Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Muennighoff
commited on
Commit
β’
2458a90
1
Parent(s):
fa91720
Add new CLF, BTM leaderboards
Browse files
app.py
CHANGED
@@ -17,6 +17,9 @@ TASKS = [
|
|
17 |
"Summarization",
|
18 |
]
|
19 |
|
|
|
|
|
|
|
20 |
TASK_LIST_CLASSIFICATION = [
|
21 |
"AmazonCounterfactualClassification (en)",
|
22 |
"AmazonPolarityClassification",
|
@@ -34,6 +37,38 @@ TASK_LIST_CLASSIFICATION = [
|
|
34 |
|
35 |
TASK_LIST_CLASSIFICATION_NORM = [x.replace(" (en)", "") for x in TASK_LIST_CLASSIFICATION]
|
36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
TASK_LIST_CLUSTERING = [
|
38 |
"ArxivClusteringP2P",
|
39 |
"ArxivClusteringS2S",
|
@@ -48,6 +83,7 @@ TASK_LIST_CLUSTERING = [
|
|
48 |
"TwentyNewsgroupsClustering",
|
49 |
]
|
50 |
|
|
|
51 |
TASK_LIST_CLUSTERING_DE = [
|
52 |
"BlurbsClusteringP2P",
|
53 |
"BlurbsClusteringS2S",
|
@@ -86,7 +122,8 @@ TASK_LIST_RETRIEVAL = [
|
|
86 |
"TRECCOVID",
|
87 |
]
|
88 |
|
89 |
-
TASK_LIST_RETRIEVAL_NORM = TASK_LIST_RETRIEVAL + [
|
|
|
90 |
"CQADupstackEnglishRetrieval",
|
91 |
"CQADupstackGamingRetrieval",
|
92 |
"CQADupstackGisRetrieval",
|
@@ -124,7 +161,6 @@ TASK_LIST_EN = TASK_LIST_CLASSIFICATION + TASK_LIST_CLUSTERING + TASK_LIST_PAIR_
|
|
124 |
TASK_TO_METRIC = {
|
125 |
"BitextMining": "f1",
|
126 |
"Clustering": "v_measure",
|
127 |
-
"Clustering (DE)": "v_measure",
|
128 |
"Classification": "accuracy",
|
129 |
"PairClassification": "cos_sim_ap",
|
130 |
"Reranking": "map",
|
@@ -143,16 +179,23 @@ def make_clickable_model(model_name, link=None):
|
|
143 |
|
144 |
# Models without metadata, thus we cannot fetch their results naturally
|
145 |
EXTERNAL_MODELS = [
|
146 |
-
"LASER2",
|
147 |
-
"LaBSE",
|
148 |
"all-MiniLM-L12-v2",
|
149 |
"all-MiniLM-L6-v2",
|
150 |
"all-mpnet-base-v2",
|
151 |
"allenai-specter",
|
|
|
152 |
"bert-base-uncased",
|
153 |
"contriever-base-msmarco",
|
154 |
"cross-en-de-roberta-sentence-transformer",
|
|
|
|
|
155 |
"distiluse-base-multilingual-cased-v2",
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
"gbert-base",
|
157 |
"gbert-large",
|
158 |
"gelectra-base",
|
@@ -164,9 +207,19 @@ EXTERNAL_MODELS = [
|
|
164 |
"gtr-t5-xl",
|
165 |
"gtr-t5-xxl",
|
166 |
"komninos",
|
|
|
|
|
167 |
"msmarco-bert-co-condensor",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
"paraphrase-multilingual-MiniLM-L12-v2",
|
169 |
"paraphrase-multilingual-mpnet-base-v2",
|
|
|
170 |
"sentence-t5-base",
|
171 |
"sentence-t5-large",
|
172 |
"sentence-t5-xl",
|
@@ -184,20 +237,58 @@ EXTERNAL_MODELS = [
|
|
184 |
"text-search-davinci-001",
|
185 |
"unsup-simcse-bert-base-uncased",
|
186 |
"use-cmlm-multilingual",
|
|
|
187 |
"xlm-roberta-large",
|
188 |
]
|
189 |
|
190 |
EXTERNAL_MODEL_TO_LINK = {
|
191 |
-
"
|
192 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
193 |
"cross-en-de-roberta-sentence-transformer": "https://huggingface.co/T-Systems-onsite/cross-en-de-roberta-sentence-transformer",
|
|
|
194 |
"distiluse-base-multilingual-cased-v2": "https://huggingface.co/sentence-transformers/distiluse-base-multilingual-cased-v2",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
195 |
"gbert-base": "https://huggingface.co/deepset/gbert-base",
|
196 |
"gbert-large": "https://huggingface.co/deepset/gbert-large",
|
197 |
"gelectra-base": "https://huggingface.co/deepset/gelectra-base",
|
198 |
"gelectra-large": "https://huggingface.co/deepset/gelectra-large",
|
|
|
199 |
"gottbert-base": "https://huggingface.co/uklfr/gottbert-base",
|
|
|
|
|
|
|
|
|
|
|
200 |
"LASER2": "https://github.com/facebookresearch/LASER",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
201 |
"text-embedding-ada-002": "https://beta.openai.com/docs/guides/embeddings/types-of-embedding-models",
|
202 |
"text-similarity-ada-001": "https://beta.openai.com/docs/guides/embeddings/types-of-embedding-models",
