161
|
197 |
+
],
|
198 |
+
[
|
199 |
+
0.19509032201612833,
|
200 |
+
0.0,
|
201 |
+
0.9807852804032304,
|
202 |
+
0.8827067523629074,
|
203 |
+
0.0,
|
204 |
+
1.0,
|
205 |
+
0.0,
|
206 |
+
0.0,
|
207 |
+
-0.9807852804032304,
|
208 |
+
0.0,
|
209 |
+
0.19509032201612833,
|
210 |
+
0.9755812898145155
|
211 |
+
],
|
212 |
+
[
|
213 |
+
0.09801714032956077,
|
214 |
+
0.0,
|
215 |
+
0.9951847266721968,
|
216 |
+
0.8956662540049771,
|
217 |
+
0.0,
|
218 |
+
1.0,
|
219 |
+
0.0,
|
220 |
+
0.0,
|
221 |
+
-0.9951847266721968,
|
222 |
+
0.0,
|
223 |
+
0.09801714032956077,
|
224 |
+
0.8882154262966048
|
225 |
+
]
|
226 |
+
]
|
examples/camera_poses/test_camera_Round-ZoomIn.json
ADDED
@@ -0,0 +1,226 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
[
|
3 |
+
1.0,
|
4 |
+
0.0,
|
5 |
+
0.0,
|
6 |
+
0.0,
|
7 |
+
0.0,
|
8 |
+
1.0,
|
9 |
+
0.0,
|
10 |
+
0.0,
|
11 |
+
0.0,
|
12 |
+
0.0,
|
13 |
+
1.0,
|
14 |
+
0.81
|
15 |
+
],
|
16 |
+
[
|
17 |
+
0.9807852804032304,
|
18 |
+
0.0,
|
19 |
+
0.19509032201612825,
|
20 |
+
0.0019509032201612826,
|
21 |
+
0.0,
|
22 |
+
1.0,
|
23 |
+
0.0,
|
24 |
+
0.0,
|
25 |
+
-0.19509032201612825,
|
26 |
+
0.0,
|
27 |
+
0.9807852804032304,
|
28 |
+
0.8098078528040323
|
29 |
+
],
|
30 |
+
[
|
31 |
+
0.9238795325112867,
|
32 |
+
0.0,
|
33 |
+
0.3826834323650898,
|
34 |
+
0.003826834323650898,
|
35 |
+
0.0,
|
36 |
+
1.0,
|
37 |
+
0.0,
|
38 |
+
0.0,
|
39 |
+
-0.3826834323650898,
|
40 |
+
0.0,
|
41 |
+
0.9238795325112867,
|
42 |
+
0.8092387953251129
|
43 |
+
],
|
44 |
+
[
|
45 |
+
0.8314696123025452,
|
46 |
+
0.0,
|
47 |
+
0.5555702330196022,
|
48 |
+
0.005555702330196022,
|
49 |
+
0.0,
|
50 |
+
1.0,
|
51 |
+
0.0,
|
52 |
+
0.0,
|
53 |
+
-0.5555702330196022,
|
54 |
+
0.0,
|
55 |
+
0.8314696123025452,
|
56 |
+
0.8083146961230255
|
57 |
+
],
|
58 |
+
[
|
59 |
+
0.7071067811865476,
|
60 |
+
0.0,
|
61 |
+
0.7071067811865476,
|
62 |
+
0.007071067811865476,
|
63 |
+
0.0,
|
64 |
+
1.0,
|
65 |
+
0.0,
|
66 |
+
0.0,
|
67 |
+
-0.7071067811865476,
|
68 |
+
0.0,
|
69 |
+
0.7071067811865476,
|
70 |
+
0.8070710678118656
|
71 |
+
],
|
72 |
+
[
|
73 |
+
0.5555702330196023,
|
74 |
+
0.0,
|
75 |
+
0.8314696123025452,
|
76 |
+
0.008314696123025453,
|
77 |
+
0.0,
|
78 |
+
1.0,
|
79 |
+
0.0,
|
80 |
+
0.0,
|
81 |
+
-0.8314696123025452,
|
82 |
+
0.0,
|
83 |
+
0.5555702330196023,
|
84 |
+
0.805555702330196
|
85 |
+
],
|
86 |
+
[
|
87 |
+
0.38268343236508984,
|
88 |
+
0.0,
|
89 |
+
0.9238795325112867,
|
90 |
+
0.009238795325112868,
|
91 |
+
0.0,
|
92 |
+
1.0,
|
93 |
+
0.0,
|
94 |
+
0.0,
|
95 |
+
-0.9238795325112867,
|
96 |
+
0.0,
|
97 |
+
0.38268343236508984,
|
98 |
+
0.803826834323651
|
99 |
+
],
|
100 |
+
[
|
101 |
+
0.19509032201612833,
|
102 |
+
0.0,
|
103 |
+
0.9807852804032304,
|
104 |
+
0.009807852804032305,
|
105 |
+
0.0,
|
106 |
+
1.0,
|
107 |
+
0.0,
|
108 |
+
0.0,
|
109 |
+
-0.9807852804032304,
|
110 |
+
0.0,
|
111 |
+
0.19509032201612833,
|
112 |
+
0.8019509032201614
|
113 |
+
],
|
114 |
+
[
|
115 |
+
0.19509032201612833,
|
116 |
+
0.0,
|
117 |
+
0.9807852804032304,
|
118 |
+
0.009807852804032305,
|
119 |
+
0.0,
|
120 |
+
1.0,
|
121 |
+
0.0,
|
122 |
+
0.0,
|
123 |
+
-0.9807852804032304,
|
124 |
+
0.0,
|
125 |
+
0.19509032201612833,
|
126 |
+
0.8019509032201614
|
127 |
+
],
|
128 |
+
[
|
129 |
+
0.19509032201612833,
|
130 |
+
0.0,
|
131 |
+
0.9807852804032304,
|
132 |
+
0.009807852804032305,
|
133 |
+
0.0,
|
134 |
+
1.0,
|
135 |
+
0.0,
|
136 |
+
0.0,
|
137 |
+
-0.9807852804032304,
|
138 |
+
0.0,
|
139 |
+
0.19509032201612833,
|
140 |
+
0.7019509032201614
|
141 |
+
],
|
142 |
+
[
|
143 |
+
0.19509032201612833,
|
144 |
+
0.0,
|
145 |
+
0.9807852804032304,
|
146 |
+
0.009807852804032305,
|
147 |
+
0.0,
|
148 |
+
1.0,
|
149 |
+
0.0,
|
150 |
+
0.0,
|
151 |
+
-0.9807852804032304,
|
152 |
+
0.0,
|
153 |
+
0.19509032201612833,
|
154 |
+
0.6019509032201614
|
155 |
+
],
|
156 |
+
[
|
157 |
+
0.19509032201612833,
|
158 |
+
0.0,
|
159 |
+
0.9807852804032304,
|
160 |
+
0.009807852804032305,
|
161 |
+
0.0,
|
162 |
+
1.0,
|
163 |
+
0.0,
|
164 |
+
0.0,
|
165 |
+
-0.9807852804032304,
|
166 |
+
0.0,
|
167 |
+
0.19509032201612833,
|
168 |
+
0.5019509032201613
|
169 |
+
],
|
170 |
+
[
|
171 |
+
0.19509032201612833,
|
172 |
+
0.0,
|
173 |
+
0.9807852804032304,
|
174 |
+
0.009807852804032305,
|
175 |
+
0.0,
|
176 |
+
1.0,
|
177 |
+
0.0,
|
178 |
+
0.0,
|
179 |
+
-0.9807852804032304,
|
180 |
+
0.0,
|
181 |
+
0.19509032201612833,
|
182 |
+
0.4019509032201613
|
183 |
+
],
|
184 |
+
[
|
185 |
+
0.19509032201612833,
|
186 |
+
0.0,
|
187 |
+
0.9807852804032304,
|
188 |
+
0.009807852804032305,
|
189 |
+
0.0,
|
190 |
+
1.0,
|
191 |
+
0.0,
|
192 |
+
0.0,
|
193 |
+
-0.9807852804032304,
|
194 |
+
0.0,
|
195 |
+
0.19509032201612833,
|
196 |
+
0.3019509032201613
|
197 |
+
],
|
198 |
+
[
|
199 |
+
0.19509032201612833,
|
200 |
+
0.0,
|
201 |
+
0.9807852804032304,
|
202 |
+
0.009807852804032305,
|
203 |
+
0.0,
|
204 |
+
1.0,
|
205 |
+
0.0,
|
206 |
+
0.0,
|
207 |
+
-0.9807852804032304,
|
208 |
+
0.0,
|
209 |
+
0.19509032201612833,
|
210 |
+
0.2019509032201613
|
211 |
+
],
|
212 |
+
[
|
213 |
+
0.19509032201612833,
|
214 |
+
0.0,
|
215 |
+
0.9807852804032304,
|
216 |
+
0.009807852804032305,
|
217 |
+
0.0,
|
218 |
+
1.0,
|
219 |
+
0.0,
|
220 |
+
0.0,
|
221 |
+
-0.9807852804032304,
|
222 |
+
0.0,
|
223 |
+
0.19509032201612833,
|
224 |
+
0.10195090322016129
|
225 |
+
]
|
226 |
+
]
|
examples/camera_poses/test_camera_SPIN-ACW-60.json
ADDED
@@ -0,0 +1,226 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
[
|
3 |
+
1.0,
|
4 |
+
0.0,
|
5 |
+
0.0,
|
6 |
+
0.0,
|
7 |
+
0.0,
|
8 |
+
1.0,
|
9 |
+
0.0,
|
10 |
+
0.0,
|
11 |
+
0.0,
|
12 |
+
0.0,
|
13 |
+
1.0,
|
14 |
+
0.0
|
15 |
+
],
|
16 |
+
[
|
17 |
+
0.9978589232386035,
|
18 |
+
-0.06540312923014306,
|
19 |
+
0.0,
|
20 |
+
0.0,
|
21 |
+
0.06540312923014306,
|
22 |
+
0.9978589232386035,
|
23 |
+
0.0,
|
24 |
+
0.0,
|
25 |
+
0.0,
|
26 |
+
0.0,
|
27 |
+
1.0,
|
28 |
+
0.0
|
29 |
+
],
|
30 |
+
[
|
31 |
+
0.9914448613738104,
|
32 |
+
-0.13052619222005157,
|
33 |
+
0.0,
|
34 |
+
0.0,
|
35 |
+
0.13052619222005157,
|
36 |
+
0.9914448613738104,
|
37 |
+
0.0,
|
38 |
+
0.0,
|
39 |
+
0.0,
|
40 |
+
0.0,
|
41 |
+
1.0,
|
42 |
+
0.0
|
43 |
+
],
|
44 |
+
[
|
45 |
+
0.9807852804032304,
|
46 |
+
-0.19509032201612825,
|
47 |
+
0.0,
|
48 |
+
0.0,
|
49 |
+
0.19509032201612825,
|
50 |
+
0.9807852804032304,
|
51 |
+
0.0,
|
52 |
+
0.0,
|
53 |
+
0.0,
|
54 |
+
0.0,
|
55 |
+
1.0,
|
56 |
+
0.0
|
57 |
+
],
|
58 |
+
[
|
59 |
+
0.9659258262890683,
|
60 |
+
-0.25881904510252074,
|
61 |
+
0.0,
|
62 |
+
0.0,
|
63 |
+
0.25881904510252074,
|
64 |
+
0.9659258262890683,
|
65 |
+
0.0,
|
66 |
+
0.0,
|
67 |
+
0.0,
|
68 |
+
0.0,
|
69 |
+
1.0,
|
70 |
+
0.0
|
71 |
+
],
|
72 |
+
[
|
73 |
+
0.9469301294951057,
|
74 |
+
-0.32143946530316153,
|
75 |
+
0.0,
|
76 |
+
0.0,
|
77 |
+
0.32143946530316153,
|
78 |
+
0.9469301294951057,
|
79 |
+
0.0,
|
80 |
+
0.0,
|
81 |
+
0.0,
|
82 |
+
0.0,
|
83 |
+
1.0,
|
84 |
+
0.0
|
85 |
+
],
|
86 |
+
[
|
87 |
+
0.9238795325112867,
|
88 |
+
-0.3826834323650898,
|
89 |
+
0.0,
|
90 |
+
0.0,
|
91 |
+
0.3826834323650898,
|
92 |
+
0.9238795325112867,
|
93 |
+
0.0,
|
94 |
+
0.0,
|
95 |
+
0.0,
|
96 |
+
0.0,
|
97 |
+
1.0,
|
98 |
+
0.0
|
99 |
+
],
|
100 |
+
[
|
101 |
+
0.8968727415326884,
|
102 |
+
-0.44228869021900125,
|
103 |
+
0.0,
|
104 |
+
0.0,
|
105 |
+
0.44228869021900125,
|
106 |
+
0.8968727415326884,
|
107 |
+
0.0,
|
108 |
+
0.0,
|
109 |
+
0.0,
|
110 |
+
0.0,
|
111 |
+
1.0,
|
112 |
+
0.0
|
113 |
+
],
|
114 |
+
[
|
115 |
+
0.8660254037844387,
|
116 |
+
-0.49999999999999994,
|
117 |
+
0.0,
|
118 |
+
0.0,
|
119 |
+
0.49999999999999994,
|
120 |
+
0.8660254037844387,
|
121 |
+
0.0,
|
122 |
+
0.0,
|
123 |
+
0.0,
|
124 |
+
0.0,
|
125 |
+
1.0,
|
126 |
+
0.0
|
127 |
+
],
|
128 |
+
[
|
129 |
+
0.8314696123025452,
|
130 |
+
-0.5555702330196022,
|
131 |
+
0.0,
|
132 |
+
0.0,
|
133 |
+
0.5555702330196022,
|
134 |
+
0.8314696123025452,
|
135 |
+
0.0,
|
136 |
+
0.0,
|
137 |
+
0.0,
|
138 |
+
0.0,
|
139 |
+
1.0,
|
140 |
+
0.0
|
141 |
+
],
|
142 |
+
[
|
143 |
+
0.7933533402912353,
|
144 |
+
-0.6087614290087205,
|
145 |
+
0.0,
|
146 |
+
0.0,
|
147 |
+
0.6087614290087205,
|
148 |
+
0.7933533402912353,
|
149 |
+
0.0,
|
150 |
+
0.0,
|
151 |
+
0.0,
|
152 |
+
0.0,
|
153 |
+
1.0,
|
154 |
+
0.0
|
155 |
+
],
|
156 |
+
[
|
157 |
+
0.7518398074789774,
|
158 |
+
-0.6593458151000688,
|
159 |
+
0.0,
|
160 |
+
0.0,
|
161 |
+
0.6593458151000688,
|
162 |
+
0.7518398074789774,
|
163 |
+
0.0,
|
164 |
+
0.0,
|
165 |
+
0.0,
|
166 |
+
0.0,
|
167 |
+
1.0,
|
168 |
+
0.0
|
169 |
+
],
|
170 |
+
[
|
171 |
+
0.7071067811865476,
|
172 |
+
-0.7071067811865476,
|
173 |
+
0.0,
|
174 |
+
0.0,
|
175 |
+
0.7071067811865476,
|
176 |
+
0.7071067811865476,
|
177 |
+
0.0,
|
178 |
+
0.0,
|
179 |
+
0.0,
|
180 |
+
0.0,
|
181 |
+
1.0,
|
182 |
+
0.0
|
183 |
+
],
|
184 |
+
[
|
185 |
+
0.659345815100069,
|
186 |
+
-0.7518398074789773,
|
187 |
+
0.0,
|
188 |
+
0.0,
|
189 |
+
0.7518398074789773,
|
190 |
+
0.659345815100069,
|
191 |
+
0.0,
|
192 |
+
0.0,
|
193 |
+
0.0,
|
194 |
+
0.0,
|
195 |
+
1.0,
|
196 |
+
0.0
|
197 |
+
],
|
198 |
+
[
|
199 |
+
0.6087614290087207,
|
200 |
+
-0.7933533402912352,
|
201 |
+
0.0,
|
202 |
+
0.0,
|
203 |
+
0.7933533402912352,
|
204 |
+
0.6087614290087207,
|
205 |
+
0.0,
|
206 |
+
0.0,
|
207 |
+
0.0,
|
208 |
+
0.0,
|
209 |
+
1.0,
|
210 |
+
0.0
|
211 |
+
],
|
212 |
+
[
|
213 |
+
0.5555702330196024,
|
214 |
+
-0.8314696123025451,
|
215 |
+
0.0,
|
216 |
+
0.0,
|
217 |
+
0.8314696123025451,
|
218 |
+
0.5555702330196024,
|
219 |
+
0.0,
|
220 |
+
0.0,
|
221 |
+
0.0,
|
222 |
+
0.0,
|
223 |
+
1.0,
|
224 |
+
0.0
|
225 |
+
]
|
226 |
+
]
|
examples/camera_poses/test_camera_SPIN-CW-60.json
ADDED
@@ -0,0 +1,226 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
[
|
3 |
+
1.0,
|
4 |
+
0.0,
|
5 |
+
0.0,
|
6 |
+
0.0,
|
7 |
+
0.0,
|
8 |
+
1.0,
|
9 |
+
0.0,
|
10 |
+
0.0,
|
11 |
+
0.0,
|
12 |
+
0.0,
|
13 |
+
1.0,
|
14 |
+
0.0
|
15 |
+
],
|
16 |
+
[
|
17 |
+
0.9978589232386035,
|
18 |
+
0.06540312923014306,
|
19 |
+
0.0,
|
20 |
+
0.0,
|
21 |
+
-0.06540312923014306,
|
22 |
+
0.9978589232386035,
|
23 |
+
0.0,
|
24 |
+
0.0,
|
25 |
+
0.0,
|
26 |
+
0.0,
|
27 |
+
1.0,
|
28 |
+
0.0
|
29 |
+
],
|
30 |
+
[
|
31 |
+
0.9914448613738104,
|
32 |
+
0.13052619222005157,
|
33 |
+
0.0,
|
34 |
+
0.0,
|
35 |
+
-0.13052619222005157,
|
36 |
+
0.9914448613738104,
|
37 |
+
0.0,
|
38 |
+
0.0,
|
39 |
+
0.0,
|
40 |
+
0.0,
|
41 |
+
1.0,
|
42 |
+
0.0
|
43 |
+
],
|
44 |
+
[
|
45 |
+
0.9807852804032304,
|
46 |
+
0.19509032201612825,
|
47 |
+
0.0,
|
48 |
+
0.0,
|
49 |
+
-0.19509032201612825,
|
50 |
+
0.9807852804032304,
|
51 |
+
0.0,
|
52 |
+
0.0,
|
53 |
+
0.0,
|
54 |
+
0.0,
|
55 |
+
1.0,
|
56 |
+
0.0
|
57 |
+
],
|
58 |
+
[
|
59 |
+
0.9659258262890683,
|
60 |
+
0.25881904510252074,
|
61 |
+
0.0,
|
62 |
+
0.0,
|
63 |
+
-0.25881904510252074,
|
64 |
+
0.9659258262890683,
|
65 |
+
0.0,
|
66 |
+
0.0,
|
67 |
+
0.0,
|
68 |
+
0.0,
|
69 |
+
1.0,
|
70 |
+
0.0
|
71 |
+
],
|
72 |
+
[
|
73 |
+
0.9469301294951057,
|
74 |
+
0.32143946530316153,
|
75 |
+
0.0,
|
76 |
+
0.0,
|
77 |
+
-0.32143946530316153,
|
78 |
+
0.9469301294951057,
|
79 |
+
0.0,
|
80 |
+
0.0,
|
81 |
+
0.0,
|
82 |
+
0.0,
|
83 |
+
1.0,
|
84 |
+
0.0
|
85 |
+
],
|
86 |
+
[
|
87 |
+
0.9238795325112867,
|
88 |
+
0.3826834323650898,
|
89 |
+
0.0,
|
90 |
+
0.0,
|
91 |
+
-0.3826834323650898,
|
92 |
+
0.9238795325112867,
|
93 |
+
0.0,
|
94 |
+
0.0,
|
95 |
+
0.0,
|
96 |
+
0.0,
|
97 |
+
1.0,
|
98 |
+
0.0
|
99 |
+
],
|
100 |
+
[
|
101 |
+
0.8968727415326884,
|
102 |
+
0.44228869021900125,
|
103 |
+
0.0,
|
104 |
+
0.0,
|
105 |
+
-0.44228869021900125,
|
106 |
+
0.8968727415326884,
|
107 |
+
0.0,
|
108 |
+
0.0,
|
109 |
+
0.0,
|
110 |
+
0.0,
|
111 |
+
1.0,
|
112 |
+
0.0
|
113 |
+
],
|
114 |
+
[
|
115 |
+
0.8660254037844387,
|
116 |
+
0.49999999999999994,
|
117 |
+
0.0,
|
118 |
+
0.0,
|
119 |
+
-0.49999999999999994,
|
120 |
+
0.8660254037844387,
|
121 |
+
0.0,
|
122 |
+
0.0,
|
123 |
+
0.0,
|
124 |
+
0.0,
|
125 |
+
1.0,
|
126 |
+
0.0
|
127 |
+
],
|
128 |
+
[
|
129 |
+
0.8314696123025452,
|
130 |
+
0.5555702330196022,
|
131 |
+
0.0,
|
132 |
+
0.0,
|
133 |
+
-0.5555702330196022,
|
134 |
+
0.8314696123025452,
|
135 |
+
0.0,
|
136 |
+
0.0,
|
137 |
+
0.0,
|
138 |
+
0.0,
|
139 |
+
1.0,
|
140 |
+
0.0
|
141 |
+
],
|
142 |
+
[
|
143 |
+
0.7933533402912353,
|
144 |
+
0.6087614290087205,
|
145 |
+
0.0,
|
146 |
+
0.0,
|
147 |
+
-0.6087614290087205,
|
148 |
+
0.7933533402912353,
|
149 |
+
0.0,
|
150 |
+
0.0,
|
151 |
+
0.0,
|
152 |
+
0.0,
|
153 |
+
1.0,
|
154 |
+
0.0
|
155 |
+
],
|
156 |
+
[
|
157 |
+
0.7518398074789774,
|
158 |
+
0.6593458151000688,
|
159 |
+
0.0,
|
160 |
+
0.0,
|
161 |
+
-0.6593458151000688,
|
162 |
+
0.7518398074789774,
|
163 |
+
0.0,
|
164 |
+
0.0,
|
165 |
+
0.0,
|
166 |
+
0.0,
|
167 |
+
1.0,
|
168 |
+
0.0
|
169 |
+
],
|
170 |
+
[
|
171 |
+
0.7071067811865476,
|
172 |
+
0.7071067811865476,
|
173 |
+
0.0,
|
174 |
+
0.0,
|
175 |
+
-0.7071067811865476,
|
176 |
+
0.7071067811865476,
|
177 |
+
0.0,
|
178 |
+
0.0,
|
179 |
+
0.0,
|
180 |
+
0.0,
|
181 |
+
1.0,
|
182 |
+
0.0
|
183 |
+
],
|
184 |
+
[
|
185 |
+
0.659345815100069,
|
186 |
+
0.7518398074789773,
|
187 |
+
0.0,
|
188 |
+
0.0,
|
189 |
+
-0.7518398074789773,
|
190 |
+
0.659345815100069,
|
191 |
+
0.0,
|
192 |
+
0.0,
|
193 |
+
0.0,
|
194 |
+
0.0,
|
195 |
+
1.0,
|
196 |
+
0.0
|
197 |
+
],
|
198 |
+
[
|
199 |
+
0.6087614290087207,
|
200 |
+
0.7933533402912352,
|
201 |
+
0.0,
|
202 |
+
0.0,
|
203 |
+
-0.7933533402912352,
|
204 |
+
0.6087614290087207,
|
205 |
+
0.0,
|
206 |
+
0.0,
|
207 |
+
0.0,
|
208 |
+
0.0,
|
209 |
+
1.0,
|
210 |
+
0.0
|
211 |
+
],
|
212 |
+
[
|
213 |
+
0.5555702330196024,
|
214 |
+
0.8314696123025451,
|
215 |
+
0.0,
|
216 |
+
0.0,
|
217 |
+
-0.8314696123025451,
|
218 |
+
0.5555702330196024,
|
219 |
+
0.0,
|
220 |
+
0.0,
|
221 |
+
0.0,
|
222 |
+
0.0,
|
223 |
+
1.0,
|
224 |
+
0.0
|
225 |
+
]
|
226 |
+
]
|
examples/camera_poses/test_camera_U.json
ADDED
@@ -0,0 +1,226 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
[
|
3 |
+
1.0,
|
4 |
+
0.0,
|
5 |
+
0.0,
|
6 |
+
0.0,
|
7 |
+
0.0,
|
8 |
+
1.0,
|
9 |
+
0.0,
|
10 |
+
0.2,
|
11 |
+
0.0,
|
12 |
+
0.0,
|
13 |
+
1.0,
|
14 |
+
0.0
|
15 |
+
],
|
16 |
+
[
|
17 |
+
1.0,
|
18 |
+
0.0,
|
19 |
+
0.0,
|
20 |
+
0.0,
|
21 |
+
0.0,
|
22 |
+
1.0,
|
23 |
+
0.0,
|
24 |
+
0.28750000000000003,
|
25 |
+
0.0,
|
26 |
+
0.0,
|
27 |
+
1.0,
|
28 |
+
0.0
|
29 |
+
],
|
30 |
+
[
|
31 |
+
1.0,
|
32 |
+
0.0,
|
33 |
+
0.0,
|
34 |
+
0.0,
|
35 |
+
0.0,
|
36 |
+
1.0,
|
37 |
+
0.0,
|
38 |
+
0.37500000000000006,
|
39 |
+
0.0,
|
40 |
+
0.0,
|
41 |
+
1.0,
|
42 |
+
0.0
|
43 |
+
],
|
44 |
+
[
|
45 |
+
1.0,
|
46 |
+
0.0,
|
47 |
+
0.0,
|
48 |
+
0.0,
|
49 |
+
0.0,
|
50 |
+
1.0,
|
51 |
+
0.0,
|
52 |
+
0.4625000000000001,
|
53 |
+
0.0,
|
54 |
+
0.0,
|
55 |
+
1.0,
|
56 |
+
0.0
|
57 |
+
],
|
58 |
+
[
|
59 |
+
1.0,
|
60 |
+
0.0,
|
61 |
+
0.0,
|
62 |
+
0.0,
|
63 |
+
0.0,
|
64 |
+
1.0,
|
65 |
+
0.0,
|
66 |
+
0.55,
|
67 |
+
0.0,
|
68 |
+
0.0,
|
69 |
+
1.0,
|
70 |
+
0.0
|
71 |
+
],
|
72 |
+
[
|
73 |
+
1.0,
|
74 |
+
0.0,
|
75 |
+
0.0,
|
76 |
+
0.0,
|
77 |
+
0.0,
|
78 |
+
1.0,
|
79 |
+
0.0,
|
80 |
+
0.6375000000000002,
|
81 |
+
0.0,
|
82 |
+
0.0,
|
83 |
+
1.0,
|
84 |
+
0.0
|
85 |
+
],
|
86 |
+
[
|
87 |
+
1.0,
|
88 |
+
0.0,
|
89 |
+
0.0,
|
90 |
+
0.0,
|
91 |
+
0.0,
|
92 |
+
1.0,
|
93 |
+
0.0,
|
94 |
+
0.7250000000000001,
|
95 |
+
0.0,
|
96 |
+
0.0,
|
97 |
+
1.0,
|
98 |
+
0.0
|
99 |
+
],
|
100 |
+
[
|
101 |
+
1.0,
|
102 |
+
0.0,
|
103 |
+
0.0,
|
104 |
+
0.0,
|
105 |
+
0.0,
|
106 |
+
1.0,
|
107 |
+
0.0,
|
108 |
+
0.8125000000000002,
|
109 |
+
0.0,
|
110 |
+
0.0,
|
111 |
+
1.0,
|
112 |
+
0.0
|
113 |
+
],
|
114 |
+
[
|
115 |
+
1.0,
|
116 |
+
0.0,
|
117 |
+
0.0,
|
118 |
+
0.0,
|
119 |
+
0.0,
|
120 |
+
1.0,
|
121 |
+
0.0,
|
122 |
+
0.9000000000000001,
|
123 |
+
0.0,
|
124 |
+
0.0,
|
125 |
+
1.0,
|
126 |
+
0.0
|
127 |
+
],
|
128 |
+
[
|
129 |
+
1.0,
|
130 |
+
0.0,
|
131 |
+
0.0,
|
132 |
+
0.0,
|
133 |
+
0.0,
|
134 |
+
1.0,
|
135 |
+
0.0,
|
136 |
+
0.9875000000000003,
|
137 |
+
0.0,
|
138 |
+
0.0,
|
139 |
+
1.0,
|
140 |
+
0.0
|
141 |
+
],
|
142 |
+
[
|
143 |
+
1.0,
|
144 |
+
0.0,
|
145 |
+
0.0,
|
146 |
+
0.0,
|
147 |
+
0.0,
|
148 |
+
1.0,
|
149 |
+
0.0,
|
150 |
+
1.0750000000000002,
|
151 |
+
0.0,
|
152 |
+
0.0,
|
153 |
+
1.0,
|
154 |
+
0.0
|
155 |
+
],
|
156 |
+
[
|
157 |
+
1.0,
|
158 |
+
0.0,
|
159 |
+
0.0,
|
160 |
+
0.0,
|
161 |
+
0.0,
|
162 |
+
1.0,
|
163 |
+
0.0,
|
164 |
+
1.1625000000000003,
|
165 |
+
0.0,
|
166 |
+
0.0,
|
167 |
+
1.0,
|
168 |
+
0.0
|
169 |
+
],
|
170 |
+
[
|
171 |
+
1.0,
|
172 |
+
0.0,
|
173 |
+
0.0,
|
174 |
+
0.0,
|
175 |
+
0.0,
|
176 |
+
1.0,
|
177 |
+
0.0,
|
178 |
+
1.2500000000000002,
|
179 |
+
0.0,
|
180 |
+
0.0,
|
181 |
+
1.0,
|
182 |
+
0.0
|
183 |
+
],
|
184 |
+
[
|
185 |
+
1.0,
|
186 |
+
0.0,
|
187 |
+
0.0,
|
188 |
+
0.0,
|
189 |
+
0.0,
|
190 |
+
1.0,
|
191 |
+
0.0,
|
192 |
+
1.3375000000000001,
|
193 |
+
0.0,
|
194 |
+
0.0,
|
195 |
+
1.0,
|
196 |
+
0.0
|
197 |
+
],
|
198 |
+
[
|
199 |
+
1.0,
|
200 |
+
0.0,
|
201 |
+
0.0,
|
202 |
+
0.0,
|
203 |
+
0.0,
|
204 |
+
1.0,
|
205 |
+
0.0,
|
206 |
+
1.4250000000000003,
|
207 |
+
0.0,
|
208 |
+
0.0,
|
209 |
+
1.0,
|
210 |
+
0.0
|
211 |
+
],
|
212 |
+
[
|
213 |
+
1.0,
|
214 |
+
0.0,
|
215 |
+
0.0,
|
216 |
+
0.0,
|
217 |
+
0.0,
|
218 |
+
1.0,
|
219 |
+
0.0,
|
220 |
+
1.5125000000000004,
|
221 |
+
0.0,
|
222 |
+
0.0,
|
223 |
+
1.0,
|
224 |
+
0.0
|
225 |
+
]
|
226 |
+
]
|
examples/camera_poses/test_camera_b133a504fc90a2d1.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
[[0.9999999403953552, -3.2563843288535566e-10, 8.624932434919685e-10, -5.431840754965833e-09, -3.2563843288535566e-10, 1.0, -7.078895802870022e-10, -2.678919752696629e-09, 8.624932434919685e-10, -7.078895802870022e-10, 1.0, 7.303774474110014e-09], [0.9999998807907104, 0.00026603759033605456, -0.0003414043167140335, -0.030107486993074417, -0.0002659278397914022, 0.9999999403953552, 0.00032293255208060145, 0.011978899128735065, 0.0003414914826862514, -0.0003228419227525592, 0.9999999403953552, -0.07893969118595123], [0.9999994039535522, -0.0006866907933726907, -0.0008186722989194095, -0.050785429775714874, 0.0006877407431602478, 0.9999989867210388, 0.0012827541213482618, 0.023323407396674156, 0.0008177922572940588, -0.0012833180371671915, 0.9999988675117493, -0.1486724615097046], [0.999999463558197, -0.0005364732351154089, -0.0008647883078083396, -0.0673225075006485, 0.0005379383219406009, 0.9999984502792358, 0.0016958877677097917, 0.03169107437133789, 0.0008638793369755149, -0.0016963522648438811, 0.9999982118606567, -0.21477271616458893], [0.9999995231628418, -0.0005853328038938344, 0.000731398060452193, -0.08539554476737976, 0.0005843221442773938, 0.9999988675117493, 0.0013807439245283604, 0.037947509437799454, -0.0007322035962715745, -0.0013803173787891865, 0.9999987483024597, -0.2858566641807556], [0.9999935030937195, -0.0007727851625531912, 0.00352613371796906, -0.10591986775398254, 0.0007684561423957348, 0.9999989867210388, 0.0012290359009057283, 0.0426139310002327, -0.003527079476043582, -0.0012263187672942877, 0.999993085861206, -0.3645589053630829], [0.9999805688858032, -0.0012497249990701675, 0.006103655323386192, -0.12257411330938339, 0.0012419418198987842, 0.9999984502792358, 0.001278668874874711, 0.05143251642584801, -0.006105243694037199, -0.0012710647424682975, 0.9999805688858032, -0.44212815165519714], [0.9999697804450989, -0.001364423311315477, 0.0076533216051757336, -0.13916294276714325, 0.0013530527940019965, 0.9999980330467224, 0.0014907552395015955, 0.06076823174953461, -0.0076553407125175, -0.0014803558588027954, 0.9999696016311646, -0.5131306648254395], [0.9999656081199646, -0.001309191924519837, 0.00818517804145813, -0.1577269434928894, 0.0012902054004371166, 0.9999964833259583, 0.0023244714830070734, 0.07221967726945877, -0.008188189007341862, -0.0023138325195759535, 0.9999638199806213, -0.5706046223640442], [0.9999715089797974, -0.000632039678748697, 0.0075194560922682285, -0.1842648684978485, 0.0006101227481849492, 0.9999955892562866, 0.002916603581979871, 0.0780157595872879, -0.0075212628580629826, -0.0029119334649294615, 0.9999675154685974, -0.6207911372184753], [0.999971330165863, 9.749359742272645e-05, 0.007570990361273289, -0.2200128734111786, -0.00012177121971035376, 0.9999948740005493, 0.0032062893733382225, 0.07083319127559662, -0.007570638321340084, -0.003207120578736067, 0.9999662041664124, -0.671477735042572], [0.9999842047691345, 0.0011085873702540994, 0.005505275446921587, -0.265299528837204, -0.0011242963373661041, 0.9999953508377075, 0.002851187251508236, 0.06430258601903915, -0.00550208892673254, -0.002857332583516836, 0.9999808073043823, -0.7294802069664001], [0.9999891519546509, 0.0030521126464009285, -0.003507567336782813, -0.3109421133995056, -0.0030410285107791424, 0.9999904632568359, 0.003161099273711443, 0.06503432989120483, 0.003517185803502798, -0.0031503995414823294, 0.999988853931427, -0.7917969226837158], [0.9995473623275757, 0.00647346256300807, -0.029379382729530334, -0.3455933630466461, -0.006376372650265694, 0.9999739527702332, 0.0033971993252635, 0.06981948018074036, 0.02940060943365097, -0.003208327107131481, 0.9995625615119934, -0.8474093675613403], [0.9966378808021545, 0.011493867263197899, -0.08112204819917679, -0.3555213510990143, -0.011167873628437519, 0.9999276399612427, 0.004471173509955406, 0.0734858587384224, 0.08116757124662399, -0.00355018163099885, 0.9966941475868225, -0.9062771201133728], [0.9889613389968872, 0.01762101612985134, -0.14712226390838623, -0.33937495946884155, -0.01693679392337799, 0.999839186668396, 0.0059022014029324055, 0.0776127353310585, 0.14720259606838226, -0.0033452697098255157, 0.9891006946563721, -0.9548948407173157]]
|
examples/camera_poses/test_camera_d9642c8efc01481d.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
[[1.0, -1.4532828274127496e-09, 3.928266045782891e-10, -8.700192566379883e-09, -1.4532828274127496e-09, 1.0, -1.7456260048565042e-10, 9.261455491405002e-11, 3.928266045782891e-10, -1.7456260048565042e-10, 1.0, -1.5881864712241622e-08], [0.9850640296936035, -0.04082970321178436, 0.16727784276008606, 0.20439539849758148, 0.03502606600522995, 0.9986825585365295, 0.03750050067901611, -0.15185177326202393, -0.16858860850334167, -0.03108130767941475, 0.9851963520050049, 0.10121102631092072], [0.9168016910552979, -0.09482394903898239, 0.387921541929245, 0.44365406036376953, 0.06679922342300415, 0.9941277503967285, 0.08513444662094116, -0.26796984672546387, -0.39371633529663086, -0.0521385557949543, 0.9177521467208862, 0.06753730028867722], [0.7643709182739258, -0.15802493691444397, 0.6251122951507568, 0.6479341983795166, 0.09576083719730377, 0.9865723252296448, 0.13230620324611664, -0.33551496267318726, -0.6376261115074158, -0.04126973822712898, 0.7692397236824036, -0.07632352411746979], [0.5624101758003235, -0.2065712958574295, 0.8006392121315002, 0.8095709085464478, 0.10458854585886002, 0.9782856106758118, 0.17893710732460022, -0.3449772298336029, -0.8202170729637146, -0.016898371279239655, 0.5718027949333191, -0.267223596572876], [0.3860713243484497, -0.23765023052692413, 0.8913311958312988, 1.017128586769104, 0.10842984914779663, 0.9712379574775696, 0.21198998391628265, -0.34939509630203247, -0.9160742163658142, 0.014803661964833736, 0.4007355272769928, -0.5046621561050415], [0.25270596146583557, -0.2560441493988037, 0.9330493807792664, 1.2611535787582397, 0.09987718611955643, 0.9661006331443787, 0.23806333541870117, -0.36809343099594116, -0.9623742699623108, 0.03303031623363495, 0.26971235871315, -0.8164812922477722], [0.12896282970905304, -0.26742202043533325, 0.9549105167388916, 1.4084848165512085, 0.09037449955940247, 0.9621138572692871, 0.25723403692245483, -0.3597045838832855, -0.9875227212905884, 0.05312592536211014, 0.14824506640434265, -1.1886308193206787], [-0.037818778306245804, -0.2752484083175659, 0.9606289863586426, 1.3755683898925781, 0.08146493136882782, 0.957267701625824, 0.277492493391037, -0.353816956281662, -0.9959584474563599, 0.08875200152397156, -0.013779602944850922, -1.6891316175460815], [-0.1970304548740387, -0.2752428948879242, 0.9409677982330322, 1.1786020994186401, 0.07280438393354416, 0.9530242681503296, 0.2940141260623932, -0.36850038170814514, -0.9776904582977295, 0.12643630802631378, -0.16773590445518494, -2.261430025100708], [-0.3677733540534973, -0.26668044924736023, 0.8908559679985046, 0.8089978098869324, 0.06243090331554413, 0.9487544894218445, 0.30978602170944214, -0.37012383341789246, -0.9278174042701721, 0.16954797506332397, -0.33227747678756714, -2.8139760494232178], [-0.5150132775306702, -0.2527574300765991, 0.8190696835517883, 0.4462648332118988, 0.050335872918367386, 0.9449706673622131, 0.32325950264930725, -0.381427526473999, -0.8557030558586121, 0.20771150290966034, -0.473949670791626, -3.2886314392089844], [-0.6352092623710632, -0.23657281696796417, 0.7352160215377808, 0.0826139897108078, 0.036419764161109924, 0.9416990280151367, 0.33447936177253723, -0.3719184398651123, -0.771480917930603, 0.23924078047275543, -0.5895600318908691, -3.677316904067993], [-0.7218965888023376, -0.21918001770973206, 0.6563730239868164, -0.2607730031013489, 0.024064550176262856, 0.9399895071983337, 0.340353786945343, -0.359468549489975, -0.6915825009346008, 0.26149556040763855, -0.6733006834983826, -3.9900803565979004], [-0.7831082344055176, -0.2019210308790207, 0.5881916880607605, -0.609000563621521, 0.015634668990969658, 0.9391284584999084, 0.3432103097438812, -0.35386255383491516, -0.621688961982727, 0.2779669761657715, -0.732282280921936, -4.316582202911377], [-0.8348898887634277, -0.1848600059747696, 0.5184455513954163, -0.9689992070198059, 0.007868430577218533, 0.93780916929245, 0.3470619320869446, -0.3402447998523712, -0.5503608584403992, 0.2938378155231476, -0.7815127968788147, -4.561704635620117]]
|
examples/camera_poses/test_camera_d971457c81bca597.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