|
203 |
"text-similarity-babbage-001": "https://beta.openai.com/docs/guides/embeddings/types-of-embedding-models",
|
@@ -209,173 +300,192 @@ EXTERNAL_MODEL_TO_LINK = {
|
|
209 |
"text-search-curie-001": "https://beta.openai.com/docs/guides/embeddings/types-of-embedding-models",
|
210 |
"text-search-babbage-001": "https://beta.openai.com/docs/guides/embeddings/types-of-embedding-models",
|
211 |
"text-search-davinci-001": "https://beta.openai.com/docs/guides/embeddings/types-of-embedding-models",
|
212 |
-
"LaBSE": "https://huggingface.co/sentence-transformers/LaBSE",
|
213 |
-
"sentence-t5-xxl": "https://huggingface.co/sentence-transformers/sentence-t5-xxl",
|
214 |
-
"sentence-t5-xl": "https://huggingface.co/sentence-transformers/sentence-t5-xl",
|
215 |
-
"sentence-t5-large": "https://huggingface.co/sentence-transformers/sentence-t5-large",
|
216 |
-
"sentence-t5-base": "https://huggingface.co/sentence-transformers/sentence-t5-base",
|
217 |
-
"gtr-t5-xxl": "https://huggingface.co/sentence-transformers/gtr-t5-xxl",
|
218 |
-
"gtr-t5-xl": "https://huggingface.co/sentence-transformers/gtr-t5-xl",
|
219 |
-
"gtr-t5-large": "https://huggingface.co/sentence-transformers/gtr-t5-large",
|
220 |
-
"gtr-t5-base": "https://huggingface.co/sentence-transformers/gtr-t5-base",
|
221 |
-
"gtr-t5-xxl": "https://huggingface.co/sentence-transformers/gtr-t5-xxl",
|
222 |
-
"gtr-t5-xl": "https://huggingface.co/sentence-transformers/gtr-t5-xl",
|
223 |
-
"gtr-t5-large": "https://huggingface.co/sentence-transformers/gtr-t5-large",
|
224 |
-
"gtr-t5-base": "https://huggingface.co/sentence-transformers/gtr-t5-base",
|
225 |
-
"bert-base-uncased": "https://huggingface.co/bert-base-uncased",
|
226 |
-
"allenai-specter": "https://huggingface.co/sentence-transformers/allenai-specter",
|
227 |
-
"allenai-specter": "https://huggingface.co/sentence-transformers/allenai-specter",
|
228 |
"unsup-simcse-bert-base-uncased": "https://huggingface.co/princeton-nlp/unsup-simcse-bert-base-uncased",
|
229 |
-
"
|
230 |
-
"
|
231 |
-
"
|
232 |
-
"msmarco-bert-co-condensor": "https://huggingface.co/sentence-transformers/msmarco-bert-co-condensor",
|
233 |
-
"all-MiniLM-L12-v2": "https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2",
|
234 |
-
"all-MiniLM-L6-v2": "https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2",
|
235 |
-
"all-mpnet-base-v2": "https://huggingface.co/sentence-transformers/all-mpnet-base-v2",
|
236 |
-
"paraphrase-multilingual-mpnet-base-v2": "https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2",
|
237 |
-
"paraphrase-multilingual-MiniLM-L12-v2": "https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2",
|
238 |
-
"contriever-base-msmarco": "https://huggingface.co/nthakur/contriever-base-msmarco",
|
239 |
}
|
240 |
|
241 |
EXTERNAL_MODEL_TO_DIM = {
|
242 |
-
"xlm-roberta-large": 1024,
|
243 |
-
"use-cmlm-multilingual": 768,
|
244 |
-
"gottbert-base": 768,
|
245 |
-
"cross-en-de-roberta-sentence-transformer": 768,
|
246 |
-
"distiluse-base-multilingual-cased-v2": 512,
|
247 |
-
"gbert-base": 768,
|
248 |
-
"gbert-large": 1024,
|
249 |
-
"gelectra-base": 768,
|
250 |
-
"gelectra-large": 1024,
|
251 |
-
"gottbert-base": 768,
|
252 |
-
|
253 |
-
"LASER2": 1024,
|
254 |
-
"LaBSE": 768,
|
255 |
"all-MiniLM-L12-v2": 384,
|
256 |
"all-MiniLM-L6-v2": 384,
|
257 |
"all-mpnet-base-v2": 768,
|
258 |
-
"allenai-specter": 768,
|
|
|
259 |
"bert-base-uncased": 768,
|
260 |
"contriever-base-msmarco": 768,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
261 |
"glove.6B.300d": 300,
|
|
|
262 |
"gtr-t5-base": 768,
|
263 |
"gtr-t5-large": 768,
|
264 |
"gtr-t5-xl": 768,
|
265 |
"gtr-t5-xxl": 768,
|
266 |
"komninos": 300,
|
267 |
"msmarco-bert-co-condensor": 768,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