[[1.0, -1.9455232563858615e-11, -8.611562019034125e-10, -1.0473515388298438e-09, -1.9455232563858615e-11, 1.0, 8.674055917978762e-10, 1.8375034827045056e-09, -8.611562019034125e-10, 8.674055917978762e-10, 1.0, 8.45981773522908e-09], [0.9973401427268982, -0.0032562706619501114, 0.07281485944986343, -0.07197967171669006, 0.00329946493729949, 0.9999944567680359, -0.00047293686657212675, -0.0565447174012661, -0.07281292229890823, 0.0007119301008060575, 0.9973453879356384, -0.3188611567020416], [0.9906007051467896, -0.0066957552917301655, 0.13662146031856537, -0.15415722131729126, 0.006810691673308611, 0.9999766945838928, -0.00037385127507150173, -0.10014614462852478, -0.1366157978773117, 0.0013008243404328823, 0.9906232953071594, -0.6077051758766174], [0.9827210903167725, -0.009423106908798218, 0.18485280871391296, -0.23053960502147675, 0.009786692447960377, 0.9999515414237976, -0.0010545575059950352, -0.11272216588258743, -0.18483391404151917, 0.002845433307811618, 0.9827656745910645, -0.8897562623023987], [0.9756309986114502, -0.011318936944007874, 0.2191258817911148, -0.2929331362247467, 0.01199379749596119, 0.9999265670776367, -0.0017497432418167591, -0.10348402708768845, -0.21908999979496002, 0.004335256293416023, 0.9756950736045837, -1.1368639469146729], [0.9685831069946289, -0.012191502377390862, 0.24839124083518982, -0.379209041595459, 0.013217172585427761, 0.9999096393585205, -0.0024619612377136946, -0.12078691273927689, -0.24833877384662628, 0.005667644087225199, 0.9686566591262817, -1.3666095733642578], [0.9615083932876587, -0.012519675306975842, 0.2744903266429901, -0.5242342352867126, 0.013806014321744442, 0.9999009370803833, -0.0027547888457775116, -0.13015854358673096, -0.2744286358356476, 0.006438371259719133, 0.9615859389305115, -1.5762972831726074], [0.9528889656066895, -0.014083069749176502, 0.3029923439025879, -0.6702165007591248, 0.015383570455014706, 0.9998798370361328, -0.0019058430334553123, -0.14860114455223083, -0.3029291331768036, 0.00647716224193573, 0.9529911279678345, -1.7173497676849365], [0.9457509517669678, -0.015159872360527515, 0.3245387375354767, -0.8001917600631714, 0.016729505732655525, 0.9998579621315002, -0.0020466779824346304, -0.15521110594272614, -0.32446160912513733, 0.007365020923316479, 0.9458702206611633, -1.8571592569351196], [0.9417706727981567, -0.015540024265646935, 0.33589670062065125, -0.9244012236595154, 0.017394419759511948, 0.9998455047607422, -0.0025124624371528625, -0.1416105479001999, -0.3358057737350464, 0.008208892308175564, 0.9418954849243164, -1.9969842433929443], [0.9381415247917175, -0.016401933506131172, 0.34586337208747864, -1.0128529071807861, 0.01851990446448326, 0.9998245239257812, -0.0028197101783007383, -0.11503250896930695, -0.3457564413547516, 0.009050644934177399, 0.9382806420326233, -2.080850124359131], [0.9357938766479492, -0.016873901709914207, 0.3521435558795929, -1.1008079051971436, 0.01865064539015293, 0.9998247027397156, -0.0016533475136384368, -0.048780668526887894, -0.3520539104938507, 0.008114897646009922, 0.9359445571899414, -2.088500499725342], [0.9334627985954285, -0.016492612659931183, 0.3582947850227356, -1.2417148351669312, 0.017931735143065453, 0.9998390078544617, -0.0006939812446944416, 0.01625901833176613, -0.35822567343711853, 0.007072653621435165, 0.9336082339286804, -2.0250792503356934], [0.9281281232833862, -0.016213543713092804, 0.3719078302383423, -1.4365860223770142, 0.01746317930519581, 0.9998475313186646, 8.084020009846427e-06, 0.060201361775398254, -0.37185123562812805, 0.006487190257757902, 0.9282696843147278, -1.8963005542755127], [0.9220678806304932, -0.017285069450736046, 0.3866421580314636, -1.604330062866211, 0.01880805380642414, 0.9998230934143066, -0.00015593231364618987, 0.0799601748585701, -0.38657107949256897, 0.007415766827762127, 0.9222298264503479, -1.7388361692428589], [0.9185494184494019, -0.018356993794441223, 0.3948797583580017, -1.7530856132507324, 0.019847355782985687, 0.9998030066490173, 0.0003104731731582433, 0.10000917315483093, -0.3948076665401459, 0.007552135270088911, 0.9187328219413757, -1.5337872505187988]]
|
gradio_utils/__pycache__/camera_utils.cpython-310.pyc
ADDED
Binary file (4.79 kB). View file
|
|
gradio_utils/__pycache__/flow_utils.cpython-310.pyc
ADDED
Binary file (2.65 kB). View file
|
|
gradio_utils/__pycache__/motionctrl_cmcm_gradio.cpython-310.pyc
ADDED
Binary file (7.18 kB). View file
|
|
gradio_utils/__pycache__/traj_utils.cpython-310.pyc
ADDED
Binary file (3.16 kB). View file
|
|
gradio_utils/__pycache__/utils.cpython-310.pyc
ADDED
Binary file (3.04 kB). View file
|
|
gradio_utils/camera_utils.py
ADDED
@@ -0,0 +1,157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
# import plotly.express as px
|
3 |
+
# import plotly.graph_objects as go
|
4 |
+
import json
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
|
8 |
+
CAMERA_MOTION_MODE = ["Basic Camera Poses", "Provided Complex Camera Poses", "Custom Camera Poses"]
|
9 |
+
|
10 |
+
CAMERA = {
|
11 |
+
# T
|
12 |
+
"base_T_norm": 1.5,
|
13 |
+
"base_angle": np.pi/3,
|
14 |
+
|
15 |
+
"Pan Up": { "angle":[0., 0., 0.], "T":[0., 1., 0.]},
|
16 |
+
"Pan Down": { "angle":[0., 0., 0.], "T":[0.,-1.,0.]},
|
17 |
+
"Pan Left": { "angle":[0., 0., 0.], "T":[3.,0.,0.]},
|
18 |
+
"Pan Right": { "angle":[0., 0., 0.], "T": [-3.,0.,0.]},
|
19 |
+
"Zoom In": { "angle":[0., 0., 0.], "T": [0.,0.,-4.]},
|
20 |
+
"Zoom Out": { "angle":[0., 0., 0.], "T": [0.,0.,4.]},
|
21 |
+
"ACW": { "angle": [0., 0., 1.], "T":[0., 0., 0.]},
|
22 |
+
"CW": { "angle": [0., 0., -1.], "T":[0., 0., 0.]},
|
23 |
+
}
|
24 |
+
|
25 |
+
COMPLEX_CAMERA = {
|
26 |
+
"Pose_1": "examples/camera_poses/test_camera_1424acd0007d40b5.json",
|
27 |
+
"Pose_2": "examples/camera_poses/test_camera_d971457c81bca597.json",
|
28 |
+
"Pose_3": "examples/camera_poses/test_camera_Round-ZoomIn.json",
|
29 |
+
"Pose_4": "examples/camera_poses/test_camera_Round-RI_90.json",
|
30 |
+
"Pose_5": "examples/camera_poses/test_camera_Round-RI-120.json",
|
31 |
+
"Pose_6": "examples/camera_poses/test_camera_018f7907401f2fef.json",
|
32 |
+
"Pose_7": "examples/camera_poses/test_camera_088b93f15ca8745d.json",
|
33 |
+
"Pose_8": "examples/camera_poses/test_camera_b133a504fc90a2d1.json",
|
34 |
+
}
|
35 |
+
|
36 |
+
|
37 |
+
|
38 |
+
def compute_R_form_rad_angle(angles):
|
39 |
+
theta_x, theta_y, theta_z = angles
|
40 |
+
Rx = np.array([[1, 0, 0],
|
41 |
+
[0, np.cos(theta_x), -np.sin(theta_x)],
|
42 |
+
[0, np.sin(theta_x), np.cos(theta_x)]])
|
43 |
+
|
44 |
+
Ry = np.array([[np.cos(theta_y), 0, np.sin(theta_y)],
|
45 |
+
[0, 1, 0],
|
46 |
+
[-np.sin(theta_y), 0, np.cos(theta_y)]])
|
47 |
+
|
48 |
+
Rz = np.array([[np.cos(theta_z), -np.sin(theta_z), 0],
|
49 |
+
[np.sin(theta_z), np.cos(theta_z), 0],
|
50 |
+
[0, 0, 1]])
|
51 |
+
|
52 |
+
# 计算相机外参的旋转矩阵
|
53 |
+
R = np.dot(Rz, np.dot(Ry, Rx))
|
54 |
+
return R
|
55 |
+
|
56 |
+
def get_camera_motion(angle, T, speed, n=16):
|
57 |
+
RT = []
|
58 |
+
for i in range(n):
|
59 |
+
_angle = (i/n)*speed*(CAMERA["base_angle"])*angle
|
60 |
+
R = compute_R_form_rad_angle(_angle)
|
61 |
+
# _T = (i/n)*speed*(T.reshape(3,1))
|
62 |
+
_T=(i/n)*speed*(CAMERA["base_T_norm"])*(T.reshape(3,1))
|
63 |
+
_RT = np.concatenate([R,_T], axis=1)
|
64 |
+
RT.append(_RT)
|
65 |
+
RT = np.stack(RT)
|
66 |
+
return RT
|
67 |
+
|
68 |
+
def create_relative(RT_list, K_1=4.7, dataset="syn"):
|
69 |
+
RT = copy.deepcopy(RT_list[0])
|
70 |
+
R_inv = RT[:,:3].T
|
71 |
+
T = RT[:,-1]
|
72 |
+
|
73 |
+
temp = []
|
74 |
+
for _RT in RT_list:
|
75 |
+
_RT[:,:3] = np.dot(_RT[:,:3], R_inv)
|
76 |
+
_RT[:,-1] = _RT[:,-1] - np.dot(_RT[:,:3], T)
|
77 |
+
temp.append(_RT)
|
78 |
+
RT_list = temp
|
79 |
+
|
80 |
+
return RT_list
|
81 |
+
|
82 |
+
def combine_camera_motion(RT_0, RT_1):
|
83 |
+
RT = copy.deepcopy(RT_0[-1])
|
84 |
+
R = RT[:,:3]
|
85 |
+
R_inv = RT[:,:3].T
|
86 |
+
T = RT[:,-1]
|
87 |
+
|
88 |
+
temp = []
|
89 |
+
for _RT in RT_1:
|
90 |
+
_RT[:,:3] = np.dot(_RT[:,:3], R)
|
91 |
+
_RT[:,-1] = _RT[:,-1] + np.dot(np.dot(_RT[:,:3], R_inv), T)
|
92 |
+
temp.append(_RT)
|
93 |
+
|
94 |
+
RT_1 = np.stack(temp)
|
95 |
+
|
96 |
+
return np.concatenate([RT_0, RT_1], axis=0)
|
97 |
+
|
98 |
+
def process_camera(camera_dict, camera_args, num_frames=16, width=256, height=256):
|
99 |
+
speed = camera_dict['speed']
|
100 |
+
motion_list = camera_dict['motion']
|
101 |
+
mode = camera_dict['mode']
|
102 |
+
|
103 |
+
if mode == 'Customized Mode 3: RAW Camera Poses':
|
104 |
+
# print(camera_args)
|
105 |
+
RT = camera_args.strip().split()
|
106 |
+
assert(len(RT) == num_frames*12), "The number of camera poses should be equal to the number of frames"
|
107 |
+
RT = [float(x) for x in RT]
|
108 |
+
RT = np.array(RT).reshape(-1, 3, 4)
|
109 |
+
RT[:, :, -1] = RT[:, :, -1] * np.array([1.5, 1, 1.3]) * speed
|
110 |
+
return RT
|
111 |
+
|
112 |
+
if camera_dict['complex'] is not None:
|
113 |
+
with open(COMPLEX_CAMERA[camera_dict['complex']]) as f:
|
114 |
+
RT = json.load(f) # [16, 12]
|
115 |
+
if num_frames < len(RT):
|
116 |
+
half = (len(RT) - num_frames) // 2
|
117 |
+
RT = RT[half:half+num_frames]
|
118 |
+
RT = np.array(RT).reshape(-1, 3, 4)
|
119 |
+
RT[:, :, -1] = RT[:, :, -1] * np.array([1.5, 1, 1.3]) * speed
|
120 |
+
return RT
|
121 |
+
|
122 |
+
half_num_frames = num_frames//2
|
123 |
+
|
124 |
+
|
125 |
+
|
126 |
+
print(len(motion_list))
|
127 |
+
if len(motion_list) == 0:
|
128 |
+
angle = np.array([0,0,0])
|
129 |
+
T = np.array([0,0,0])
|
130 |
+
RT = get_camera_motion(angle, T, speed, num_frames)
|
131 |
+
|
132 |
+
elif len(motion_list) == 1:
|
133 |
+
angle = np.array(CAMERA[motion_list[0]]["angle"])
|
134 |
+
T = np.array(CAMERA[motion_list[0]]["T"])
|
135 |
+
print(angle, T)
|
136 |
+
RT = get_camera_motion(angle, T, speed, num_frames)
|
137 |
+
|
138 |
+
|
139 |
+
elif len(motion_list) == 2:
|
140 |
+
if mode == "Customized Mode 1: First A then B":
|
141 |
+
angle = np.array(CAMERA[motion_list[0]]["angle"])
|
142 |
+
T = np.array(CAMERA[motion_list[0]]["T"])
|
143 |
+
RT_0 = get_camera_motion(angle, T, speed, half_num_frames)
|
144 |
+
|
145 |
+
angle = np.array(CAMERA[motion_list[1]]["angle"])
|
146 |
+
T = np.array(CAMERA[motion_list[1]]["T"])
|
147 |
+
RT_1 = get_camera_motion(angle, T, speed, num_frames-half_num_frames)
|
148 |
+
|
149 |
+
RT = combine_camera_motion(RT_0, RT_1)
|
150 |
+
|
151 |
+
elif mode == "Customized Mode 2: Both A and B":
|
152 |
+
angle = np.array(CAMERA[motion_list[0]]["angle"]) + np.array(CAMERA[motion_list[1]]["angle"])
|
153 |
+
T = np.array(CAMERA[motion_list[0]]["T"]) + np.array(CAMERA[motion_list[1]]["T"])
|
154 |
+
RT = get_camera_motion(angle, T, speed, num_frames)
|
155 |
+
|
156 |
+
return RT
|
157 |
+
|
gradio_utils/flow_utils.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
|
4 |
+
def sigma_matrix2(sig_x, sig_y, theta):
|
5 |
+
"""Calculate the rotated sigma matrix (two dimensional matrix).
|
6 |
+
Args:
|
7 |
+
sig_x (float):
|
8 |
+
sig_y (float):
|
9 |
+
theta (float): Radian measurement.
|
10 |
+
Returns:
|
11 |
+
ndarray: Rotated sigma matrix.
|
12 |
+
"""
|
13 |
+
d_matrix = np.array([[sig_x**2, 0], [0, sig_y**2]])
|
14 |
+
u_matrix = np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]])
|
15 |
+
return np.dot(u_matrix, np.dot(d_matrix, u_matrix.T))
|
16 |
+
|
17 |
+
|
18 |
+
def mesh_grid(kernel_size):
|
19 |
+
"""Generate the mesh grid, centering at zero.
|
20 |
+
Args:
|
21 |
+
kernel_size (int):
|
22 |
+
Returns:
|
23 |
+
xy (ndarray): with the shape (kernel_size, kernel_size, 2)
|
24 |
+
xx (ndarray): with the shape (kernel_size, kernel_size)
|
25 |
+
yy (ndarray): with the shape (kernel_size, kernel_size)
|
26 |
+
"""
|
27 |
+
ax = np.arange(-kernel_size // 2 + 1., kernel_size // 2 + 1.)
|
28 |
+
xx, yy = np.meshgrid(ax, ax)
|
29 |
+
xy = np.hstack((xx.reshape((kernel_size * kernel_size, 1)), yy.reshape(kernel_size * kernel_size,
|
30 |
+
1))).reshape(kernel_size, kernel_size, 2)
|
31 |
+
return xy, xx, yy
|
32 |
+
|
33 |
+
|
34 |
+
def pdf2(sigma_matrix, grid):
|
35 |
+
"""Calculate PDF of the bivariate Gaussian distribution.
|
36 |
+
Args:
|
37 |
+
sigma_matrix (ndarray): with the shape (2, 2)
|
38 |
+
grid (ndarray): generated by :func:`mesh_grid`,
|
39 |
+
with the shape (K, K, 2), K is the kernel size.
|
40 |
+
Returns:
|
41 |
+
kernel (ndarrray): un-normalized kernel.
|
42 |
+
"""
|
43 |
+
inverse_sigma = np.linalg.inv(sigma_matrix)
|
44 |
+
kernel = np.exp(-0.5 * np.sum(np.dot(grid, inverse_sigma) * grid, 2))
|
45 |
+
return kernel
|
46 |
+
|
47 |
+
def bivariate_Gaussian(kernel_size, sig_x, sig_y, theta, grid=None, isotropic=True):
|
48 |
+
"""Generate a bivariate isotropic or anisotropic Gaussian kernel.
|
49 |
+
In the isotropic mode, only `sig_x` is used. `sig_y` and `theta` is ignored.
|
50 |
+
Args:
|
51 |
+
kernel_size (int):
|
52 |
+
sig_x (float):
|
53 |
+
sig_y (float):
|
54 |
+
theta (float): Radian measurement.
|
55 |
+
grid (ndarray, optional): generated by :func:`mesh_grid`,
|
56 |
+
with the shape (K, K, 2), K is the kernel size. Default: None
|
57 |
+
isotropic (bool):
|
58 |
+
Returns:
|
59 |
+
kernel (ndarray): normalized kernel.
|
60 |
+
"""
|
61 |
+
if grid is None:
|
62 |
+
grid, _, _ = mesh_grid(kernel_size)
|
63 |
+
if isotropic:
|
64 |
+
sigma_matrix = np.array([[sig_x**2, 0], [0, sig_x**2]])
|
65 |
+
else:
|
66 |
+
sigma_matrix = sigma_matrix2(sig_x, sig_y, theta)
|
67 |
+
kernel = pdf2(sigma_matrix, grid)
|
68 |
+
kernel = kernel / np.sum(kernel)
|
69 |
+
return kernel
|
gradio_utils/motionctrl_cmcm_gradio.py
ADDED
@@ -0,0 +1,276 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import datetime
|
3 |
+
import json
|
4 |
+
import math
|
5 |
+
import os
|
6 |
+
import sys
|
7 |
+
import time
|
8 |
+
from glob import glob
|
9 |
+
from pathlib import Path
|
10 |
+
from typing import Optional
|
11 |
+
|
12 |
+
import cv2
|
13 |
+
import numpy as np
|
14 |
+
import torch
|
15 |
+
import torchvision
|
16 |
+
from einops import rearrange, repeat
|
17 |
+
from fire import Fire
|
18 |
+
from omegaconf import OmegaConf
|
19 |
+
from PIL import Image
|
20 |
+
from torchvision.transforms import CenterCrop, Compose, Resize, ToTensor
|
21 |
+
import tempfile
|
22 |
+
|
23 |
+
sys.path.insert(1, os.path.join(sys.path[0], '..'))
|
24 |
+
from sgm.util import default, instantiate_from_config
|
25 |
+
|
26 |
+
|
27 |
+
|
28 |
+
def to_relative_RT2(org_pose, keyframe_idx=0, keyframe_zero=False):
|
29 |
+
org_pose = org_pose.reshape(-1, 3, 4) # [t, 3, 4]
|
30 |
+
R_dst = org_pose[:, :, :3]
|
31 |
+
T_dst = org_pose[:, :, 3:]
|
32 |
+
|
33 |
+
R_src = R_dst[keyframe_idx: keyframe_idx+1].repeat(org_pose.shape[0], axis=0) # [t, 3, 3]
|
34 |
+
T_src = T_dst[keyframe_idx: keyframe_idx+1].repeat(org_pose.shape[0], axis=0)
|
35 |
+
|
36 |
+
R_src_inv = R_src.transpose(0, 2, 1) # [t, 3, 3]
|
37 |
+
|
38 |
+
R_rel = R_dst @ R_src_inv # [t, 3, 3]
|
39 |
+
T_rel = T_dst - R_rel@T_src
|
40 |
+
|
41 |
+
RT_rel = np.concatenate([R_rel, T_rel], axis=-1) # [t, 3, 4]
|
42 |
+
RT_rel = RT_rel.reshape(-1, 12) # [t, 12]
|
43 |
+
|
44 |
+
if keyframe_zero:
|
45 |
+
RT_rel[keyframe_idx] = np.zeros_like(RT_rel[keyframe_idx])
|
46 |
+
|
47 |
+
return RT_rel
|
48 |
+
|
49 |
+
def build_model(config, ckpt, device, num_frames, num_steps):
|
50 |
+
num_frames = default(num_frames, 14)
|
51 |
+
num_steps = default(num_steps, 25)
|
52 |
+
model_config = default(config, "configs/inference/config_motionctrl_cmcm.yaml")
|
53 |
+
|
54 |
+
print(f"Loading model from {ckpt}")
|
55 |
+
model, filter = load_model(
|
56 |
+
model_config,
|
57 |
+
ckpt,
|
58 |
+
device,
|
59 |
+
num_frames,
|
60 |
+
num_steps,
|
61 |
+
)
|
62 |
+
|
63 |
+
model.eval()
|
64 |
+
|
65 |
+
return model
|
66 |
+
|
67 |
+
def motionctrl_sample(
|
68 |
+
model,
|
69 |
+
image: Image = None, # Can either be image file or folder with image files
|
70 |
+
RT: np.ndarray = None,
|
71 |
+
num_frames: Optional[int] = None,
|
72 |
+
fps_id: int = 6,
|
73 |
+
motion_bucket_id: int = 127,
|
74 |
+
cond_aug: float = 0.02,
|
75 |
+
seed: int = 23,
|
76 |
+
decoding_t: int = 1, # Number of frames decoded at a time! This eats most VRAM. Reduce if necessary.
|
77 |
+
save_fps: int = 10,
|
78 |
+
sample_num: int = 1,
|
79 |
+
device: str = "cuda",
|
80 |
+
):
|
81 |
+
"""
|
82 |
+
Simple script to generate a single sample conditioned on an image `input_path` or multiple images, one for each
|
83 |
+
image file in folder `input_path`. If you run out of VRAM, try decreasing `decoding_t`.
|
84 |
+
"""
|
85 |
+
|
86 |
+
torch.manual_seed(seed)
|
87 |
+
|
88 |
+
w, h = image.size
|
89 |
+
|
90 |
+
# RT: [t, 3, 4]
|
91 |
+
# RT = RT.reshape(-1, 3, 4) # [t, 3, 4]
|
92 |
+
# adaptive to different spatial ratio
|
93 |
+
# base_len = min(w, h) * 0.5
|
94 |
+
# K = np.array([[w/base_len, 0, w/base_len],
|
95 |
+
# [0, h/base_len, h/base_len],
|
96 |
+
# [0, 0, 1]])
|
97 |
+
# for i in range(RT.shape[0]):
|
98 |
+
# RT[i,:,:] = np.dot(K, RT[i,:,:])
|
99 |
+
|
100 |
+
RT = to_relative_RT2(RT) # [t, 12]
|
101 |
+
RT = torch.tensor(RT).float().to(device) # [t, 12]
|
102 |
+
RT = RT.unsqueeze(0).repeat(2,1,1)
|
103 |
+
|
104 |
+
if h % 64 != 0 or w % 64 != 0:
|
105 |
+
width, height = map(lambda x: x - x % 64, (w, h))
|
106 |
+
image = image.resize((width, height))
|
107 |
+
print(
|
108 |
+
f"WARNING: Your image is of size {h}x{w} which is not divisible by 64. We are resizing to {height}x{width}!"
|
109 |
+
)
|
110 |
+
|
111 |
+
image = ToTensor()(image)
|
112 |
+
image = image * 2.0 - 1.0
|
113 |
+
|
114 |
+
image = image.unsqueeze(0).to(device)
|
115 |
+
H, W = image.shape[2:]
|
116 |
+
assert image.shape[1] == 3
|
117 |
+
F = 8
|
118 |
+
C = 4
|
119 |
+
shape = (num_frames, C, H // F, W // F)
|
120 |
+
|
121 |
+
if motion_bucket_id > 255:
|
122 |
+
print(
|
123 |
+
"WARNING: High motion bucket! This may lead to suboptimal performance."
|
124 |
+
)
|
125 |
+
|
126 |
+
if fps_id < 5:
|
127 |
+
print("WARNING: Small fps value! This may lead to suboptimal performance.")
|
128 |
+
|
129 |
+
if fps_id > 30:
|
130 |
+
print("WARNING: Large fps value! This may lead to suboptimal performance.")
|
131 |
+
|
132 |
+
value_dict = {}
|
133 |
+
value_dict["motion_bucket_id"] = motion_bucket_id
|
134 |
+
value_dict["fps_id"] = fps_id
|
135 |
+
value_dict["cond_aug"] = cond_aug
|
136 |
+
value_dict["cond_frames_without_noise"] = image
|
137 |
+
value_dict["cond_frames"] = image + cond_aug * torch.randn_like(image)
|
138 |
+
|
139 |
+
with torch.no_grad():
|
140 |
+
with torch.autocast(device):
|
141 |
+
batch, batch_uc = get_batch(
|
142 |
+
get_unique_embedder_keys_from_conditioner(model.conditioner),
|
143 |
+
value_dict,
|
144 |
+
[1, num_frames],
|
145 |
+
T=num_frames,
|
146 |
+
device=device,
|
147 |
+
)
|
148 |
+
c, uc = model.conditioner.get_unconditional_conditioning(
|
149 |
+
batch,
|
150 |
+
batch_uc=batch_uc,
|
151 |
+
force_uc_zero_embeddings=[
|
152 |
+
"cond_frames",
|
153 |
+
"cond_frames_without_noise",
|
154 |
+
],
|
155 |
+
)
|
156 |
+
|
157 |
+
for k in ["crossattn", "concat"]:
|
158 |
+
uc[k] = repeat(uc[k], "b ... -> b t ...", t=num_frames)
|
159 |
+
uc[k] = rearrange(uc[k], "b t ... -> (b t) ...", t=num_frames)
|
160 |
+
c[k] = repeat(c[k], "b ... -> b t ...", t=num_frames)
|
161 |
+
c[k] = rearrange(c[k], "b t ... -> (b t) ...", t=num_frames)
|
162 |
+
|
163 |
+
|
164 |
+
|
165 |
+
additional_model_inputs = {}
|
166 |
+
additional_model_inputs["image_only_indicator"] = torch.zeros(
|
167 |
+
2, num_frames
|
168 |
+
).to(device)
|
169 |
+
#additional_model_inputs["image_only_indicator"][:,0] = 1
|
170 |
+
additional_model_inputs["num_video_frames"] = batch["num_video_frames"]
|
171 |
+
|
172 |
+
|
173 |
+
additional_model_inputs["RT"] = RT.clone()
|
174 |
+
|
175 |
+
def denoiser(input, sigma, c):
|
176 |
+
return model.denoiser(
|
177 |
+
model.model, input, sigma, c, **additional_model_inputs
|
178 |
+
)
|
179 |
+
|
180 |
+
results = []
|
181 |
+
for j in range(sample_num):
|
182 |
+
randn = torch.randn(shape, device=device)
|
183 |
+
samples_z = model.sampler(denoiser, randn, cond=c, uc=uc)
|
184 |
+
model.en_and_decode_n_samples_a_time = decoding_t
|
185 |
+
samples_x = model.decode_first_stage(samples_z)
|
186 |
+
samples = torch.clamp((samples_x + 1.0) / 2.0, min=0.0, max=1.0) # [1*t, c, h, w]
|
187 |
+
results.append(samples)
|
188 |
+
|
189 |
+
samples = torch.stack(results, dim=0) # [sample_num, t, c, h, w]
|
190 |
+
samples = samples.data.cpu()
|
191 |
+
|
192 |
+
video_path = tempfile.NamedTemporaryFile(suffix='.mp4').name
|
193 |
+
save_results(samples, video_path, fps=save_fps)
|
194 |
+
|
195 |
+
return video_path
|
196 |
+
|
197 |
+
def save_results(resutls, filename, fps=10):
|
198 |
+
video = resutls.permute(1, 0, 2, 3, 4) # [t, sample_num, c, h, w]
|
199 |
+
frame_grids = [torchvision.utils.make_grid(framesheet, nrow=int(video.shape[1])) for framesheet in video] #[3, 1*h, n*w]
|
200 |
+
grid = torch.stack(frame_grids, dim=0) # stack in temporal dim [t, 3, n*h, w]
|
201 |
+
# already in [0,1]
|
202 |
+
grid = (grid * 255).to(torch.uint8).permute(0, 2, 3, 1)
|
203 |
+
torchvision.io.write_video(filename, grid, fps=fps, video_codec='h264', options={'crf': '10'})
|
204 |
+
|
205 |
+
def get_unique_embedder_keys_from_conditioner(conditioner):
|
206 |
+
return list(set([x.input_key for x in conditioner.embedders]))
|
207 |
+
|
208 |
+
|
209 |
+
def get_batch(keys, value_dict, N, T, device):
|
210 |
+
batch = {}
|
211 |
+
batch_uc = {}
|
212 |
+
|
213 |
+
for key in keys:
|
214 |
+
if key == "fps_id":
|
215 |
+
batch[key] = (
|
216 |
+
torch.tensor([value_dict["fps_id"]])
|
217 |
+
.to(device)
|
218 |
+
.repeat(int(math.prod(N)))
|
219 |
+
)
|
220 |
+
elif key == "motion_bucket_id":
|
221 |
+
batch[key] = (
|
222 |
+
torch.tensor([value_dict["motion_bucket_id"]])
|
223 |
+
.to(device)
|
224 |
+
.repeat(int(math.prod(N)))
|
225 |
+
)
|
226 |
+
elif key == "cond_aug":
|
227 |
+
batch[key] = repeat(
|
228 |
+
torch.tensor([value_dict["cond_aug"]]).to(device),
|
229 |
+
"1 -> b",
|
230 |
+
b=math.prod(N),
|
231 |
+
)
|
232 |
+
elif key == "cond_frames":
|
233 |
+
batch[key] = repeat(value_dict["cond_frames"], "1 ... -> b ...", b=N[0])
|
234 |
+
elif key == "cond_frames_without_noise":
|
235 |
+
batch[key] = repeat(
|
236 |
+
value_dict["cond_frames_without_noise"], "1 ... -> b ...", b=N[0]
|
237 |
+
)
|
238 |
+
else:
|
239 |
+
batch[key] = value_dict[key]
|
240 |
+
|
241 |
+
if T is not None:
|
242 |
+
batch["num_video_frames"] = T
|
243 |
+
|
244 |
+
for key in batch.keys():
|
245 |
+
if key not in batch_uc and isinstance(batch[key], torch.Tensor):
|
246 |
+
batch_uc[key] = torch.clone(batch[key])
|
247 |
+
return batch, batch_uc
|
248 |
+
|
249 |
+
|
250 |
+
def load_model(
|
251 |
+
config: str,
|
252 |
+
ckpt: str,
|
253 |
+
device: str,
|
254 |
+
num_frames: int,
|
255 |
+
num_steps: int,
|
256 |
+
):
|
257 |
+
|
258 |
+
config = OmegaConf.load(config)
|
259 |
+
config.model.params.ckpt_path = ckpt
|
260 |
+
if device == "cuda":
|
261 |
+
config.model.params.conditioner_config.params.emb_models[
|
262 |
+
0
|
263 |
+
].params.open_clip_embedding_config.params.init_device = device
|
264 |
+
|
265 |
+
config.model.params.sampler_config.params.num_steps = num_steps
|
266 |
+
config.model.params.sampler_config.params.guider_config.params.num_frames = (
|
267 |
+
num_frames
|
268 |
+
)
|
269 |
+
|
270 |
+
model = instantiate_from_config(config.model)
|
271 |
+
|
272 |
+
model = model.to(device).eval()
|
273 |
+
|
274 |
+
filter = None #DeepFloydDataFiltering(verbose=False, device=device)
|
275 |
+
return model, filter
|
276 |
+
|
gradio_utils/traj_utils.py
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
from gradio_utils.flow_utils import bivariate_Gaussian
|
5 |
+
|
6 |
+
OBJECT_MOTION_MODE = ["Provided Trajectory", "Custom Trajectory"]
|
7 |
+
|
8 |
+
PROVIDED_TRAJS = {
|
9 |
+
"horizon_1": "examples/trajectories/horizon_2.txt",
|
10 |
+
"swaying_1": "examples/trajectories/shake_1.txt",
|
11 |
+
"swaying_2": "examples/trajectories/shake_2.txt",
|
12 |
+
"swaying_3": "examples/trajectories/shaking_10.txt",
|
13 |
+
"curve_1": "examples/trajectories/curve_1.txt",
|
14 |
+
"curve_2": "examples/trajectories/curve_2.txt",
|
15 |
+
"curve_3": "examples/trajectories/curve_3.txt",
|
16 |
+
"curve_4": "examples/trajectories/curve_4.txt",
|
17 |
+
}
|
18 |
+
|
19 |
+
|
20 |
+
def read_points(file, video_len=16, reverse=False):
|
21 |
+
with open(file, 'r') as f:
|
22 |
+
lines = f.readlines()
|
23 |
+
points = []
|
24 |
+
for line in lines:
|
25 |
+
x, y = line.strip().split(',')
|
26 |
+
points.append((int(x), int(y)))
|
27 |
+
if reverse:
|
28 |
+
points = points[::-1]
|
29 |
+
|
30 |
+
if len(points) > video_len:
|
31 |
+
skip = len(points) // video_len
|
32 |
+
points = points[::skip]
|
33 |
+
points = points[:video_len]
|
34 |
+
|
35 |
+
return points
|
36 |
+
|
37 |
+
def get_provided_traj(traj_name):
|
38 |
+
traj = read_points(PROVIDED_TRAJS[traj_name])
|
39 |
+
# xrange from 256 to 1024
|
40 |
+
traj = [[int(1024*x/256), int(1024*y/256)] for x,y in traj]
|
41 |
+
return traj
|
42 |
+
|
43 |
+
blur_kernel = bivariate_Gaussian(99, 10, 10, 0, grid=None, isotropic=True)
|
44 |
+
|
45 |
+
def process_points(points):
|
46 |
+
frames = 16
|
47 |
+
defualt_points = [[512,512]]*16
|
48 |
+
|
49 |
+
if len(points) < 2:
|
50 |
+
return defualt_points
|
51 |
+
elif len(points) >= frames:
|
52 |
+
skip = len(points)//frames
|
53 |
+
return points[::skip][:15] + points[-1:]
|
54 |
+
else:
|
55 |
+
insert_num = frames - len(points)
|
56 |
+
insert_num_dict = {}
|
57 |
+
interval = len(points) - 1
|
58 |
+
n = insert_num // interval
|
59 |
+
m = insert_num % interval
|
60 |
+
for i in range(interval):
|
61 |
+
insert_num_dict[i] = n
|
62 |
+
for i in range(m):
|
63 |
+
insert_num_dict[i] += 1
|
64 |
+
|
65 |
+
res = []
|
66 |
+
for i in range(interval):
|
67 |
+
insert_points = []
|
68 |
+
x0,y0 = points[i]
|
69 |
+
x1,y1 = points[i+1]
|
70 |
+
|
71 |
+
delta_x = x1 - x0
|
72 |
+
delta_y = y1 - y0
|
73 |
+
for j in range(insert_num_dict[i]):
|
74 |
+
x = x0 + (j+1)/(insert_num_dict[i]+1)*delta_x
|
75 |
+
y = y0 + (j+1)/(insert_num_dict[i]+1)*delta_y
|
76 |
+
insert_points.append([int(x), int(y)])
|
77 |
+
|
78 |
+
res += points[i:i+1] + insert_points
|
79 |
+
res += points[-1:]
|
80 |
+
return res
|
81 |
+
|
82 |
+
def get_flow(points, video_len=16):
|
83 |
+
optical_flow = np.zeros((video_len, 256, 256, 2), dtype=np.float32)
|
84 |
+
for i in range(video_len-1):
|
85 |
+
p = points[i]
|
86 |
+
p1 = points[i+1]
|
87 |
+
optical_flow[i+1, p[1], p[0], 0] = p1[0] - p[0]
|
88 |
+
optical_flow[i+1, p[1], p[0], 1] = p1[1] - p[1]
|
89 |
+
for i in range(1, video_len):
|
90 |
+
optical_flow[i] = cv2.filter2D(optical_flow[i], -1, blur_kernel)
|
91 |
+
|
92 |
+
|
93 |
+
return optical_flow
|
94 |
+
|
95 |
+
|
96 |
+
def process_traj(points, device='cpu'):
|
97 |
+
xy_range = 1024
|
98 |
+
points = process_points(points)
|
99 |
+
points = [[int(256*x/xy_range), int(256*y/xy_range)] for x,y in points]
|
100 |
+
|
101 |
+
optical_flow = get_flow(points)
|
102 |
+
# optical_flow = torch.tensor(optical_flow).to(device)
|
103 |
+
|
104 |
+
return optical_flow
|
gradio_utils/utils.py
ADDED
@@ -0,0 +1,175 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import plotly.express as px
|
3 |
+
import plotly.graph_objects as go
|
4 |
+
|
5 |
+
def vis_camera(RT_list, rescale_T=1):
|
6 |
+
fig = go.Figure()
|
7 |
+
showticklabels = True
|
8 |
+
visible = True
|
9 |
+
scene_bounds = 2
|
10 |
+
base_radius = 2.5
|
11 |
+
zoom_scale = 1.5
|
12 |
+
fov_deg = 50.0
|
13 |
+
|
14 |
+
edges = [(0, 1), (0, 2), (0, 3), (1, 2), (2, 3), (3, 1), (3, 4)]
|
15 |
+
|
16 |
+
colors = px.colors.qualitative.Plotly
|
17 |
+
|
18 |
+
cone_list = []
|
19 |
+
n = len(RT_list)
|
20 |
+
for i, RT in enumerate(RT_list):
|
21 |
+
R = RT[:,:3]
|
22 |
+
T = RT[:,-1]/rescale_T
|
23 |
+
cone = calc_cam_cone_pts_3d(R, T, fov_deg)
|
24 |
+
cone_list.append((cone, (i*1/n, "green"), f"view_{i}"))
|
25 |
+
|
26 |
+
|
27 |
+
for (cone, clr, legend) in cone_list:
|
28 |
+
for (i, edge) in enumerate(edges):
|
29 |
+
(x1, x2) = (cone[edge[0], 0], cone[edge[1], 0])
|
30 |
+
(y1, y2) = (cone[edge[0], 1], cone[edge[1], 1])
|
31 |
+
(z1, z2) = (cone[edge[0], 2], cone[edge[1], 2])
|
32 |
+
fig.add_trace(go.Scatter3d(
|
33 |
+
x=[x1, x2], y=[y1, y2], z=[z1, z2], mode='lines',
|
34 |
+
line=dict(color=clr, width=3),
|
35 |
+
name=legend, showlegend=(i == 0)))
|
36 |
+
fig.update_layout(
|
37 |
+
height=500,
|
38 |
+
autosize=True,
|
39 |
+
# hovermode=False,
|
40 |
+
margin=go.layout.Margin(l=0, r=0, b=0, t=0),
|
41 |
+
|
42 |
+
showlegend=True,
|
43 |
+
legend=dict(
|
44 |
+
yanchor='bottom',
|
45 |
+
y=0.01,
|
46 |
+
xanchor='right',
|
47 |
+
x=0.99,
|
48 |
+
),
|
49 |
+
scene=dict(
|
50 |
+
aspectmode='manual',
|
51 |
+
aspectratio=dict(x=1, y=1, z=1.0),
|
52 |
+
camera=dict(
|
53 |
+
center=dict(x=0.0, y=0.0, z=0.0),
|
54 |
+
up=dict(x=0.0, y=-1.0, z=0.0),
|
55 |
+
eye=dict(x=scene_bounds/2, y=-scene_bounds/2, z=-scene_bounds/2),
|
56 |
+
),
|
57 |
+
|
58 |
+
xaxis=dict(
|
59 |
+
range=[-scene_bounds, scene_bounds],
|
60 |
+
showticklabels=showticklabels,
|
61 |
+
visible=visible,
|
62 |
+
),
|
63 |
+
|
64 |
+
|
65 |
+
yaxis=dict(
|
66 |
+
range=[-scene_bounds, scene_bounds],
|
67 |
+
showticklabels=showticklabels,
|
68 |
+
visible=visible,
|
69 |
+
),
|
70 |
+
|
71 |
+
|
72 |
+
zaxis=dict(
|
73 |
+
range=[-scene_bounds, scene_bounds],
|
74 |
+
showticklabels=showticklabels,
|
75 |
+
visible=visible,
|
76 |
+
)
|
77 |
+
))
|
78 |
+
return fig
|
79 |
+
|
80 |
+
|
81 |
+
def calc_cam_cone_pts_3d(R_W2C, T_W2C, fov_deg, scale=0.1, set_canonical=False, first_frame_RT=None):
|
82 |
+
fov_rad = np.deg2rad(fov_deg)
|
83 |
+
R_W2C_inv = np.linalg.inv(R_W2C)
|
84 |
+
|
85 |
+
# Camera pose center:
|
86 |
+
T = np.zeros_like(T_W2C) - T_W2C
|
87 |
+
T = np.dot(R_W2C_inv, T)
|
88 |
+
cam_x = T[0]
|
89 |
+
cam_y = T[1]
|
90 |
+
cam_z = T[2]
|
91 |
+
if set_canonical:
|
92 |
+
T = np.zeros_like(T_W2C)
|
93 |
+
T = np.dot(first_frame_RT[:,:3], T) + first_frame_RT[:,-1]
|
94 |
+
T = T - T_W2C
|
95 |
+
T = np.dot(R_W2C_inv, T)
|
96 |
+
cam_x = T[0]
|
97 |
+
cam_y = T[1]
|
98 |
+
cam_z = T[2]
|
99 |
+
|
100 |
+
# vertex
|
101 |
+
corn1 = np.array([np.tan(fov_rad / 2.0), 0.5*np.tan(fov_rad / 2.0), 1.0]) *scale
|
102 |
+
corn2 = np.array([-np.tan(fov_rad / 2.0), 0.5*np.tan(fov_rad / 2.0), 1.0]) *scale
|
103 |
+
corn3 = np.array([0, -0.25*np.tan(fov_rad / 2.0), 1.0]) *scale
|
104 |
+
corn4 = np.array([0, -0.5*np.tan(fov_rad / 2.0), 1.0]) *scale
|
105 |
+
|
106 |
+
corn1 = corn1 - T_W2C
|
107 |
+
corn2 = corn2 - T_W2C
|
108 |
+
corn3 = corn3 - T_W2C
|
109 |
+
corn4 = corn4 - T_W2C
|
110 |
+
|
111 |
+
corn1 = np.dot(R_W2C_inv, corn1)
|
112 |
+
corn2 = np.dot(R_W2C_inv, corn2)
|
113 |
+
corn3 = np.dot(R_W2C_inv, corn3)
|
114 |
+
corn4 = np.dot(R_W2C_inv, corn4)
|
115 |
+
|
116 |
+
# Now attach as offset to actual 3D camera position:
|
117 |
+
corn_x1 = corn1[0]
|
118 |
+
corn_y1 = corn1[1]
|
119 |
+
corn_z1 = corn1[2]
|
120 |
+
|
121 |
+
corn_x2 = corn2[0]
|
122 |
+
corn_y2 = corn2[1]
|
123 |
+
corn_z2 = corn2[2]
|
124 |
+
|
125 |
+
corn_x3 = corn3[0]
|
126 |
+
corn_y3 = corn3[1]
|
127 |
+
corn_z3 = corn3[2]
|
128 |
+
|
129 |
+
corn_x4 = corn4[0]
|
130 |
+
corn_y4 = corn4[1]
|
131 |
+
corn_z4 = corn4[2]
|
132 |
+
|
133 |
+
|
134 |
+
xs = [cam_x, corn_x1, corn_x2, corn_x3, corn_x4, ]
|
135 |
+
ys = [cam_y, corn_y1, corn_y2, corn_y3, corn_y4, ]
|
136 |
+
zs = [cam_z, corn_z1, corn_z2, corn_z3, corn_z4, ]