268 |
"paraphrase-multilingual-MiniLM-L12-v2": 384,
|
269 |
"paraphrase-multilingual-mpnet-base-v2": 768,
|
|
|
270 |
"sentence-t5-base": 768,
|
271 |
"sentence-t5-large": 768,
|
272 |
"sentence-t5-xl": 768,
|
273 |
"sentence-t5-xxl": 768,
|
274 |
"sup-simcse-bert-base-uncased": 768,
|
275 |
-
|
|
|
276 |
"text-embedding-ada-002": 1536,
|
277 |
-
|
278 |
"text-similarity-ada-001": 1024,
|
279 |
"text-similarity-babbage-001": 2048,
|
280 |
"text-similarity-curie-001": 4096,
|
281 |
"text-similarity-davinci-001": 12288,
|
282 |
-
|
283 |
"text-search-ada-doc-001": 1024,
|
284 |
"text-search-ada-query-001": 1024,
|
285 |
"text-search-ada-001": 1024,
|
286 |
"text-search-babbage-001": 2048,
|
287 |
"text-search-curie-001": 4096,
|
288 |
-
"text-search-davinci-001": 12288,
|
289 |
-
|
290 |
-
"
|
291 |
}
|
292 |
|
293 |
|
294 |
EXTERNAL_MODEL_TO_SEQLEN = {
|
295 |
-
"xlm-roberta-large": 514,
|
296 |
-
"use-cmlm-multilingual": 512,
|
297 |
-
"gottbert-base": 512,
|
298 |
-
"cross-en-de-roberta-sentence-transformer": 514,
|
299 |
-
"distiluse-base-multilingual-cased-v2": 512,
|
300 |
-
"gbert-base": 512,
|
301 |
-
"gbert-large": 512,
|
302 |
-
"gelectra-base": 512,
|
303 |
-
"gelectra-large": 512,
|
304 |
-
"gottbert-base": 512,
|
305 |
-
|
306 |
-
"LASER2": "N/A",
|
307 |
-
"LaBSE": 512,
|
308 |
"all-MiniLM-L12-v2": 512,
|
309 |
"all-MiniLM-L6-v2": 512,
|
310 |
"all-mpnet-base-v2": 514,
|
311 |
"allenai-specter": 512,
|
|
|
312 |
"bert-base-uncased": 512,
|
313 |
"contriever-base-msmarco": 512,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
314 |
"glove.6B.300d": "N/A",
|
315 |
"gtr-t5-base": 512,
|
316 |
"gtr-t5-large": 512,
|
317 |
"gtr-t5-xl": 512,
|
318 |
"gtr-t5-xxl": 512,
|
319 |
"komninos": "N/A",
|
|
|
|
|
320 |
"msmarco-bert-co-condensor": 512,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
321 |
"paraphrase-multilingual-MiniLM-L12-v2": 512,
|
322 |
"paraphrase-multilingual-mpnet-base-v2": 514,
|
|
|
323 |
"sentence-t5-base": 512,
|
324 |
"sentence-t5-large": 512,
|
325 |
"sentence-t5-xl": 512,
|
326 |
"sentence-t5-xxl": 512,
|
327 |
"sup-simcse-bert-base-uncased": 512,
|
328 |
-
|
329 |
"text-embedding-ada-002": 8191,
|
330 |
-
|
331 |
"text-similarity-ada-001": 2046,
|
332 |
"text-similarity-babbage-001": 2046,
|
333 |
"text-similarity-curie-001": 2046,
|
334 |
"text-similarity-davinci-001": 2046,
|
335 |
-
|
336 |
"text-search-ada-doc-001": 2046,
|
337 |
"text-search-ada-query-001": 2046,
|
338 |
"text-search-ada-001": 2046,
|
339 |
"text-search-babbage-001": 2046,
|
340 |
"text-search-curie-001": 2046,
|
341 |
"text-search-davinci-001": 2046,
|
342 |
-
|
343 |
"unsup-simcse-bert-base-uncased": 512,
|
|
|
|
|
344 |
}
|
345 |
|
346 |
EXTERNAL_MODEL_TO_SIZE = {
|
347 |
-
"
|
348 |
-
"gtr-t5-xl": 2.48,
|
349 |
-
"gtr-t5-large": 0.67,
|
350 |
-
"gtr-t5-base": 0.22,
|
351 |
-
"sentence-t5-xxl": 9.73,
|
352 |
-
"sentence-t5-xl": 2.48,
|
353 |
-
"sentence-t5-large": 0.67,
|
354 |
-
"sentence-t5-base": 0.22,
|
355 |
-
"all-mpnet-base-v2": 0.44,
|
356 |
"all-MiniLM-L12-v2": 0.13,
|
357 |
"all-MiniLM-L6-v2": 0.09,
|
358 |
-
"
|
359 |
-
"
|
360 |
-
"
|
361 |
-
"msmarco-bert-co-condensor": 0.44,
|
362 |
-
"sup-simcse-bert-base-uncased": 0.44,
|
363 |
-
"unsup-simcse-bert-base-uncased": 0.44,
|
364 |
-
"LaBSE": 1.88,
|
365 |
-
"komninos": 0.27,
|
366 |
-
"glove.6B.300d": 0.48,
|
367 |
-
"allenai-specter": 0.44,
|
368 |
-
"bert-base-uncased": 0.44,
|
369 |
-
"LASER2": 0.17,
|
370 |
"cross-en-de-roberta-sentence-transformer": 1.11,
|
|
|
|
|
371 |
"distiluse-base-multilingual-cased-v2": 0.54,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
372 |
"gbert-base": 0.44,
|
373 |
"gbert-large": 1.35,
|
374 |
"gelectra-base": 0.44,
|
375 |
"gelectra-large": 1.34,
|
376 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
377 |
"xlm-roberta-large": 2.24,
|
378 |
-
"gottbert-base": 0.51
|
379 |
}
|
380 |
|
381 |
MODELS_TO_SKIP = {
|
@@ -413,7 +523,7 @@ def add_lang(examples):
|
|
413 |
|
414 |
def add_task(examples):
|
415 |
# Could be added to the dataset loading script instead
|
416 |
-
if examples["mteb_dataset_name"] in TASK_LIST_CLASSIFICATION_NORM:
|
417 |
examples["mteb_task"] = "Classification"
|
418 |
elif examples["mteb_dataset_name"] in TASK_LIST_CLUSTERING + TASK_LIST_CLUSTERING_DE:
|
419 |
examples["mteb_task"] = "Clustering"
|
@@ -547,6 +657,11 @@ def get_mteb_data(tasks=["Clustering"], langs=[], datasets=[], fillna=True, add_
|
|
547 |
out["Embedding Dimensions"], out["Sequence Length"], out["Model Size (GB)"] = get_dim_seq_size(model)
|
548 |
df_list.append(out)
|
549 |
df = pd.DataFrame(df_list)
|
|
|
|
|
|
|
|
|
|
|
550 |
# Put 'Model' column first
|
551 |
cols = sorted(list(df.columns))
|
552 |
cols.insert(0, cols.pop(cols.index("Model")))
|
@@ -607,8 +722,12 @@ def get_mteb_average():
|
|
607 |
return DATA_OVERALL
|
608 |
|
609 |
get_mteb_average()
|
610 |
-
DATA_BITEXT_MINING = get_mteb_data(["BitextMining"])
|
611 |
-
|
|
|
|
|
|
|
|
|
612 |
DATA_CLUSTERING_GERMAN = get_mteb_data(["Clustering"], [], TASK_LIST_CLUSTERING_DE)
|
613 |
DATA_STS = get_mteb_data(["STS"])
|
614 |
|
@@ -616,7 +735,7 @@ DATA_STS = get_mteb_data(["STS"])
|
|
616 |
NUM_SCORES = 0
|
617 |
DATASETS = []
|
618 |
# LANGUAGES = []
|
619 |
-
for d in [DATA_BITEXT_MINING,
|
620 |
# NUM_SCORES += d.iloc[:, 1:].apply(lambda x: sum([1 for y in x if isinstance(y, float) and not np.isnan(y)]), axis=1).sum()
|
621 |
cols_to_ignore = 3 if "Average" in d.columns else 2
|
622 |
# Count number of scores including only non-nan floats & excluding the rank column
|
@@ -634,7 +753,7 @@ with block:
|
|
634 |
Massive Text Embedding Benchmark (MTEB) Leaderboard. To submit, refer to the <a href="https://github.com/embeddings-benchmark/mteb#leaderboard" target="_blank" style="text-decoration: underline">MTEB GitHub repository</a> π€ Refer to the [MTEB paper](https://arxiv.org/abs/2210.07316) for details on metrics, tasks and models.
|
635 |
|
636 |
- **Total Datasets**: {NUM_DATASETS}
|
637 |
-
- **Total Languages**:
|
638 |
- **Total Scores**: {NUM_SCORES}
|
639 |
- **Total Models**: {len(DATA_OVERALL)}
|
640 |
""")
|
@@ -656,29 +775,61 @@ with block:
|
|
656 |
)
|
657 |
with gr.Row():
|
658 |
data_run = gr.Button("Refresh")
|
659 |
-
data_run.click(get_mteb_average, inputs=None, outputs=data_overall)
|
660 |
with gr.TabItem("Bitext Mining"):
|
661 |
-
with gr.
|
662 |
-
|
663 |
-
|
664 |
-
|
665 |
-
|
666 |
-
|
667 |
-
|
668 |
-
|
669 |
-
|
670 |
-
|
671 |
-
|
672 |
-
|
673 |
-
|
674 |
-
|
675 |
-
|
676 |
-
|
677 |
-
|
678 |
-
|
679 |
-
|
680 |
-
|
681 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
682 |
with gr.TabItem("Classification"):
|
683 |
with gr.TabItem("English"):
|
684 |
with gr.Row():
|
@@ -706,28 +857,121 @@ with block:
|
|
706 |
],
|
707 |
outputs=data_classification_en,
|
708 |
)
|
709 |
-
with gr.TabItem("
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
710 |
with gr.Row():
|
711 |
gr.Markdown("""
|
712 |
-
**Classification
|
713 |
|
714 |
- **Metric:** [Accuracy](https://huggingface.co/spaces/evaluate-metric/accuracy)
|
715 |
-
- **Languages:**
|
716 |
""")
|
717 |
with gr.Row():
|
718 |
data_classification = gr.components.Dataframe(
|
719 |
-
|
720 |
-
datatype=["number", "markdown"] + ["number"] * len(
|
721 |
type="pandas",
|
722 |
)
|
723 |
with gr.Row():
|
724 |
data_run = gr.Button("Refresh")
|
725 |
task_classification = gr.Variable(value=["Classification"])
|
|
|
|
|
726 |
data_run.click(
|
727 |
get_mteb_data,
|
728 |
-
inputs=[
|
|
|
|
|
|
|
|
|
729 |
outputs=data_classification,
|
730 |
-
)
|
731 |
with gr.TabItem("Clustering"):
|