|
137 |
+
|
138 |
+
return np.array([xs, ys, zs]).T
|
139 |
+
|
140 |
+
|
141 |
+
|
142 |
+
# T_base = [
|
143 |
+
# [1.,0.,0.], ## W2C x 的正方向: 相机朝左 left
|
144 |
+
# [-1.,0.,0.], ## W2C x 的负方向: 相机朝右 right
|
145 |
+
# [0., 1., 0.], ## W2C y 的正方向: 相机朝上 up
|
146 |
+
# [0.,-1.,0.], ## W2C y 的负方向: 相机朝下 down
|
147 |
+
# [0.,0.,1.], ## W2C z 的正方向: 相机往前 zoom out
|
148 |
+
# [0.,0.,-1.], ## W2C z 的负方向: 相机往前 zoom in
|
149 |
+
# ]
|
150 |
+
# radius = 1
|
151 |
+
# n = 16
|
152 |
+
# # step =
|
153 |
+
# look_at = np.array([0, 0, 0.8]).reshape(3,1)
|
154 |
+
# # look_at = np.array([0, 0, 0.2]).reshape(3,1)
|
155 |
+
|
156 |
+
# T_list = []
|
157 |
+
# base_R = np.array([[1., 0., 0.],
|
158 |
+
# [0., 1., 0.],
|
159 |
+
# [0., 0., 1.]])
|
160 |
+
# res = []
|
161 |
+
# res_forsave = []
|
162 |
+
# T_range = 1.8
|
163 |
+
|
164 |
+
|
165 |
+
|
166 |
+
# for i in range(0, 16):
|
167 |
+
# # theta = (1)*np.pi*i/n
|
168 |
+
|
169 |
+
# R = base_R[:,:3]
|
170 |
+
# T = np.array([0.,0.,1.]).reshape(3,1) * (i/n)*2
|
171 |
+
# RT = np.concatenate([R,T], axis=1)
|
172 |
+
# res.append(RT)
|
173 |
+
|
174 |
+
# fig = vis_camera(res)
|
175 |
+
|
main.py
ADDED
@@ -0,0 +1,943 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import datetime
|
3 |
+
import glob
|
4 |
+
import inspect
|
5 |
+
import os
|
6 |
+
import sys
|
7 |
+
from inspect import Parameter
|
8 |
+
from typing import Union
|
9 |
+
|
10 |
+
import numpy as np
|
11 |
+
import pytorch_lightning as pl
|
12 |
+
import torch
|
13 |
+
import torchvision
|
14 |
+
import wandb
|
15 |
+
from matplotlib import pyplot as plt
|
16 |
+
from natsort import natsorted
|
17 |
+
from omegaconf import OmegaConf
|
18 |
+
from packaging import version
|
19 |
+
from PIL import Image
|
20 |
+
from pytorch_lightning import seed_everything
|
21 |
+
from pytorch_lightning.callbacks import Callback
|
22 |
+
from pytorch_lightning.loggers import WandbLogger
|
23 |
+
from pytorch_lightning.trainer import Trainer
|
24 |
+
from pytorch_lightning.utilities import rank_zero_only
|
25 |
+
|
26 |
+
from sgm.util import exists, instantiate_from_config, isheatmap
|
27 |
+
|
28 |
+
MULTINODE_HACKS = True
|
29 |
+
|
30 |
+
|
31 |
+
def default_trainer_args():
|
32 |
+
argspec = dict(inspect.signature(Trainer.__init__).parameters)
|
33 |
+
argspec.pop("self")
|
34 |
+
default_args = {
|
35 |
+
param: argspec[param].default
|
36 |
+
for param in argspec
|
37 |
+
if argspec[param] != Parameter.empty
|
38 |
+
}
|
39 |
+
return default_args
|
40 |
+
|
41 |
+
|
42 |
+
def get_parser(**parser_kwargs):
|
43 |
+
def str2bool(v):
|
44 |
+
if isinstance(v, bool):
|
45 |
+
return v
|
46 |
+
if v.lower() in ("yes", "true", "t", "y", "1"):
|
47 |
+
return True
|
48 |
+
elif v.lower() in ("no", "false", "f", "n", "0"):
|
49 |
+
return False
|
50 |
+
else:
|
51 |
+
raise argparse.ArgumentTypeError("Boolean value expected.")
|
52 |
+
|
53 |
+
parser = argparse.ArgumentParser(**parser_kwargs)
|
54 |
+
parser.add_argument(
|
55 |
+
"-n",
|
56 |
+
"--name",
|
57 |
+
type=str,
|
58 |
+
const=True,
|
59 |
+
default="",
|
60 |
+
nargs="?",
|
61 |
+
help="postfix for logdir",
|
62 |
+
)
|
63 |
+
parser.add_argument(
|
64 |
+
"--no_date",
|
65 |
+
type=str2bool,
|
66 |
+
nargs="?",
|
67 |
+
const=True,
|
68 |
+
default=False,
|
69 |
+
help="if True, skip date generation for logdir and only use naming via opt.base or opt.name (+ opt.postfix, optionally)",
|
70 |
+
)
|
71 |
+
parser.add_argument(
|
72 |
+
"-r",
|
73 |
+
"--resume",
|
74 |
+
type=str,
|
75 |
+
const=True,
|
76 |
+
default="",
|
77 |
+
nargs="?",
|
78 |
+
help="resume from logdir or checkpoint in logdir",
|
79 |
+
)
|
80 |
+
parser.add_argument(
|
81 |
+
"-b",
|
82 |
+
"--base",
|
83 |
+
nargs="*",
|
84 |
+
metavar="base_config.yaml",
|
85 |
+
help="paths to base configs. Loaded from left-to-right. "
|
86 |
+
"Parameters can be overwritten or added with command-line options of the form `--key value`.",
|
87 |
+
default=list(),
|
88 |
+
)
|
89 |
+
parser.add_argument(
|
90 |
+
"-t",
|
91 |
+
"--train",
|
92 |
+
type=str2bool,
|
93 |
+
const=True,
|
94 |
+
default=True,
|
95 |
+
nargs="?",
|
96 |
+
help="train",
|
97 |
+
)
|
98 |
+
parser.add_argument(
|
99 |
+
"--no-test",
|
100 |
+
type=str2bool,
|
101 |
+
const=True,
|
102 |
+
default=False,
|
103 |
+
nargs="?",
|
104 |
+
help="disable test",
|
105 |
+
)
|
106 |
+
parser.add_argument(
|
107 |
+
"-p", "--project", help="name of new or path to existing project"
|
108 |
+
)
|
109 |
+
parser.add_argument(
|
110 |
+
"-d",
|
111 |
+
"--debug",
|
112 |
+
type=str2bool,
|
113 |
+
nargs="?",
|
114 |
+
const=True,
|
115 |
+
default=False,
|
116 |
+
help="enable post-mortem debugging",
|
117 |
+
)
|
118 |
+
parser.add_argument(
|
119 |
+
"-s",
|
120 |
+
"--seed",
|
121 |
+
type=int,
|
122 |
+
default=23,
|
123 |
+
help="seed for seed_everything",
|
124 |
+
)
|
125 |
+
parser.add_argument(
|
126 |
+
"-f",
|
127 |
+
"--postfix",
|
128 |
+
type=str,
|
129 |
+
default="",
|
130 |
+
help="post-postfix for default name",
|
131 |
+
)
|
132 |
+
parser.add_argument(
|
133 |
+
"--projectname",
|
134 |
+
type=str,
|
135 |
+
default="stablediffusion",
|
136 |
+
)
|
137 |
+
parser.add_argument(
|
138 |
+
"-l",
|
139 |
+
"--logdir",
|
140 |
+
type=str,
|
141 |
+
default="logs",
|
142 |
+
help="directory for logging dat shit",
|
143 |
+
)
|
144 |
+
parser.add_argument(
|
145 |
+
"--scale_lr",
|
146 |
+
type=str2bool,
|
147 |
+
nargs="?",
|
148 |
+
const=True,
|
149 |
+
default=False,
|
150 |
+
help="scale base-lr by ngpu * batch_size * n_accumulate",
|
151 |
+
)
|
152 |
+
parser.add_argument(
|
153 |
+
"--legacy_naming",
|
154 |
+
type=str2bool,
|
155 |
+
nargs="?",
|
156 |
+
const=True,
|
157 |
+
default=False,
|
158 |
+
help="name run based on config file name if true, else by whole path",
|
159 |
+
)
|
160 |
+
parser.add_argument(
|
161 |
+
"--enable_tf32",
|
162 |
+
type=str2bool,
|
163 |
+
nargs="?",
|
164 |
+
const=True,
|
165 |
+
default=False,
|
166 |
+
help="enables the TensorFloat32 format both for matmuls and cuDNN for pytorch 1.12",
|
167 |
+
)
|
168 |
+
parser.add_argument(
|
169 |
+
"--startup",
|
170 |
+
type=str,
|
171 |
+
default=None,
|
172 |
+
help="Startuptime from distributed script",
|
173 |
+
)
|
174 |
+
parser.add_argument(
|
175 |
+
"--wandb",
|
176 |
+
type=str2bool,
|
177 |
+
nargs="?",
|
178 |
+
const=True,
|
179 |
+
default=False, # TODO: later default to True
|
180 |
+
help="log to wandb",
|
181 |
+
)
|
182 |
+
parser.add_argument(
|
183 |
+
"--no_base_name",
|
184 |
+
type=str2bool,
|
185 |
+
nargs="?",
|
186 |
+
const=True,
|
187 |
+
default=False, # TODO: later default to True
|
188 |
+
help="log to wandb",
|
189 |
+
)
|
190 |
+
if version.parse(torch.__version__) >= version.parse("2.0.0"):
|
191 |
+
parser.add_argument(
|
192 |
+
"--resume_from_checkpoint",
|
193 |
+
type=str,
|
194 |
+
default=None,
|
195 |
+
help="single checkpoint file to resume from",
|
196 |
+
)
|
197 |
+
default_args = default_trainer_args()
|
198 |
+
for key in default_args:
|
199 |
+
parser.add_argument("--" + key, default=default_args[key])
|
200 |
+
return parser
|
201 |
+
|
202 |
+
|
203 |
+
def get_checkpoint_name(logdir):
|
204 |
+
ckpt = os.path.join(logdir, "checkpoints", "last**.ckpt")
|
205 |
+
ckpt = natsorted(glob.glob(ckpt))
|
206 |
+
print('available "last" checkpoints:')
|
207 |
+
print(ckpt)
|
208 |
+
if len(ckpt) > 1:
|
209 |
+
print("got most recent checkpoint")
|
210 |
+
ckpt = sorted(ckpt, key=lambda x: os.path.getmtime(x))[-1]
|
211 |
+
print(f"Most recent ckpt is {ckpt}")
|
212 |
+
with open(os.path.join(logdir, "most_recent_ckpt.txt"), "w") as f:
|
213 |
+
f.write(ckpt + "\n")
|
214 |
+
try:
|
215 |
+
version = int(ckpt.split("/")[-1].split("-v")[-1].split(".")[0])
|
216 |
+
except Exception as e:
|
217 |
+
print("version confusion but not bad")
|
218 |
+
print(e)
|
219 |
+
version = 1
|
220 |
+
# version = last_version + 1
|
221 |
+
else:
|
222 |
+
# in this case, we only have one "last.ckpt"
|
223 |
+
ckpt = ckpt[0]
|
224 |
+
version = 1
|
225 |
+
melk_ckpt_name = f"last-v{version}.ckpt"
|
226 |
+
print(f"Current melk ckpt name: {melk_ckpt_name}")
|
227 |
+
return ckpt, melk_ckpt_name
|
228 |
+
|
229 |
+
|
230 |
+
class SetupCallback(Callback):
|
231 |
+
def __init__(
|
232 |
+
self,
|
233 |
+
resume,
|
234 |
+
now,
|
235 |
+
logdir,
|
236 |
+
ckptdir,
|
237 |
+
cfgdir,
|
238 |
+
config,
|
239 |
+
lightning_config,
|
240 |
+
debug,
|
241 |
+
ckpt_name=None,
|
242 |
+
):
|
243 |
+
super().__init__()
|
244 |
+
self.resume = resume
|
245 |
+
self.now = now
|
246 |
+
self.logdir = logdir
|
247 |
+
self.ckptdir = ckptdir
|
248 |
+
self.cfgdir = cfgdir
|
249 |
+
self.config = config
|
250 |
+
self.lightning_config = lightning_config
|
251 |
+
self.debug = debug
|
252 |
+
self.ckpt_name = ckpt_name
|
253 |
+
|
254 |
+
def on_exception(self, trainer: pl.Trainer, pl_module, exception):
|
255 |
+
if not self.debug and trainer.global_rank == 0:
|
256 |
+
print("Summoning checkpoint.")