732 |
with gr.TabItem("English"):
|
733 |
with gr.Row():
|
@@ -756,7 +1000,7 @@ with block:
|
|
756 |
with gr.TabItem("German"):
|
757 |
with gr.Row():
|
758 |
gr.Markdown("""
|
759 |
-
**Clustering Leaderboard β¨π©πͺ**
|
760 |
|
761 |
- **Metric:** Validity Measure (v_measure)
|
762 |
- **Languages:** German
|
@@ -800,48 +1044,48 @@ with block:
|
|
800 |
inputs=[task_pair_classification],
|
801 |
outputs=data_pair_classification,
|
802 |
)
|
803 |
-
with gr.TabItem("
|
804 |
with gr.Row():
|
805 |
gr.Markdown("""
|
806 |
-
**
|
807 |
|
808 |
-
- **Metric:**
|
809 |
- **Languages:** English
|
810 |
""")
|
811 |
with gr.Row():
|
812 |
-
|
813 |
-
|
814 |
-
|
815 |
-
datatype=["number", "markdown"] + ["number"] * len(DATA_RETRIEVAL.columns) * 2,
|
816 |
type="pandas",
|
817 |
)
|
818 |
with gr.Row():
|
819 |
data_run = gr.Button("Refresh")
|
820 |
-
|
|
|
821 |
data_run.click(
|
822 |
-
get_mteb_data, inputs=[
|
823 |
)
|
824 |
-
with gr.TabItem("
|
825 |
with gr.Row():
|
826 |
gr.Markdown("""
|
827 |
-
**
|
828 |
|
829 |
-
- **Metric:**
|
830 |
- **Languages:** English
|
831 |
""")
|
832 |
with gr.Row():
|
833 |
-
|
834 |
-
|
835 |
-
|
|
|
836 |
type="pandas",
|
837 |
)
|
838 |
with gr.Row():
|
839 |
data_run = gr.Button("Refresh")
|
840 |
-
|
841 |
-
metric_reranking = gr.Variable(value="map")
|
842 |
data_run.click(
|
843 |
-
get_mteb_data, inputs=[
|
844 |
-
)
|
845 |
with gr.TabItem("STS"):
|
846 |
with gr.TabItem("English"):
|
847 |
with gr.Row():
|
|
|
17 |
"Summarization",
|
18 |
]
|
19 |
|
20 |
+
TASK_LIST_BITEXT_MINING = ['BUCC (de-en)', 'BUCC (fr-en)', 'BUCC (ru-en)', 'BUCC (zh-en)', 'Tatoeba (afr-eng)', 'Tatoeba (amh-eng)', 'Tatoeba (ang-eng)', 'Tatoeba (ara-eng)', 'Tatoeba (arq-eng)', 'Tatoeba (arz-eng)', 'Tatoeba (ast-eng)', 'Tatoeba (awa-eng)', 'Tatoeba (aze-eng)', 'Tatoeba (bel-eng)', 'Tatoeba (ben-eng)', 'Tatoeba (ber-eng)', 'Tatoeba (bos-eng)', 'Tatoeba (bre-eng)', 'Tatoeba (bul-eng)', 'Tatoeba (cat-eng)', 'Tatoeba (cbk-eng)', 'Tatoeba (ceb-eng)', 'Tatoeba (ces-eng)', 'Tatoeba (cha-eng)', 'Tatoeba (cmn-eng)', 'Tatoeba (cor-eng)', 'Tatoeba (csb-eng)', 'Tatoeba (cym-eng)', 'Tatoeba (dan-eng)', 'Tatoeba (deu-eng)', 'Tatoeba (dsb-eng)', 'Tatoeba (dtp-eng)', 'Tatoeba (ell-eng)', 'Tatoeba (epo-eng)', 'Tatoeba (est-eng)', 'Tatoeba (eus-eng)', 'Tatoeba (fao-eng)', 'Tatoeba (fin-eng)', 'Tatoeba (fra-eng)', 'Tatoeba (fry-eng)', 'Tatoeba (gla-eng)', 'Tatoeba (gle-eng)', 'Tatoeba (glg-eng)', 'Tatoeba (gsw-eng)', 'Tatoeba (heb-eng)', 'Tatoeba (hin-eng)', 'Tatoeba (hrv-eng)', 'Tatoeba (hsb-eng)', 'Tatoeba (hun-eng)', 'Tatoeba (hye-eng)', 'Tatoeba (ido-eng)', 'Tatoeba (ile-eng)', 'Tatoeba (ina-eng)', 'Tatoeba (ind-eng)', 'Tatoeba (isl-eng)', 'Tatoeba (ita-eng)', 'Tatoeba (jav-eng)', 'Tatoeba (jpn-eng)', 'Tatoeba (kab-eng)', 'Tatoeba (kat-eng)', 'Tatoeba (kaz-eng)', 'Tatoeba (khm-eng)', 'Tatoeba (kor-eng)', 'Tatoeba (kur-eng)', 'Tatoeba (kzj-eng)', 'Tatoeba (lat-eng)', 'Tatoeba (lfn-eng)', 'Tatoeba (lit-eng)', 'Tatoeba (lvs-eng)', 'Tatoeba (mal-eng)', 'Tatoeba (mar-eng)', 'Tatoeba (max-eng)', 'Tatoeba (mhr-eng)', 'Tatoeba (mkd-eng)', 'Tatoeba (mon-eng)', 'Tatoeba (nds-eng)', 'Tatoeba (nld-eng)', 'Tatoeba (nno-eng)', 'Tatoeba (nob-eng)', 'Tatoeba (nov-eng)', 'Tatoeba (oci-eng)', 'Tatoeba (orv-eng)', 'Tatoeba (pam-eng)', 'Tatoeba (pes-eng)', 'Tatoeba (pms-eng)', 'Tatoeba (pol-eng)', 'Tatoeba (por-eng)', 'Tatoeba (ron-eng)', 'Tatoeba (rus-eng)', 'Tatoeba (slk-eng)', 'Tatoeba (slv-eng)', 'Tatoeba (spa-eng)', 'Tatoeba (sqi-eng)', 'Tatoeba (srp-eng)', 'Tatoeba (swe-eng)', 'Tatoeba (swg-eng)', 'Tatoeba (swh-eng)', 'Tatoeba (tam-eng)', 'Tatoeba (tat-eng)', 'Tatoeba (tel-eng)', 'Tatoeba (tgl-eng)', 'Tatoeba (tha-eng)', 'Tatoeba (tuk-eng)', 'Tatoeba (tur-eng)', 'Tatoeba (tzl-eng)', 'Tatoeba (uig-eng)', 'Tatoeba (ukr-eng)', 'Tatoeba (urd-eng)', 'Tatoeba (uzb-eng)', 'Tatoeba (vie-eng)', 'Tatoeba (war-eng)', 'Tatoeba (wuu-eng)', 'Tatoeba (xho-eng)', 'Tatoeba (yid-eng)', 'Tatoeba (yue-eng)', 'Tatoeba (zsm-eng)']