|
257 |
+
if self.ckpt_name is None:
|
258 |
+
ckpt_path = os.path.join(self.ckptdir, "last.ckpt")
|
259 |
+
else:
|
260 |
+
ckpt_path = os.path.join(self.ckptdir, self.ckpt_name)
|
261 |
+
trainer.save_checkpoint(ckpt_path)
|
262 |
+
|
263 |
+
def on_fit_start(self, trainer, pl_module):
|
264 |
+
if trainer.global_rank == 0:
|
265 |
+
# Create logdirs and save configs
|
266 |
+
os.makedirs(self.logdir, exist_ok=True)
|
267 |
+
os.makedirs(self.ckptdir, exist_ok=True)
|
268 |
+
os.makedirs(self.cfgdir, exist_ok=True)
|
269 |
+
|
270 |
+
if "callbacks" in self.lightning_config:
|
271 |
+
if (
|
272 |
+
"metrics_over_trainsteps_checkpoint"
|
273 |
+
in self.lightning_config["callbacks"]
|
274 |
+
):
|
275 |
+
os.makedirs(
|
276 |
+
os.path.join(self.ckptdir, "trainstep_checkpoints"),
|
277 |
+
exist_ok=True,
|
278 |
+
)
|
279 |
+
print("Project config")
|
280 |
+
print(OmegaConf.to_yaml(self.config))
|
281 |
+
if MULTINODE_HACKS:
|
282 |
+
import time
|
283 |
+
|
284 |
+
time.sleep(5)
|
285 |
+
OmegaConf.save(
|
286 |
+
self.config,
|
287 |
+
os.path.join(self.cfgdir, "{}-project.yaml".format(self.now)),
|
288 |
+
)
|
289 |
+
|
290 |
+
print("Lightning config")
|
291 |
+
print(OmegaConf.to_yaml(self.lightning_config))
|
292 |
+
OmegaConf.save(
|
293 |
+
OmegaConf.create({"lightning": self.lightning_config}),
|
294 |
+
os.path.join(self.cfgdir, "{}-lightning.yaml".format(self.now)),
|
295 |
+
)
|
296 |
+
|
297 |
+
else:
|
298 |
+
# ModelCheckpoint callback created log directory --- remove it
|
299 |
+
if not MULTINODE_HACKS and not self.resume and os.path.exists(self.logdir):
|
300 |
+
dst, name = os.path.split(self.logdir)
|
301 |
+
dst = os.path.join(dst, "child_runs", name)
|
302 |
+
os.makedirs(os.path.split(dst)[0], exist_ok=True)
|
303 |
+
try:
|
304 |
+
os.rename(self.logdir, dst)
|
305 |
+
except FileNotFoundError:
|
306 |
+
pass
|
307 |
+
|
308 |
+
|
309 |
+
class ImageLogger(Callback):
|
310 |
+
def __init__(
|
311 |
+
self,
|
312 |
+
batch_frequency,
|
313 |
+
max_images,
|
314 |
+
clamp=True,
|
315 |
+
increase_log_steps=True,
|
316 |
+
rescale=True,
|
317 |
+
disabled=False,
|
318 |
+
log_on_batch_idx=False,
|
319 |
+
log_first_step=False,
|
320 |
+
log_images_kwargs=None,
|
321 |
+
log_before_first_step=False,
|
322 |
+
enable_autocast=True,
|
323 |
+
):
|
324 |
+
super().__init__()
|
325 |
+
self.enable_autocast = enable_autocast
|
326 |
+
self.rescale = rescale
|
327 |
+
self.batch_freq = batch_frequency
|
328 |
+
self.max_images = max_images
|
329 |
+
self.log_steps = [2**n for n in range(int(np.log2(self.batch_freq)) + 1)]
|
330 |
+
if not increase_log_steps:
|
331 |
+
self.log_steps = [self.batch_freq]
|
332 |
+
self.clamp = clamp
|
333 |
+
self.disabled = disabled
|
334 |
+
self.log_on_batch_idx = log_on_batch_idx
|
335 |
+
self.log_images_kwargs = log_images_kwargs if log_images_kwargs else {}
|
336 |
+
self.log_first_step = log_first_step
|
337 |
+
self.log_before_first_step = log_before_first_step
|
338 |
+
|
339 |
+
@rank_zero_only
|
340 |
+
def log_local(
|
341 |
+
self,
|
342 |
+
save_dir,
|
343 |
+
split,
|
344 |
+
images,
|
345 |
+
global_step,
|
346 |
+
current_epoch,
|
347 |
+
batch_idx,
|
348 |
+
pl_module: Union[None, pl.LightningModule] = None,
|
349 |
+
):
|
350 |
+
root = os.path.join(save_dir, "images", split)
|
351 |
+
for k in images:
|
352 |
+
if isheatmap(images[k]):
|
353 |
+
fig, ax = plt.subplots()
|
354 |
+
ax = ax.matshow(
|
355 |
+
images[k].cpu().numpy(), cmap="hot", interpolation="lanczos"
|
356 |
+
)
|
357 |
+
plt.colorbar(ax)
|
358 |
+
plt.axis("off")
|
359 |
+
|
360 |
+
filename = "{}_gs-{:06}_e-{:06}_b-{:06}.png".format(
|
361 |
+
k, global_step, current_epoch, batch_idx
|
362 |
+
)
|
363 |
+
os.makedirs(root, exist_ok=True)
|
364 |
+
path = os.path.join(root, filename)
|
365 |
+
plt.savefig(path)
|
366 |
+
plt.close()
|
367 |
+
# TODO: support wandb
|
368 |
+
else:
|
369 |
+
grid = torchvision.utils.make_grid(images[k], nrow=4)
|
370 |
+
if self.rescale:
|
371 |
+
grid = (grid + 1.0) / 2.0 # -1,1 -> 0,1; c,h,w
|
372 |
+
grid = grid.transpose(0, 1).transpose(1, 2).squeeze(-1)
|
373 |
+
grid = grid.numpy()
|
374 |
+
grid = (grid * 255).astype(np.uint8)
|
375 |
+
filename = "{}_gs-{:06}_e-{:06}_b-{:06}.png".format(
|
376 |
+
k, global_step, current_epoch, batch_idx
|
377 |
+
)
|
378 |
+
path = os.path.join(root, filename)
|
379 |
+
os.makedirs(os.path.split(path)[0], exist_ok=True)
|
380 |
+
img = Image.fromarray(grid)
|
381 |
+
img.save(path)
|
382 |
+
if exists(pl_module):
|
383 |
+
assert isinstance(
|
384 |
+
pl_module.logger, WandbLogger
|
385 |
+
), "logger_log_image only supports WandbLogger currently"
|
386 |
+
pl_module.logger.log_image(
|
387 |
+
key=f"{split}/{k}",
|
388 |
+
images=[
|
389 |
+
img,
|
390 |
+
],
|
391 |
+
step=pl_module.global_step,
|
392 |
+
)
|
393 |
+
|
394 |
+
@rank_zero_only
|
395 |
+
def log_img(self, pl_module, batch, batch_idx, split="train"):
|
396 |
+
check_idx = batch_idx if self.log_on_batch_idx else pl_module.global_step
|
397 |
+
if (
|
398 |
+
self.check_frequency(check_idx)
|
399 |
+
and hasattr(pl_module, "log_images") # batch_idx % self.batch_freq == 0
|
400 |
+
and callable(pl_module.log_images)
|
401 |
+
and
|
402 |
+
# batch_idx > 5 and
|
403 |
+
self.max_images > 0
|
404 |
+
):
|
405 |
+
logger = type(pl_module.logger)
|
406 |
+
is_train = pl_module.training
|
407 |
+
if is_train:
|
408 |
+
pl_module.eval()
|
409 |
+
|
410 |
+
gpu_autocast_kwargs = {
|
411 |
+
"enabled": self.enable_autocast, # torch.is_autocast_enabled(),
|
412 |
+
"dtype": torch.get_autocast_gpu_dtype(),
|
413 |
+
"cache_enabled": torch.is_autocast_cache_enabled(),
|
414 |
+
}
|
415 |
+
with torch.no_grad(), torch.cuda.amp.autocast(**gpu_autocast_kwargs):
|
416 |
+
images = pl_module.log_images(
|
417 |
+
batch, split=split, **self.log_images_kwargs
|
418 |
+
)
|
419 |
+
|
420 |
+
for k in images:
|
421 |
+
N = min(images[k].shape[0], self.max_images)
|
422 |
+
if not isheatmap(images[k]):
|
423 |
+
images[k] = images[k][:N]
|
424 |
+
if isinstance(images[k], torch.Tensor):
|
425 |
+
images[k] = images[k].detach().float().cpu()
|
426 |
+
if self.clamp and not isheatmap(images[k]):
|
427 |
+
images[k] = torch.clamp(images[k], -1.0, 1.0)
|
428 |
+
|
429 |
+
self.log_local(
|
430 |
+
pl_module.logger.save_dir,
|
431 |
+
split,
|
432 |
+
images,
|
433 |
+
pl_module.global_step,
|
434 |
+
pl_module.current_epoch,
|
435 |
+
batch_idx,
|
436 |
+
pl_module=pl_module
|
437 |
+
if isinstance(pl_module.logger, WandbLogger)
|
438 |
+
else None,
|
439 |
+
)
|
440 |
+
|
441 |
+
if is_train:
|
442 |
+
pl_module.train()
|
443 |
+
|
444 |
+
def check_frequency(self, check_idx):
|
445 |
+
if ((check_idx % self.batch_freq) == 0 or (check_idx in self.log_steps)) and (
|
446 |
+
check_idx > 0 or self.log_first_step
|
447 |
+
):
|
448 |
+
try:
|
449 |
+
self.log_steps.pop(0)
|
450 |
+
except IndexError as e:
|
451 |
+
print(e)
|
452 |
+
pass
|
453 |
+
return True
|
454 |
+
return False
|
455 |
+
|
456 |
+
@rank_zero_only
|
457 |
+
def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx):
|
458 |
+
if not self.disabled and (pl_module.global_step > 0 or self.log_first_step):
|
459 |
+
self.log_img(pl_module, batch, batch_idx, split="train")
|
460 |
+
|
461 |
+
@rank_zero_only
|
462 |
+
def on_train_batch_start(self, trainer, pl_module, batch, batch_idx):
|
463 |
+
if self.log_before_first_step and pl_module.global_step == 0:
|
464 |
+
print(f"{self.__class__.__name__}: logging before training")
|
465 |
+
self.log_img(pl_module, batch, batch_idx, split="train")
|
466 |
+
|
467 |
+
@rank_zero_only
|
468 |
+
def on_validation_batch_end(
|
469 |
+
self, trainer, pl_module, outputs, batch, batch_idx, *args, **kwargs
|
470 |
+
):
|
471 |
+
if not self.disabled and pl_module.global_step > 0:
|
472 |
+
self.log_img(pl_module, batch, batch_idx, split="val")
|
473 |
+
if hasattr(pl_module, "calibrate_grad_norm"):
|
474 |
+
if (
|
475 |
+
pl_module.calibrate_grad_norm and batch_idx % 25 == 0
|
476 |
+
) and batch_idx > 0:
|
477 |
+
self.log_gradients(trainer, pl_module, batch_idx=batch_idx)
|
478 |
+
|
479 |
+
|
480 |
+
@rank_zero_only
|
481 |
+
def init_wandb(save_dir, opt, config, group_name, name_str):
|
482 |
+
print(f"setting WANDB_DIR to {save_dir}")
|
483 |
+
os.makedirs(save_dir, exist_ok=True)
|
484 |
+
|
485 |
+
os.environ["WANDB_DIR"] = save_dir
|
486 |
+
if opt.debug:
|
487 |
+
wandb.init(project=opt.projectname, mode="offline", group=group_name)
|
488 |
+
else:
|
489 |
+
wandb.init(
|
490 |
+
project=opt.projectname,
|
491 |
+
config=config,
|
492 |
+
settings=wandb.Settings(code_dir="./sgm"),
|
493 |
+
group=group_name,
|
494 |
+
name=name_str,
|
495 |
+
)
|
496 |
+
|
497 |
+
|
498 |
+
if __name__ == "__main__":
|
499 |
+
# custom parser to specify config files, train, test and debug mode,
|
500 |
+
# postfix, resume.
|
501 |
+
# `--key value` arguments are interpreted as arguments to the trainer.
|
502 |
+
# `nested.key=value` arguments are interpreted as config parameters.
|
503 |
+
# configs are merged from left-to-right followed by command line parameters.
|
504 |
+
|
505 |
+
# model:
|
506 |
+
# base_learning_rate: float
|
507 |
+
# target: path to lightning module
|
508 |
+
# params:
|
509 |
+
# key: value
|
510 |
+
# data:
|
511 |
+
# target: main.DataModuleFromConfig
|
512 |
+
# params:
|
513 |
+
# batch_size: int
|
514 |
+
# wrap: bool
|
515 |
+
# train:
|
516 |
+
# target: path to train dataset
|
517 |
+
# params:
|
518 |
+
# key: value
|
519 |
+
# validation:
|
520 |
+
# target: path to validation dataset
|
521 |
+
# params:
|
522 |
+
# key: value
|
523 |
+
# test:
|
524 |
+
# target: path to test dataset
|
525 |
+
# params:
|
526 |
+
# key: value
|
527 |
+
# lightning: (optional, has sane defaults and can be specified on cmdline)
|
528 |
+
# trainer:
|
529 |
+
# additional arguments to trainer
|
530 |
+
# logger:
|
531 |
+
# logger to instantiate
|
532 |
+
# modelcheckpoint:
|
533 |
+
# modelcheckpoint to instantiate
|
534 |
+
# callbacks:
|
535 |
+
# callback1:
|
536 |
+
# target: importpath
|
537 |
+
# params:
|
538 |
+
# key: value
|
539 |
+
|
540 |
+
now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S")
|
541 |
+
|
542 |
+
# add cwd for convenience and to make classes in this file available when
|
543 |
+
# running as `python main.py`
|
544 |
+
# (in particular `main.DataModuleFromConfig`)
|
545 |
+
sys.path.append(os.getcwd())
|
546 |
+
|
547 |
+
parser = get_parser()
|
548 |
+
|
549 |
+
opt, unknown = parser.parse_known_args()
|
550 |
+
|
551 |
+
if opt.name and opt.resume:
|
552 |
+
raise ValueError(
|
553 |
+
"-n/--name and -r/--resume cannot be specified both."
|
554 |
+
"If you want to resume training in a new log folder, "
|
555 |
+
"use -n/--name in combination with --resume_from_checkpoint"
|
556 |
+
)
|
557 |
+
melk_ckpt_name = None
|
558 |
+
name = None
|
559 |
+
if opt.resume:
|
560 |
+
if not os.path.exists(opt.resume):
|
561 |
+
raise ValueError("Cannot find {}".format(opt.resume))
|
562 |
+
if os.path.isfile(opt.resume):
|
563 |
+
paths = opt.resume.split("/")
|
564 |
+
# idx = len(paths)-paths[::-1].index("logs")+1
|
565 |
+
# logdir = "/".join(paths[:idx])
|
566 |
+
logdir = "/".join(paths[:-2])
|
567 |
+
ckpt = opt.resume
|
568 |
+
_, melk_ckpt_name = get_checkpoint_name(logdir)
|
569 |
+
else:
|
570 |
+
assert os.path.isdir(opt.resume), opt.resume
|
571 |
+
logdir = opt.resume.rstrip("/")
|
572 |
+
ckpt, melk_ckpt_name = get_checkpoint_name(logdir)
|
573 |
+
|
574 |
+
print("#" * 100)
|
575 |
+
print(f'Resuming from checkpoint "{ckpt}"')
|
576 |
+
print("#" * 100)
|
577 |
+
|
578 |
+
opt.resume_from_checkpoint = ckpt
|
579 |
+
base_configs = sorted(glob.glob(os.path.join(logdir, "configs/*.yaml")))
|
580 |
+
opt.base = base_configs + opt.base
|
581 |
+
_tmp = logdir.split("/")
|
582 |
+
nowname = _tmp[-1]
|
583 |
+
else:
|
584 |
+
if opt.name:
|
585 |
+
name = "_" + opt.name
|
586 |
+
elif opt.base:
|
587 |
+
if opt.no_base_name:
|
588 |
+
name = ""
|
589 |
+
else:
|
590 |
+
if opt.legacy_naming:
|
591 |
+
cfg_fname = os.path.split(opt.base[0])[-1]
|
592 |
+
cfg_name = os.path.splitext(cfg_fname)[0]
|
593 |
+
else:
|
594 |
+
assert "configs" in os.path.split(opt.base[0])[0], os.path.split(
|
595 |
+
opt.base[0]
|
596 |
+
)[0]
|
597 |
+
cfg_path = os.path.split(opt.base[0])[0].split(os.sep)[
|
598 |
+
os.path.split(opt.base[0])[0].split(os.sep).index("configs")
|
599 |
+
+ 1 :
|
600 |
+
] # cut away the first one (we assert all configs are in "configs")
|
601 |
+
cfg_name = os.path.splitext(os.path.split(opt.base[0])[-1])[0]
|
602 |
+
cfg_name = "-".join(cfg_path) + f"-{cfg_name}"
|
603 |
+
name = "_" + cfg_name
|
604 |
+
else:
|
605 |
+
name = ""
|
606 |
+
if not opt.no_date:
|
607 |
+
nowname = now + name + opt.postfix
|
608 |
+
else:
|
609 |
+
nowname = name + opt.postfix
|
610 |
+
if nowname.startswith("_"):
|
611 |
+
nowname = nowname[1:]
|
612 |
+
logdir = os.path.join(opt.logdir, nowname)
|
613 |
+
print(f"LOGDIR: {logdir}")
|
614 |
+
|
615 |
+
ckptdir = os.path.join(logdir, "checkpoints")
|
616 |
+
cfgdir = os.path.join(logdir, "configs")
|
617 |
+
seed_everything(opt.seed, workers=True)
|
618 |
+
|
619 |
+
# move before model init, in case a torch.compile(...) is called somewhere
|
620 |
+
if opt.enable_tf32:
|
621 |
+
# pt_version = version.parse(torch.__version__)
|
622 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
623 |
+
torch.backends.cudnn.allow_tf32 = True
|
624 |
+
print(f"Enabling TF32 for PyTorch {torch.__version__}")
|
625 |
+
else:
|
626 |
+
print(f"Using default TF32 settings for PyTorch {torch.__version__}:")
|
627 |
+
print(
|
628 |
+
f"torch.backends.cuda.matmul.allow_tf32={torch.backends.cuda.matmul.allow_tf32}"
|
629 |
+
)
|
630 |
+
print(f"torch.backends.cudnn.allow_tf32={torch.backends.cudnn.allow_tf32}")
|
631 |
+
|
632 |
+
try:
|
633 |
+
# init and save configs
|
634 |
+
configs = [OmegaConf.load(cfg) for cfg in opt.base]
|
635 |
+
cli = OmegaConf.from_dotlist(unknown)
|
636 |
+
config = OmegaConf.merge(*configs, cli)
|
637 |
+
lightning_config = config.pop("lightning", OmegaConf.create())
|
638 |
+
# merge trainer cli with config
|
639 |
+
trainer_config = lightning_config.get("trainer", OmegaConf.create())
|
640 |
+
|
641 |
+
# default to gpu
|
642 |
+
trainer_config["accelerator"] = "gpu"
|
643 |
+
#
|
644 |
+
standard_args = default_trainer_args()
|
645 |
+
for k in standard_args:
|
646 |
+
if getattr(opt, k) != standard_args[k]:
|
647 |
+
trainer_config[k] = getattr(opt, k)
|
648 |
+
|
649 |
+
ckpt_resume_path = opt.resume_from_checkpoint
|
650 |
+
|
651 |
+
if not "devices" in trainer_config and trainer_config["accelerator"] != "gpu":
|
652 |
+
del trainer_config["accelerator"]
|
653 |
+
cpu = True
|
654 |
+
else:
|
655 |
+
gpuinfo = trainer_config["devices"]
|
656 |
+
print(f"Running on GPUs {gpuinfo}")
|
657 |
+
cpu = False
|
658 |
+
trainer_opt = argparse.Namespace(**trainer_config)
|
659 |
+
lightning_config.trainer = trainer_config
|
660 |
+
|
661 |
+
# model
|
662 |
+
model = instantiate_from_config(config.model)
|
663 |
+
|
664 |
+
# trainer and callbacks
|
665 |
+
trainer_kwargs = dict()
|
666 |
+
|
667 |
+
# default logger configs
|
668 |
+
default_logger_cfgs = {
|
669 |
+
"wandb": {
|
670 |
+
"target": "pytorch_lightning.loggers.WandbLogger",
|
671 |
+
"params": {
|
672 |
+
"name": nowname,
|
673 |
+
# "save_dir": logdir,
|
674 |
+
"offline": opt.debug,
|
675 |
+
"id": nowname,
|
676 |
+
"project": opt.projectname,
|
677 |
+
"log_model": False,
|
678 |
+
# "dir": logdir,
|
679 |
+
},
|
680 |
+
},
|
681 |
+
"csv": {
|
682 |
+
"target": "pytorch_lightning.loggers.CSVLogger",
|
683 |
+
"params": {
|
684 |
+
"name": "testtube", # hack for sbord fanatics
|
685 |
+
"save_dir": logdir,
|
686 |
+
},
|
687 |
+
},
|
688 |
+
}
|
689 |
+
default_logger_cfg = default_logger_cfgs["wandb" if opt.wandb else "csv"]
|
690 |
+
if opt.wandb:
|
691 |
+
# TODO change once leaving "swiffer" config directory
|
692 |
+
try:
|
693 |
+
group_name = nowname.split(now)[-1].split("-")[1]
|
694 |
+
except:
|
695 |
+
group_name = nowname
|
696 |
+
default_logger_cfg["params"]["group"] = group_name
|
697 |
+
init_wandb(
|
698 |
+
os.path.join(os.getcwd(), logdir),
|
699 |
+
opt=opt,
|
700 |
+
group_name=group_name,
|
701 |
+
config=config,
|
702 |
+
name_str=nowname,
|
703 |
+
)
|
704 |
+
if "logger" in lightning_config:
|
705 |
+
logger_cfg = lightning_config.logger
|
706 |
+
else:
|
707 |
+
logger_cfg = OmegaConf.create()
|
708 |
+
logger_cfg = OmegaConf.merge(default_logger_cfg, logger_cfg)
|
709 |
+
trainer_kwargs["logger"] = instantiate_from_config(logger_cfg)
|
710 |
+
|
711 |
+
# modelcheckpoint - use TrainResult/EvalResult(checkpoint_on=metric) to
|
712 |
+
# specify which metric is used to determine best models
|
713 |
+
default_modelckpt_cfg = {
|
714 |
+
"target": "pytorch_lightning.callbacks.ModelCheckpoint",
|
715 |
+
"params": {
|
716 |
+
"dirpath": ckptdir,
|
717 |
+
"filename": "{epoch:06}",
|
718 |
+
"verbose": True,
|
719 |
+
"save_last": True,
|
720 |
+
},
|
721 |
+
}
|
722 |
+
if hasattr(model, "monitor"):
|
723 |
+
print(f"Monitoring {model.monitor} as checkpoint metric.")
|
724 |
+
default_modelckpt_cfg["params"]["monitor"] = model.monitor
|
725 |
+
default_modelckpt_cfg["params"]["save_top_k"] = 3
|
726 |
+
|
727 |
+
if "modelcheckpoint" in lightning_config:
|
728 |
+
modelckpt_cfg = lightning_config.modelcheckpoint
|
729 |
+
else:
|
730 |
+
modelckpt_cfg = OmegaConf.create()
|
731 |
+
modelckpt_cfg = OmegaConf.merge(default_modelckpt_cfg, modelckpt_cfg)
|
732 |
+
print(f"Merged modelckpt-cfg: \n{modelckpt_cfg}")
|
733 |
+
|
734 |
+
# https://pytorch-lightning.readthedocs.io/en/stable/extensions/strategy.html
|
735 |
+
# default to ddp if not further specified
|
736 |
+
default_strategy_config = {"target": "pytorch_lightning.strategies.DDPStrategy"}
|
737 |
+
|
738 |
+
if "strategy" in lightning_config:
|
739 |
+
strategy_cfg = lightning_config.strategy
|
740 |
+
else:
|
741 |
+
strategy_cfg = OmegaConf.create()
|
742 |
+
default_strategy_config["params"] = {
|
743 |
+
"find_unused_parameters": False,
|
744 |
+
# "static_graph": True,
|
745 |
+
# "ddp_comm_hook": default.fp16_compress_hook # TODO: experiment with this, also for DDPSharded
|
746 |
+
}
|
747 |
+
strategy_cfg = OmegaConf.merge(default_strategy_config, strategy_cfg)
|
748 |
+
print(
|
749 |
+
f"strategy config: \n ++++++++++++++ \n {strategy_cfg} \n ++++++++++++++ "
|
750 |
+
)
|
751 |
+
trainer_kwargs["strategy"] = instantiate_from_config(strategy_cfg)
|
752 |
+
|
753 |
+
# add callback which sets up log directory
|
754 |
+
default_callbacks_cfg = {
|
755 |
+
"setup_callback": {
|
756 |
+
"target": "main.SetupCallback",
|
757 |
+
"params": {
|
758 |
+
"resume": opt.resume,
|
759 |
+
"now": now,
|
760 |
+
"logdir": logdir,
|
761 |
+
"ckptdir": ckptdir,
|
762 |
+
"cfgdir": cfgdir,
|
763 |
+
"config": config,
|
764 |
+
"lightning_config": lightning_config,
|
765 |
+
"debug": opt.debug,
|
766 |
+
"ckpt_name": melk_ckpt_name,
|
767 |
+
},
|
768 |
+
},
|
769 |
+
"image_logger": {
|
770 |
+
"target": "main.ImageLogger",
|
771 |
+
"params": {"batch_frequency": 1000, "max_images": 4, "clamp": True},
|
772 |
+
},
|
773 |
+
"learning_rate_logger": {
|
774 |
+
"target": "pytorch_lightning.callbacks.LearningRateMonitor",
|
775 |
+
"params": {
|
776 |
+
"logging_interval": "step",
|
777 |
+
# "log_momentum": True
|
778 |
+
},
|
779 |
+
},
|
780 |
+
}
|
781 |
+
if version.parse(pl.__version__) >= version.parse("1.4.0"):
|
782 |
+
default_callbacks_cfg.update({"checkpoint_callback": modelckpt_cfg})
|
783 |
+
|
784 |
+
if "callbacks" in lightning_config:
|
785 |
+
callbacks_cfg = lightning_config.callbacks
|
786 |
+
else:
|
787 |
+
callbacks_cfg = OmegaConf.create()
|
788 |
+
|
789 |
+
if "metrics_over_trainsteps_checkpoint" in callbacks_cfg:
|
790 |
+
print(
|
791 |
+
"Caution: Saving checkpoints every n train steps without deleting. This might require some free space."
|
792 |
+
)
|
793 |
+
default_metrics_over_trainsteps_ckpt_dict = {
|
794 |
+
"metrics_over_trainsteps_checkpoint": {
|
795 |
+
"target": "pytorch_lightning.callbacks.ModelCheckpoint",
|
796 |
+
"params": {
|
797 |
+
"dirpath": os.path.join(ckptdir, "trainstep_checkpoints"),
|
798 |
+
"filename": "{epoch:06}-{step:09}",
|
799 |
+
"verbose": True,
|
800 |
+
"save_top_k": -1,
|
801 |
+
"every_n_train_steps": 10000,
|
802 |
+
"save_weights_only": True,
|
803 |
+
},
|
804 |
+
}
|
805 |
+
}
|
806 |
+
default_callbacks_cfg.update(default_metrics_over_trainsteps_ckpt_dict)
|
807 |
+
|
808 |
+
callbacks_cfg = OmegaConf.merge(default_callbacks_cfg, callbacks_cfg)
|
809 |
+
if "ignore_keys_callback" in callbacks_cfg and ckpt_resume_path is not None:
|
810 |
+
callbacks_cfg.ignore_keys_callback.params["ckpt_path"] = ckpt_resume_path
|
811 |
+
elif "ignore_keys_callback" in callbacks_cfg:
|
812 |
+
del callbacks_cfg["ignore_keys_callback"]
|
813 |
+
|
814 |
+
trainer_kwargs["callbacks"] = [
|
815 |
+
instantiate_from_config(callbacks_cfg[k]) for k in callbacks_cfg
|
816 |
+
]
|
817 |
+
if not "plugins" in trainer_kwargs:
|
818 |
+
trainer_kwargs["plugins"] = list()
|
819 |
+
|
820 |
+
# cmd line trainer args (which are in trainer_opt) have always priority over config-trainer-args (which are in trainer_kwargs)
|
821 |
+
trainer_opt = vars(trainer_opt)
|
822 |
+
trainer_kwargs = {
|
823 |
+
key: val for key, val in trainer_kwargs.items() if key not in trainer_opt
|
824 |
+
}
|
825 |
+
trainer = Trainer(**trainer_opt, **trainer_kwargs)
|
826 |
+
|
827 |
+
trainer.logdir = logdir ###
|
828 |
+
|
829 |
+
# data
|
830 |
+
data = instantiate_from_config(config.data)
|
831 |
+
# NOTE according to https://pytorch-lightning.readthedocs.io/en/latest/datamodules.html
|
832 |
+
# calling these ourselves should not be necessary but it is.
|
833 |
+
# lightning still takes care of proper multiprocessing though
|
834 |
+
data.prepare_data()
|
835 |
+
# data.setup()
|
836 |
+
print("#### Data #####")
|
837 |
+
try:
|
838 |
+
for k in data.datasets:
|
839 |
+
print(
|
840 |
+
f"{k}, {data.datasets[k].__class__.__name__}, {len(data.datasets[k])}"
|
841 |
+
)
|
842 |
+
except:
|
843 |
+
print("datasets not yet initialized.")
|
844 |
+
|
845 |
+
# configure learning rate
|
846 |
+
if "batch_size" in config.data.params:
|
847 |
+
bs, base_lr = config.data.params.batch_size, config.model.base_learning_rate
|
848 |
+
else:
|
849 |
+
bs, base_lr = (
|
850 |
+
config.data.params.train.loader.batch_size,
|
851 |
+
config.model.base_learning_rate,
|
852 |
+
)
|
853 |
+
if not cpu:
|
854 |
+
ngpu = len(lightning_config.trainer.devices.strip(",").split(","))
|
855 |
+
else:
|
856 |
+
ngpu = 1
|
857 |
+
if "accumulate_grad_batches" in lightning_config.trainer:
|
858 |
+
accumulate_grad_batches = lightning_config.trainer.accumulate_grad_batches
|
859 |
+
else:
|
860 |
+
accumulate_grad_batches = 1
|
861 |
+
print(f"accumulate_grad_batches = {accumulate_grad_batches}")
|
862 |
+
lightning_config.trainer.accumulate_grad_batches = accumulate_grad_batches
|
863 |
+
if opt.scale_lr:
|
864 |
+
model.learning_rate = accumulate_grad_batches * ngpu * bs * base_lr
|
865 |
+
print(
|
866 |
+
"Setting learning rate to {:.2e} = {} (accumulate_grad_batches) * {} (num_gpus) * {} (batchsize) * {:.2e} (base_lr)".format(
|
867 |
+
model.learning_rate, accumulate_grad_batches, ngpu, bs, base_lr
|
868 |
+
)
|
869 |
+
)
|
870 |
+
else:
|
871 |
+
model.learning_rate = base_lr
|
872 |
+
print("++++ NOT USING LR SCALING ++++")
|
873 |
+
print(f"Setting learning rate to {model.learning_rate:.2e}")
|
874 |
+
|
875 |
+
# allow checkpointing via USR1
|
876 |
+
def melk(*args, **kwargs):
|
877 |
+
# run all checkpoint hooks
|
878 |
+
if trainer.global_rank == 0:
|
879 |
+
print("Summoning checkpoint.")
|
880 |
+
if melk_ckpt_name is None:
|
881 |
+
ckpt_path = os.path.join(ckptdir, "last.ckpt")
|
882 |
+
else:
|
883 |
+
ckpt_path = os.path.join(ckptdir, melk_ckpt_name)
|
884 |
+
trainer.save_checkpoint(ckpt_path)
|
885 |
+
|
886 |
+
def divein(*args, **kwargs):
|
887 |
+
if trainer.global_rank == 0:
|
888 |
+
import pudb
|
889 |
+
|
890 |
+
pudb.set_trace()
|
891 |
+
|
892 |
+
import signal
|
893 |
+
|
894 |
+
signal.signal(signal.SIGUSR1, melk)
|
895 |
+
signal.signal(signal.SIGUSR2, divein)
|
896 |
+
|
897 |
+
# run
|
898 |
+
if opt.train:
|
899 |
+
try:
|
900 |
+
trainer.fit(model, data, ckpt_path=ckpt_resume_path)
|
901 |
+
except Exception:
|
902 |
+
if not opt.debug:
|
903 |
+
melk()
|
904 |
+
raise
|
905 |
+
if not opt.no_test and not trainer.interrupted:
|
906 |
+
trainer.test(model, data)
|
907 |
+
except RuntimeError as err:
|
908 |
+
if MULTINODE_HACKS:
|
909 |
+
import datetime
|
910 |
+
import os
|
911 |
+
import socket
|
912 |
+
|
913 |
+
import requests
|
914 |
+
|
915 |
+
device = os.environ.get("CUDA_VISIBLE_DEVICES", "?")
|
916 |
+
hostname = socket.gethostname()
|
917 |
+
ts = datetime.datetime.utcnow().strftime("%Y-%m-%d %H:%M:%S")
|
918 |
+
resp = requests.get("http://169.254.169.254/latest/meta-data/instance-id")
|
919 |
+
print(
|
920 |
+
f"ERROR at {ts} on {hostname}/{resp.text} (CUDA_VISIBLE_DEVICES={device}): {type(err).__name__}: {err}",
|
921 |
+
flush=True,
|
922 |
+
)
|
923 |
+
raise err
|
924 |
+
except Exception:
|
925 |
+
if opt.debug and trainer.global_rank == 0:
|
926 |
+
try:
|
927 |
+
import pudb as debugger
|
928 |
+
except ImportError:
|
929 |
+
import pdb as debugger
|
930 |
+
debugger.post_mortem()
|
931 |
+
raise
|
932 |
+
finally:
|
933 |
+
# move newly created debug project to debug_runs
|
934 |
+
if opt.debug and not opt.resume and trainer.global_rank == 0:
|
935 |
+
dst, name = os.path.split(logdir)
|
936 |
+
dst = os.path.join(dst, "debug_runs", name)
|
937 |
+
os.makedirs(os.path.split(dst)[0], exist_ok=True)
|
938 |
+
os.rename(logdir, dst)
|
939 |
+
|
940 |
+
if opt.wandb:
|
941 |
+
wandb.finish()
|
942 |
+
# if trainer.global_rank == 0:
|
943 |
+
# print(trainer.profiler.summary())
|
main/inference/motionctrl_cmcm.py
ADDED
@@ -0,0 +1,416 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import datetime
|
3 |
+
import json
|
4 |
+
import math
|
5 |
+
import os
|
6 |
+
import sys
|
7 |
+
import time
|
8 |
+
from glob import glob
|
9 |
+
from pathlib import Path
|
10 |
+
from typing import Optional
|
11 |
+
|
12 |
+
import cv2
|
13 |
+
import numpy as np
|
14 |
+
import torch
|
15 |
+
import torchvision
|
16 |
+
from einops import rearrange, repeat
|
17 |
+
from fire import Fire
|
18 |
+
from omegaconf import OmegaConf
|
19 |
+
from PIL import Image
|
20 |
+
from torchvision.transforms import CenterCrop, Compose, Resize, ToTensor
|
21 |
+
|
22 |
+
sys.path.insert(1, os.path.join(sys.path[0], '..', '..'))
|
23 |
+
from sgm.util import default, instantiate_from_config
|
24 |
+
|
25 |
+
camera_poses = [
|
26 |
+
'test_camera_L',
|
27 |
+
'test_camera_D',
|
28 |
+
'test_camera_I',
|
29 |
+
'test_camera_O',
|
30 |
+
'test_camera_R',
|
31 |
+
'test_camera_U',
|
32 |
+
'test_camera_Round-ZoomIn',
|
33 |
+
'test_camera_Round-RI_90',
|
34 |
+
]
|
35 |
+
|
36 |
+
def to_relative_RT2(org_pose, keyframe_idx=0, keyframe_zero=False):
|
37 |
+
org_pose = org_pose.reshape(-1, 3, 4) # [t, 3, 4]
|
38 |
+
R_dst = org_pose[:, :, :3]
|
39 |
+
T_dst = org_pose[:, :, 3:]
|
40 |
+
|
41 |
+
R_src = R_dst[keyframe_idx: keyframe_idx+1].repeat(org_pose.shape[0], axis=0) # [t, 3, 3]
|
42 |
+
T_src = T_dst[keyframe_idx: keyframe_idx+1].repeat(org_pose.shape[0], axis=0)
|
43 |
+
|
44 |
+
R_src_inv = R_src.transpose(0, 2, 1) # [t, 3, 3]
|
45 |
+
|
46 |
+
R_rel = R_dst @ R_src_inv # [t, 3, 3]
|
47 |
+
T_rel = T_dst - R_rel@T_src
|
48 |
+
|
49 |
+
RT_rel = np.concatenate([R_rel, T_rel], axis=-1) # [t, 3, 4]
|
50 |
+
RT_rel = RT_rel.reshape(-1, 12) # [t, 12]
|
51 |
+
|
52 |
+
if keyframe_zero:
|
53 |
+
RT_rel[keyframe_idx] = np.zeros_like(RT_rel[keyframe_idx])
|
54 |
+
|
55 |
+
return RT_rel
|
56 |
+
|
57 |
+
def get_RT(pose_dir='', video_frames=14, frame_stride=1, speed=1.0, **kwargs):
|
58 |
+
pose_file = [f'{pose_dir}/{pose}.json' for pose in camera_poses]
|
59 |
+
pose_sample_num = len(pose_file)
|
60 |
+
|
61 |
+
pose_sample_num = len(pose_file)
|
62 |
+
|
63 |
+
data_list = []
|
64 |
+
pose_name = []
|
65 |
+
|
66 |
+
|
67 |
+
for idx in range(pose_sample_num):
|
68 |
+
cur_pose_name = camera_poses[idx].replace('test_camera_', '')
|
69 |
+
pose_name.append(cur_pose_name)
|
70 |
+
|
71 |
+
with open(pose_file[idx], 'r') as f:
|
72 |
+
pose = json.load(f)
|
73 |
+
pose = np.array(pose) # [t, 12]
|
74 |
+
|
75 |
+
while frame_stride * video_frames > pose.shape[0]:
|
76 |
+
frame_stride -= 1
|
77 |
+
|
78 |
+
pose = pose[::frame_stride]
|
79 |
+
if video_frames < 16:
|
80 |
+
half = (pose.shape[0] - video_frames) // 2
|
81 |
+
pose = pose[half:half+video_frames]
|
82 |
+
# pose = pose[:video_frames]
|
83 |
+
pose = pose.reshape(-1, 3, 4) # [t, 3, 4]
|
84 |
+
# rescale
|
85 |
+
pose[:, :, -1] = pose[:, :, -1] * np.array([3, 1, 4]) * speed
|
86 |
+
pose = to_relative_RT2(pose)
|
87 |
+
|
88 |
+
|
89 |
+
pose = torch.tensor(pose).float() # [t, 12]
|
90 |
+
data_list.append(pose)
|
91 |
+
|
92 |
+
# data_list = torch.stack(data_list, dim=0) # [pose_sample_num, t, 12]
|
93 |
+
return data_list, pose_name
|
94 |
+
|
95 |
+
def sample(
|
96 |
+
input_path: str = "examples/camera_poses", # Can either be image file or folder with image files
|
97 |
+
ckpt: str = "checkpoints/motionctrl_svd.ckpt",
|
98 |
+
config: str = None,
|
99 |
+
num_frames: Optional[int] = None,
|
100 |
+
num_steps: Optional[int] = None,
|
101 |
+
version: str = "svd",
|
102 |
+
fps_id: int = 6,
|
103 |
+
motion_bucket_id: int = 127,
|
104 |
+
cond_aug: float = 0.02,
|
105 |
+
seed: int = 23,
|
106 |
+
decoding_t: int = 1, # Number of frames decoded at a time! This eats most VRAM. Reduce if necessary.
|
107 |
+
device: str = "cuda",
|
108 |
+
output_folder: Optional[str] = None,
|
109 |
+
save_fps: int = 10,
|
110 |
+
resize: Optional[bool] = False,
|
111 |
+
pose_dir: str = '',
|
112 |
+
sample_num: int = 1,
|
113 |
+
height: int = 576,
|
114 |
+
width: int = 1024,
|
115 |
+
transform: Optional[bool] = False,
|
116 |
+
save_images: Optional[bool] = False,
|
117 |
+
speed: float = 1.0,
|
118 |
+
):
|
119 |
+
"""
|
120 |
+
Simple script to generate a single sample conditioned on an image `input_path` or multiple images, one for each
|
121 |
+
image file in folder `input_path`. If you run out of VRAM, try decreasing `decoding_t`.
|
122 |
+
"""
|
123 |
+
|
124 |
+
assert (version == "svd"), "Only SVD is supported for now."
|
125 |
+
num_frames = default(num_frames, 14)
|
126 |
+
num_steps = default(num_steps, 25)
|
127 |
+
output_folder = default(output_folder, "outputs/motionctrl_svd/")
|
128 |
+
model_config = default(config, "configs/inference/config_motionctrl_cmcm.yaml")
|
129 |
+
|
130 |
+
model, filter = load_model(
|
131 |
+
model_config,
|
132 |
+
ckpt,
|
133 |
+
device,
|
134 |
+
num_frames,
|
135 |
+
num_steps,
|
136 |
+
)
|
137 |
+
torch.manual_seed(seed)
|
138 |
+
|
139 |
+
path = Path(input_path)
|
140 |
+
all_img_paths = []
|
141 |
+
if path.is_file():
|
142 |
+
if any([input_path.endswith(x) for x in ["jpg", "jpeg", "png"]]):
|
143 |
+
all_img_paths = [input_path]
|
144 |
+
else:
|
145 |
+
raise ValueError("Path is not valid image file.")
|
146 |
+
elif path.is_dir():
|
147 |
+
all_img_paths = sorted(
|
148 |
+
[
|
149 |
+
f
|
150 |
+
for f in path.iterdir()
|
151 |
+
if f.is_file() and f.suffix.lower() in [".jpg", ".jpeg", ".png"]
|
152 |
+
]
|
153 |
+
)
|
154 |
+
if len(all_img_paths) == 0:
|
155 |
+
raise ValueError("Folder does not contain any images.")
|
156 |
+
else:
|
157 |
+
raise ValueError
|
158 |
+
|
159 |
+
if transform:
|
160 |
+
spatial_transform = Compose([
|
161 |
+
Resize(size=width),
|
162 |
+
CenterCrop(size=(height, width)),
|
163 |
+
])
|
164 |
+
|
165 |
+
# get camera poses
|
166 |
+
RTs, pose_name = get_RT(pose_dir=pose_dir, video_frames=num_frames, frame_stride=1, speed=speed)
|
167 |
+
|
168 |
+
print(f'loaded {len(all_img_paths)} images.')
|
169 |
+
os.makedirs(output_folder, exist_ok=True)
|
170 |
+
for no, input_img_path in enumerate(all_img_paths):
|
171 |
+
|
172 |
+
filepath, fullflname = os.path.split(input_img_path)
|
173 |
+
filename, ext = os.path.splitext(fullflname)
|
174 |
+
print(f'-sample {no+1}: {filename} ...')
|
175 |
+
|
176 |
+
# RTs = RTs[0:1]
|
177 |
+
for RT_idx in range(len(RTs)):
|
178 |
+
cur_pose_name = pose_name[RT_idx]
|
179 |
+
print(f'--pose: {cur_pose_name} ...')
|
180 |
+
RT = RTs[RT_idx]
|
181 |
+
RT = RT.unsqueeze(0).repeat(2,1,1)
|
182 |
+
RT = RT.to(device)
|
183 |
+
|
184 |
+
with Image.open(input_img_path) as image:
|
185 |
+
if image.mode == "RGBA":
|
186 |
+
image = image.convert("RGB")
|
187 |
+
if transform:
|
188 |
+
image = spatial_transform(image)
|
189 |
+
if resize:
|
190 |
+
image = image.resize((width, height))
|
191 |
+
w, h = image.size
|
192 |
+
|
193 |
+
if h % 64 != 0 or w % 64 != 0:
|
194 |
+
width, height = map(lambda x: x - x % 64, (w, h))
|
195 |
+
image = image.resize((width, height))
|
196 |
+
print(
|
197 |
+
f"WARNING: Your image is of size {h}x{w} which is not divisible by 64. We are resizing to {height}x{width}!"
|
198 |
+
)
|
199 |
+
|
200 |
+
image = ToTensor()(image)
|
201 |
+
image = image * 2.0 - 1.0
|
202 |
+
|
203 |
+
image = image.unsqueeze(0).to(device)
|
204 |
+
H, W = image.shape[2:]
|
205 |
+
assert image.shape[1] == 3
|
206 |
+
F = 8
|
207 |
+
C = 4
|
208 |
+
shape = (num_frames, C, H // F, W // F)
|
209 |
+
if (H, W) != (576, 1024):
|
210 |
+
print(
|
211 |
+
"WARNING: The conditioning frame you provided is not 576x1024. This leads to suboptimal performance as model was only trained on 576x1024. Consider increasing `cond_aug`."