|
21 |
+
TASK_LIST_BITEXT_MINING_OTHER = ["BornholmBitextMining"]
|
22 |
+
|
23 |
TASK_LIST_CLASSIFICATION = [
|
24 |
"AmazonCounterfactualClassification (en)",
|
25 |
"AmazonPolarityClassification",
|
|
|
37 |
|
38 |
TASK_LIST_CLASSIFICATION_NORM = [x.replace(" (en)", "") for x in TASK_LIST_CLASSIFICATION]
|
39 |
|
40 |
+
TASK_LIST_CLASSIFICATION_DA = [
|
41 |
+
"AngryTweetsClassification",
|
42 |
+
"DanishPoliticalCommentsClassification",
|
43 |
+
"DKHateClassification",
|
44 |
+
"LccSentimentClassification",
|
45 |
+
"MassiveIntentClassification (da)",
|
46 |
+
"MassiveScenarioClassification (da)",
|
47 |
+
"NordicLangClassification",
|
48 |
+
"ScalaDaClassification",
|
49 |
+
]
|
50 |
+
|
51 |
+
TASK_LIST_CLASSIFICATION_NB = [
|
52 |
+
"NoRecClassification",
|
53 |
+
"NordicLangClassification",
|
54 |
+
"NorwegianParliament",
|
55 |
+
"MassiveIntentClassification (nb)",
|
56 |
+
"MassiveScenarioClassification (nb)",
|
57 |
+
"ScalaNbClassification (nb)",
|
58 |
+
]
|
59 |
+
|
60 |
+
TASK_LIST_CLASSIFICATION_SV = [
|
61 |
+
"DalajClassification",
|
62 |
+
"MassiveIntentClassification (sv)",
|
63 |
+
"MassiveScenarioClassification (sv)",
|
64 |
+
"NordicLangClassification",
|
65 |
+
"ScalaNbClassification",
|
66 |
+
"ScalaSvClassification",
|
67 |
+
"SweRecClassification",
|
68 |
+
]
|
69 |
+
|
70 |
+
TASK_LIST_CLASSIFICATION_OTHER = ['AmazonCounterfactualClassification (de)', 'AmazonCounterfactualClassification (ja)', 'AmazonReviewsClassification (de)', 'AmazonReviewsClassification (es)', 'AmazonReviewsClassification (fr)', 'AmazonReviewsClassification (ja)', 'AmazonReviewsClassification (zh)', 'MTOPDomainClassification (de)', 'MTOPDomainClassification (es)', 'MTOPDomainClassification (fr)', 'MTOPDomainClassification (hi)', 'MTOPDomainClassification (th)', 'MTOPIntentClassification (de)', 'MTOPIntentClassification (es)', 'MTOPIntentClassification (fr)', 'MTOPIntentClassification (hi)', 'MTOPIntentClassification (th)', 'MassiveIntentClassification (af)', 'MassiveIntentClassification (am)', 'MassiveIntentClassification (ar)', 'MassiveIntentClassification (az)', 'MassiveIntentClassification (bn)', 'MassiveIntentClassification (cy)', 'MassiveIntentClassification (de)', 'MassiveIntentClassification (el)', 'MassiveIntentClassification (es)', 'MassiveIntentClassification (fa)', 'MassiveIntentClassification (fi)', 'MassiveIntentClassification (fr)', 'MassiveIntentClassification (he)', 'MassiveIntentClassification (hi)', 'MassiveIntentClassification (hu)', 'MassiveIntentClassification (hy)', 'MassiveIntentClassification (id)', 'MassiveIntentClassification (is)', 'MassiveIntentClassification (it)', 'MassiveIntentClassification (ja)', 'MassiveIntentClassification (jv)', 'MassiveIntentClassification (ka)', 'MassiveIntentClassification (km)', 'MassiveIntentClassification (kn)', 'MassiveIntentClassification (ko)', 'MassiveIntentClassification (lv)', 'MassiveIntentClassification (ml)', 'MassiveIntentClassification (mn)', 'MassiveIntentClassification (ms)', 'MassiveIntentClassification (my)', 'MassiveIntentClassification (nl)', 'MassiveIntentClassification (pl)', 'MassiveIntentClassification (pt)', 'MassiveIntentClassification (ro)', 'MassiveIntentClassification (ru)', 'MassiveIntentClassification (sl)', 'MassiveIntentClassification (sq)', 'MassiveIntentClassification (sw)', 'MassiveIntentClassification (ta)', 'MassiveIntentClassification (te)', 'MassiveIntentClassification (th)', 'MassiveIntentClassification (tl)', 'MassiveIntentClassification (tr)', 'MassiveIntentClassification (ur)', 'MassiveIntentClassification (vi)', 'MassiveIntentClassification (zh-CN)', 'MassiveIntentClassification (zh-TW)', 'MassiveScenarioClassification (af)', 'MassiveScenarioClassification (am)', 'MassiveScenarioClassification (ar)', 'MassiveScenarioClassification (az)', 'MassiveScenarioClassification (bn)', 'MassiveScenarioClassification (cy)', 'MassiveScenarioClassification (de)', 'MassiveScenarioClassification (el)', 'MassiveScenarioClassification (es)', 'MassiveScenarioClassification (fa)', 'MassiveScenarioClassification (fi)', 'MassiveScenarioClassification (fr)', 'MassiveScenarioClassification (he)', 'MassiveScenarioClassification (hi)', 'MassiveScenarioClassification (hu)', 'MassiveScenarioClassification (hy)', 'MassiveScenarioClassification (id)', 'MassiveScenarioClassification (is)', 'MassiveScenarioClassification (it)', 'MassiveScenarioClassification (ja)', 'MassiveScenarioClassification (jv)', 'MassiveScenarioClassification (ka)', 'MassiveScenarioClassification (km)', 'MassiveScenarioClassification (kn)', 'MassiveScenarioClassification (ko)', 'MassiveScenarioClassification (lv)', 'MassiveScenarioClassification (ml)', 'MassiveScenarioClassification (mn)', 'MassiveScenarioClassification (ms)', 'MassiveScenarioClassification (my)', 'MassiveScenarioClassification (nl)', 'MassiveScenarioClassification (pl)', 'MassiveScenarioClassification (pt)', 'MassiveScenarioClassification (ro)', 'MassiveScenarioClassification (ru)', 'MassiveScenarioClassification (sl)', 'MassiveScenarioClassification (sq)', 'MassiveScenarioClassification (sw)', 'MassiveScenarioClassification (ta)', 'MassiveScenarioClassification (te)', 'MassiveScenarioClassification (th)', 'MassiveScenarioClassification (tl)', 'MassiveScenarioClassification (tr)', 'MassiveScenarioClassification (ur)', 'MassiveScenarioClassification (vi)', 'MassiveScenarioClassification (zh-CN)', 'MassiveScenarioClassification (zh-TW)']
|
71 |
+
|
72 |
TASK_LIST_CLUSTERING = [
|
73 |
"ArxivClusteringP2P",
|
74 |
"ArxivClusteringS2S",
|
|
|
83 |
"TwentyNewsgroupsClustering",
|
84 |
]
|
85 |
|
86 |
+
|
87 |
TASK_LIST_CLUSTERING_DE = [
|
88 |
"BlurbsClusteringP2P",
|
89 |
"BlurbsClusteringS2S",
|
|
|
122 |
"TRECCOVID",
|
123 |
]
|
124 |
|
125 |
+
TASK_LIST_RETRIEVAL_NORM = TASK_LIST_RETRIEVAL + [
|
126 |
+
"CQADupstackAndroidRetrieval",
|
127 |
"CQADupstackEnglishRetrieval",
|
128 |
"CQADupstackGamingRetrieval",
|
129 |
"CQADupstackGisRetrieval",
|
|
|
161 |
TASK_TO_METRIC = {
|
162 |
"BitextMining": "f1",
|
163 |
"Clustering": "v_measure",
|
|
|
164 |
"Classification": "accuracy",
|
165 |
"PairClassification": "cos_sim_ap",
|
166 |
"Reranking": "map",
|
|
|
179 |
|
180 |
# Models without metadata, thus we cannot fetch their results naturally
|
181 |
EXTERNAL_MODELS = [
|
|
|
|
|
182 |
"all-MiniLM-L12-v2",
|
183 |
"all-MiniLM-L6-v2",
|
184 |
"all-mpnet-base-v2",
|
185 |
"allenai-specter",
|
186 |
+
"bert-base-swedish-cased",
|
187 |
"bert-base-uncased",
|
188 |
"contriever-base-msmarco",
|
189 |
"cross-en-de-roberta-sentence-transformer",
|
190 |
+
"dfm-encoder-large-v1",
|
191 |
+
"dfm-sentence-encoder-large-1",
|
192 |
"distiluse-base-multilingual-cased-v2",
|
193 |
+
"DanskBERT",
|
194 |
+
"e5-base",
|
195 |
+
"e5-large",
|
196 |
+
"e5-small",
|
197 |
+
"electra-small-nordic",
|
198 |
+
"electra-small-swedish-cased-discriminator",
|
199 |
"gbert-base",
|
200 |
"gbert-large",
|
201 |
"gelectra-base",
|
|
|
207 |
"gtr-t5-xl",
|
208 |
"gtr-t5-xxl",
|
209 |
"komninos",
|
210 |
+
"LASER2",
|
211 |
+
"LaBSE",
|
212 |
"msmarco-bert-co-condensor",
|
213 |
+
"multilingual-e5-base",
|
214 |
+
"multilingual-e5-large",
|
215 |
+
"multilingual-e5-small",
|
216 |
+
"nb-bert-base",
|
217 |
+
"nb-bert-large",
|
218 |
+
"norbert3-base",
|
219 |
+
"norbert3-large",
|
220 |
"paraphrase-multilingual-MiniLM-L12-v2",
|
221 |
"paraphrase-multilingual-mpnet-base-v2",
|
222 |
+
"sentence-bert-swedish-cased",
|