|
212 |
+
)
|
213 |
+
if motion_bucket_id > 255:
|
214 |
+
print(
|
215 |
+
"WARNING: High motion bucket! This may lead to suboptimal performance."
|
216 |
+
)
|
217 |
+
|
218 |
+
if fps_id < 5:
|
219 |
+
print("WARNING: Small fps value! This may lead to suboptimal performance.")
|
220 |
+
|
221 |
+
if fps_id > 30:
|
222 |
+
print("WARNING: Large fps value! This may lead to suboptimal performance.")
|
223 |
+
|
224 |
+
value_dict = {}
|
225 |
+
value_dict["motion_bucket_id"] = motion_bucket_id
|
226 |
+
value_dict["fps_id"] = fps_id
|
227 |
+
value_dict["cond_aug"] = cond_aug
|
228 |
+
value_dict["cond_frames_without_noise"] = image
|
229 |
+
value_dict["cond_frames"] = image + cond_aug * torch.randn_like(image)
|
230 |
+
|
231 |
+
with torch.no_grad():
|
232 |
+
with torch.autocast(device):
|
233 |
+
batch, batch_uc = get_batch(
|
234 |
+
get_unique_embedder_keys_from_conditioner(model.conditioner),
|
235 |
+
value_dict,
|
236 |
+
[1, num_frames],
|
237 |
+
T=num_frames,
|
238 |
+
device=device,
|
239 |
+
)
|
240 |
+
c, uc = model.conditioner.get_unconditional_conditioning(
|
241 |
+
batch,
|
242 |
+
batch_uc=batch_uc,
|
243 |
+
force_uc_zero_embeddings=[
|
244 |
+
"cond_frames",
|
245 |
+
"cond_frames_without_noise",
|
246 |
+
],
|
247 |
+
)
|
248 |
+
|
249 |
+
for k in ["crossattn", "concat"]:
|
250 |
+
uc[k] = repeat(uc[k], "b ... -> b t ...", t=num_frames)
|
251 |
+
uc[k] = rearrange(uc[k], "b t ... -> (b t) ...", t=num_frames)
|
252 |
+
c[k] = repeat(c[k], "b ... -> b t ...", t=num_frames)
|
253 |
+
c[k] = rearrange(c[k], "b t ... -> (b t) ...", t=num_frames)
|
254 |
+
|
255 |
+
|
256 |
+
|
257 |
+
additional_model_inputs = {}
|
258 |
+
additional_model_inputs["image_only_indicator"] = torch.zeros(
|
259 |
+
2, num_frames
|
260 |
+
).to(device)
|
261 |
+
#additional_model_inputs["image_only_indicator"][:,0] = 1
|
262 |
+
additional_model_inputs["num_video_frames"] = batch["num_video_frames"]
|
263 |
+
|
264 |
+
|
265 |
+
additional_model_inputs["RT"] = RT
|
266 |
+
|
267 |
+
def denoiser(input, sigma, c):
|
268 |
+
return model.denoiser(
|
269 |
+
model.model, input, sigma, c, **additional_model_inputs
|
270 |
+
)
|
271 |
+
|
272 |
+
results = []
|
273 |
+
for j in range(sample_num):
|
274 |
+
randn = torch.randn(shape, device=device)
|
275 |
+
samples_z = model.sampler(denoiser, randn, cond=c, uc=uc)
|
276 |
+
model.en_and_decode_n_samples_a_time = decoding_t
|
277 |
+
samples_x = model.decode_first_stage(samples_z)
|
278 |
+
samples = torch.clamp((samples_x + 1.0) / 2.0, min=0.0, max=1.0) # [1*t, c, h, w]
|
279 |
+
results.append(samples)
|
280 |
+
|
281 |
+
samples = torch.stack(results, dim=0) # [sample_num, t, c, h, w]
|
282 |
+
samples = samples.data.cpu()
|
283 |
+
|
284 |
+
video_path = os.path.join(output_folder, f"{filename}_{cur_pose_name}.mp4")
|
285 |
+
save_results(samples, video_path, fps=save_fps)
|
286 |
+
|
287 |
+
if save_images:
|
288 |
+
for i in range(sample_num):
|
289 |
+
cur_output_folder = os.path.join(output_folder, f"{filename}", f"{cur_pose_name}", f"{i}")
|
290 |
+
os.makedirs(cur_output_folder, exist_ok=True)
|
291 |
+
for j in range(num_frames):
|
292 |
+
cur_img_path = os.path.join(cur_output_folder, f"{j:06d}.png")
|
293 |
+
torchvision.utils.save_image(samples[i,j], cur_img_path)
|
294 |
+
|
295 |
+
print(f'Done! results saved in {output_folder}.')
|
296 |
+
|
297 |
+
def save_results(resutls, filename, fps=10):
|
298 |
+
video = resutls.permute(1, 0, 2, 3, 4) # [t, sample_num, c, h, w]
|
299 |
+
frame_grids = [torchvision.utils.make_grid(framesheet, nrow=int(video.shape[1])) for framesheet in video] #[3, 1*h, n*w]
|
300 |
+
grid = torch.stack(frame_grids, dim=0) # stack in temporal dim [t, 3, n*h, w]
|
301 |
+
# already in [0,1]
|
302 |
+
grid = (grid * 255).to(torch.uint8).permute(0, 2, 3, 1)
|
303 |
+
torchvision.io.write_video(filename, grid, fps=fps, video_codec='h264', options={'crf': '10'})
|
304 |
+
|
305 |
+
def get_unique_embedder_keys_from_conditioner(conditioner):
|
306 |
+
return list(set([x.input_key for x in conditioner.embedders]))
|
307 |
+
|
308 |
+
|
309 |
+
def get_batch(keys, value_dict, N, T, device):
|
310 |
+
batch = {}
|
311 |
+
batch_uc = {}
|
312 |
+
|
313 |
+
for key in keys:
|
314 |
+
if key == "fps_id":
|
315 |
+
batch[key] = (
|
316 |
+
torch.tensor([value_dict["fps_id"]])
|
317 |
+
.to(device)
|
318 |
+
.repeat(int(math.prod(N)))
|
319 |
+
)
|
320 |
+
elif key == "motion_bucket_id":
|
321 |
+
batch[key] = (
|
322 |
+
torch.tensor([value_dict["motion_bucket_id"]])
|
323 |
+
.to(device)
|
324 |
+
.repeat(int(math.prod(N)))
|
325 |
+
)
|
326 |
+
elif key == "cond_aug":
|
327 |
+
batch[key] = repeat(
|
328 |
+
torch.tensor([value_dict["cond_aug"]]).to(device),
|
329 |
+
"1 -> b",
|
330 |
+
b=math.prod(N),
|
331 |
+
)
|
332 |
+
elif key == "cond_frames":
|
333 |
+
batch[key] = repeat(value_dict["cond_frames"], "1 ... -> b ...", b=N[0])
|
334 |
+
elif key == "cond_frames_without_noise":
|
335 |
+
batch[key] = repeat(
|
336 |
+
value_dict["cond_frames_without_noise"], "1 ... -> b ...", b=N[0]
|
337 |
+
)
|
338 |
+
else:
|
339 |
+
batch[key] = value_dict[key]
|
340 |
+
|
341 |
+
if T is not None:
|
342 |
+
batch["num_video_frames"] = T
|
343 |
+
|
344 |
+
for key in batch.keys():
|
345 |
+
if key not in batch_uc and isinstance(batch[key], torch.Tensor):
|
346 |
+
batch_uc[key] = torch.clone(batch[key])
|
347 |
+
return batch, batch_uc
|
348 |
+
|
349 |
+
|
350 |
+
def load_model(
|
351 |
+
config: str,
|
352 |
+
ckpt: str,
|
353 |
+
device: str,
|
354 |
+
num_frames: int,
|
355 |
+
num_steps: int,
|
356 |
+
):
|
357 |
+
|
358 |
+
config = OmegaConf.load(config)
|
359 |
+
config.model.params.ckpt_path = ckpt
|
360 |
+
if device == "cuda":
|
361 |
+
config.model.params.conditioner_config.params.emb_models[
|
362 |
+
0
|
363 |
+
].params.open_clip_embedding_config.params.init_device = device
|
364 |
+
|
365 |
+
config.model.params.sampler_config.params.num_steps = num_steps
|
366 |
+
config.model.params.sampler_config.params.guider_config.params.num_frames = (
|
367 |
+
num_frames
|
368 |
+
)
|
369 |
+
|
370 |
+
model = instantiate_from_config(config.model)
|
371 |
+
|
372 |
+
model = model.to(device).eval()
|
373 |
+
|
374 |
+
filter = None #DeepFloydDataFiltering(verbose=False, device=device)
|
375 |
+
return model, filter
|
376 |
+
|
377 |
+
|
378 |
+
def get_parser():
|
379 |
+
parser = argparse.ArgumentParser()
|
380 |
+
parser.add_argument("--seed", type=int, default=23, help="seed for seed_everything")
|
381 |
+
parser.add_argument("--ckpt", type=str, default=None, help="checkpoint path")
|
382 |
+
parser.add_argument("--config", type=str, help="config (yaml) path")
|
383 |
+
parser.add_argument("--input", type=str, default=None, help="image path or folder")
|
384 |
+
parser.add_argument("--savedir", type=str, default=None, help="results saving path")
|
385 |
+
parser.add_argument("--savefps", type=int, default=10, help="video fps to generate")
|
386 |
+
parser.add_argument("--n_samples", type=int, default=1, help="num of samples per prompt",)
|
387 |
+
parser.add_argument("--ddim_steps", type=int, default=50, help="steps of ddim if positive, otherwise use DDPM",)
|
388 |
+
parser.add_argument("--ddim_eta", type=float, default=1.0, help="eta for ddim sampling (0.0 yields deterministic sampling)",)
|
389 |
+
parser.add_argument("--frames", type=int, default=-1, help="frames num to inference")
|
390 |
+
parser.add_argument("--fps", type=int, default=6, help="control the fps")
|
391 |
+
parser.add_argument("--motion", type=int, default=127, help="control the motion magnitude")
|
392 |
+
parser.add_argument("--cond_aug", type=float, default=0.02, help="adding noise to input image")
|
393 |
+
parser.add_argument("--decoding_t", type=int, default=1, help="frames num to decoding per time")
|
394 |
+
parser.add_argument("--resize", action='store_true', default=False, help="resize all input to default resolution")
|
395 |
+
parser.add_argument("--sample_num", type=int, default=1, help="frames num to decoding per time")
|
396 |
+
parser.add_argument("--pose_dir", type=str, default='', help="checkpoint path")
|
397 |
+
parser.add_argument("--height", type=int, default=576, help="frames num to decoding per time")
|
398 |
+
parser.add_argument("--width", type=int, default=1024, help="frames num to decoding per time")
|
399 |
+
parser.add_argument("--transform", action='store_true', default=False, help="resize all input to specific resolution")
|
400 |
+
parser.add_argument("--save_images", action='store_true', default=False, help="save images")
|
401 |
+
parser.add_argument("--speed", type=float, default=1.0, help="speed of camera motion")
|
402 |
+
return parser
|
403 |
+
|
404 |
+
|
405 |
+
if __name__ == "__main__":
|
406 |
+
now = datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S")
|
407 |
+
print("@MotionCrl+SVD Inference: %s"%now)
|
408 |
+
#Fire(sample)
|
409 |
+
parser = get_parser()
|
410 |
+
args = parser.parse_args()
|
411 |
+
sample(input_path=args.input, ckpt=args.ckpt, config=args.config, num_frames=args.frames, num_steps=args.ddim_steps, \
|
412 |
+
fps_id=args.fps, motion_bucket_id=args.motion, cond_aug=args.cond_aug, seed=args.seed, \
|
413 |
+
decoding_t=args.decoding_t, output_folder=args.savedir, save_fps=args.savefps, resize=args.resize,
|
414 |
+
pose_dir=args.pose_dir, sample_num=args.sample_num, height=args.height, width=args.width,
|
415 |
+
transform=args.transform, save_images=args.save_images, speed=args.speed)
|
416 |
+
|
pytest.ini
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
[pytest]
|
2 |
+
markers =
|
3 |
+
inference: mark as inference test (deselect with '-m "not inference"')
|
requirements.txt
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Pytorch-Lightning==1.9.0
|
2 |
+
decord
|
3 |
+
kornia
|
4 |
+
timm
|
5 |
+
open_clip_torch
|
6 |
+
av
|
7 |
+
omegaconf
|
8 |
+
transformers
|
9 |
+
einops
|
10 |
+
scikit-learn
|
11 |
+
taming-transformers-rom1504
|
12 |
+
pandas
|
13 |
+
triton
|
14 |
+
xformers==0.0.16
|
15 |
+
torch==1.13.1
|
16 |
+
torchvision
|
17 |
+
fairscale
|
18 |
+
psutil==5.9.5
|
19 |
+
annotated-types==0.5.0
|
20 |
+
plotly
|
21 |
+
imageio==2.14.1
|
22 |
+
imageio-ffmpeg==0.4.7
|
23 |
+
opencv-python==4.8.0.74
|
24 |
+
moviepy
|
25 |
+
Pillow
|
26 |
+
tqdm
|
27 |
+
gradio==3.37.0
|
28 |
+
webdataset
|
29 |
+
Fire
|
30 |
+
natsort
|
31 |
+
wandb
|
32 |
+
clip @ git+https://github.com/openai/CLIP.git
|
scripts/__init__.py
ADDED
File without changes
|
scripts/demo/__init__.py
ADDED
File without changes
|
scripts/demo/detect.py
ADDED
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
|
3 |
+
import cv2
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
try:
|
7 |
+
from imwatermark import WatermarkDecoder
|
8 |
+
except ImportError as e:
|
9 |
+
try:
|
10 |
+
# Assume some of the other dependencies such as torch are not fulfilled
|
11 |
+
# import file without loading unnecessary libraries.
|
12 |
+
import importlib.util
|
13 |
+
import sys
|
14 |
+
|
15 |
+
spec = importlib.util.find_spec("imwatermark.maxDct")
|
16 |
+
assert spec is not None
|
17 |
+
maxDct = importlib.util.module_from_spec(spec)
|
18 |
+
sys.modules["maxDct"] = maxDct
|
19 |
+
spec.loader.exec_module(maxDct)
|
20 |
+
|
21 |
+
class WatermarkDecoder(object):
|
22 |
+
"""A minimal version of
|
23 |
+
https://github.com/ShieldMnt/invisible-watermark/blob/main/imwatermark/watermark.py
|
24 |
+
to only reconstruct bits using dwtDct"""
|
25 |
+
|
26 |
+
def __init__(self, wm_type="bytes", length=0):
|
27 |
+
assert wm_type == "bits", "Only bits defined in minimal import"
|
28 |
+
self._wmType = wm_type
|
29 |
+
self._wmLen = length
|
30 |
+
|
31 |
+
def reconstruct(self, bits):
|
32 |
+
if len(bits) != self._wmLen:
|
33 |
+
raise RuntimeError("bits are not matched with watermark length")
|
34 |
+
|
35 |
+
return bits
|
36 |
+
|
37 |
+
def decode(self, cv2Image, method="dwtDct", **configs):
|
38 |
+
(r, c, channels) = cv2Image.shape
|
39 |
+
if r * c < 256 * 256:
|
40 |
+
raise RuntimeError("image too small, should be larger than 256x256")
|
41 |
+
|
42 |
+
bits = []
|
43 |
+
assert method == "dwtDct"
|
44 |
+
embed = maxDct.EmbedMaxDct(watermarks=[], wmLen=self._wmLen, **configs)
|
45 |
+
bits = embed.decode(cv2Image)
|
46 |
+
return self.reconstruct(bits)
|
47 |
+
|
48 |
+
except:
|
49 |
+
raise e
|
50 |
+
|
51 |
+
|
52 |
+
# A fixed 48-bit message that was choosen at random
|
53 |
+
# WATERMARK_MESSAGE = 0xB3EC907BB19E
|
54 |
+
WATERMARK_MESSAGE = 0b101100111110110010010000011110111011000110011110
|
55 |
+
# bin(x)[2:] gives bits of x as str, use int to convert them to 0/1
|
56 |
+
WATERMARK_BITS = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]]
|
57 |
+
MATCH_VALUES = [
|
58 |
+
[27, "No watermark detected"],
|
59 |
+
[33, "Partial watermark match. Cannot determine with certainty."],
|
60 |
+
[
|
61 |
+
35,
|
62 |
+
(
|
63 |
+
"Likely watermarked. In our test 0.02% of real images were "
|
64 |
+
'falsely detected as "Likely watermarked"'
|
65 |
+
),
|
66 |
+
],
|
67 |
+
[
|
68 |
+
49,
|
69 |
+
(
|
70 |
+
"Very likely watermarked. In our test no real images were "
|
71 |
+
'falsely detected as "Very likely watermarked"'
|
72 |
+
),
|
73 |
+
],
|
74 |
+
]
|
75 |
+
|
76 |
+
|
77 |
+
class GetWatermarkMatch:
|
78 |
+
def __init__(self, watermark):
|
79 |
+
self.watermark = watermark
|
80 |
+
self.num_bits = len(self.watermark)
|
81 |
+
self.decoder = WatermarkDecoder("bits", self.num_bits)
|
82 |
+
|
83 |
+
def __call__(self, x: np.ndarray) -> np.ndarray:
|
84 |
+
"""
|
85 |
+
Detects the number of matching bits the predefined watermark with one
|
86 |
+
or multiple images. Images should be in cv2 format, e.g. h x w x c BGR.
|
87 |
+
|
88 |
+
Args:
|
89 |
+
x: ([B], h w, c) in range [0, 255]
|
90 |
+
|
91 |
+
Returns:
|
92 |
+
number of matched bits ([B],)
|
93 |
+
"""
|
94 |
+
squeeze = len(x.shape) == 3
|
95 |
+
if squeeze:
|
96 |
+
x = x[None, ...]
|
97 |
+
|
98 |
+
bs = x.shape[0]
|
99 |
+
detected = np.empty((bs, self.num_bits), dtype=bool)
|
100 |
+
for k in range(bs):
|
101 |
+
detected[k] = self.decoder.decode(x[k], "dwtDct")
|
102 |
+
result = np.sum(detected == self.watermark, axis=-1)
|
103 |
+
if squeeze:
|
104 |
+
return result[0]
|
105 |
+
else:
|
106 |
+
return result
|
107 |
+
|
108 |
+
|
109 |
+
get_watermark_match = GetWatermarkMatch(WATERMARK_BITS)
|
110 |
+
|
111 |
+
|
112 |
+
if __name__ == "__main__":
|
113 |
+
parser = argparse.ArgumentParser()
|
114 |
+
parser.add_argument(
|
115 |
+
"filename",
|
116 |
+
nargs="+",
|
117 |
+
type=str,
|
118 |
+
help="Image files to check for watermarks",
|
119 |
+
)
|
120 |
+
opts = parser.parse_args()
|
121 |
+
|
122 |
+
print(
|
123 |
+
"""
|
124 |
+
This script tries to detect watermarked images. Please be aware of
|
125 |
+
the following:
|
126 |
+
- As the watermark is supposed to be invisible, there is the risk that
|
127 |
+
watermarked images may not be detected.
|
128 |
+
- To maximize the chance of detection make sure that the image has the same
|
129 |
+
dimensions as when the watermark was applied (most likely 1024x1024
|
130 |
+
or 512x512).
|
131 |
+
- Specific image manipulation may drastically decrease the chance that
|
132 |
+
watermarks can be detected.
|
133 |
+
- There is also the chance that an image has the characteristics of the
|
134 |
+
watermark by chance.
|
135 |
+
- The watermark script is public, anybody may watermark any images, and
|
136 |
+
could therefore claim it to be generated.
|
137 |
+
- All numbers below are based on a test using 10,000 images without any
|
138 |
+
modifications after applying the watermark.
|
139 |
+
"""
|
140 |
+
)
|
141 |
+
|
142 |
+
for fn in opts.filename:
|
143 |
+
image = cv2.imread(fn)
|
144 |
+
if image is None:
|
145 |
+
print(f"Couldn't read {fn}. Skipping")
|
146 |
+
continue
|
147 |
+
|
148 |
+
num_bits = get_watermark_match(image)
|
149 |
+
k = 0
|
150 |
+
while num_bits > MATCH_VALUES[k][0]:
|
151 |
+
k += 1
|
152 |
+
print(
|
153 |
+
f"{fn}: {MATCH_VALUES[k][1]}",
|
154 |
+
f"Bits that matched the watermark {num_bits} from {len(WATERMARK_BITS)}\n",
|
155 |
+
sep="\n\t",
|
156 |
+
)
|