223 |
"sentence-t5-base",
|
224 |
"sentence-t5-large",
|
225 |
"sentence-t5-xl",
|
|
|
237 |
"text-search-davinci-001",
|
238 |
"unsup-simcse-bert-base-uncased",
|
239 |
"use-cmlm-multilingual",
|
240 |
+
"xlm-roberta-base",
|
241 |
"xlm-roberta-large",
|
242 |
]
|
243 |
|
244 |
EXTERNAL_MODEL_TO_LINK = {
|
245 |
+
"allenai-specter": "https://huggingface.co/sentence-transformers/allenai-specter",
|
246 |
+
"allenai-specter": "https://huggingface.co/sentence-transformers/allenai-specter",
|
247 |
+
"all-MiniLM-L12-v2": "https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2",
|
248 |
+
"all-MiniLM-L6-v2": "https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2",
|
249 |
+
"all-mpnet-base-v2": "https://huggingface.co/sentence-transformers/all-mpnet-base-v2",
|
250 |
+
"bert-base-swedish-cased": "https://huggingface.co/KB/bert-base-swedish-cased",
|
251 |
+
"bert-base-uncased": "https://huggingface.co/bert-base-uncased",
|
252 |
+
"contriever-base-msmarco": "https://huggingface.co/nthakur/contriever-base-msmarco",
|
253 |
"cross-en-de-roberta-sentence-transformer": "https://huggingface.co/T-Systems-onsite/cross-en-de-roberta-sentence-transformer",
|
254 |
+
"DanskBERT": "https://huggingface.co/vesteinn/DanskBERT",
|
255 |
"distiluse-base-multilingual-cased-v2": "https://huggingface.co/sentence-transformers/distiluse-base-multilingual-cased-v2",
|
256 |
+
"dfm-encoder-large-v1": "https://huggingface.co/chcaa/dfm-encoder-large-v1",
|
257 |
+
"dfm-sentence-encoder-large-1": "https://huggingface.co/chcaa/dfm-encoder-large-v1",
|
258 |
+
"e5-base": "https://huggingface.co/intfloat/e5-base",
|
259 |
+
"e5-large": "https://huggingface.co/intfloat/e5-large",
|
260 |
+
"e5-small": "https://huggingface.co/intfloat/e5-small",
|
261 |
+
"electra-small-nordic": "https://huggingface.co/jonfd/electra-small-nordic",
|
262 |
+
"electra-small-swedish-cased-discriminator": "https://huggingface.co/KBLab/electra-small-swedish-cased-discriminator",
|
263 |
"gbert-base": "https://huggingface.co/deepset/gbert-base",
|
264 |
"gbert-large": "https://huggingface.co/deepset/gbert-large",
|
265 |
"gelectra-base": "https://huggingface.co/deepset/gelectra-base",
|
266 |
"gelectra-large": "https://huggingface.co/deepset/gelectra-large",
|
267 |
+
"glove.6B.300d": "https://huggingface.co/sentence-transformers/average_word_embeddings_glove.6B.300d",
|
268 |
"gottbert-base": "https://huggingface.co/uklfr/gottbert-base",
|
269 |
+
"gtr-t5-base": "https://huggingface.co/sentence-transformers/gtr-t5-base",
|
270 |
+
"gtr-t5-large": "https://huggingface.co/sentence-transformers/gtr-t5-large",
|
271 |
+
"gtr-t5-xl": "https://huggingface.co/sentence-transformers/gtr-t5-xl",
|
272 |
+
"gtr-t5-xxl": "https://huggingface.co/sentence-transformers/gtr-t5-xxl",
|
273 |
+
"komninos": "https://huggingface.co/sentence-transformers/average_word_embeddings_komninos",
|
274 |
"LASER2": "https://github.com/facebookresearch/LASER",
|
275 |
+
"LaBSE": "https://huggingface.co/sentence-transformers/LaBSE",
|
276 |
+
"msmarco-bert-co-condensor": "https://huggingface.co/sentence-transformers/msmarco-bert-co-condensor",
|
277 |
+
"multilingual-e5-base": "https://huggingface.co/intfloat/multilingual-e5-base",
|
278 |
+
"multilingual-e5-large": "https://huggingface.co/intfloat/multilingual-e5-large",
|
279 |
+
"multilingual-e5-small": "https://huggingface.co/intfloat/multilingual-e5-small",
|
280 |
+
"nb-bert-base": "https://huggingface.co/NbAiLab/nb-bert-base",
|
281 |
+
"nb-bert-large": "https://huggingface.co/NbAiLab/nb-bert-large",
|
282 |
+
"norbert3-base": "https://huggingface.co/ltg/norbert3-base",
|
283 |
+
"norbert3-large": "https://huggingface.co/ltg/norbert3-large",
|
284 |
+
"paraphrase-multilingual-mpnet-base-v2": "https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2",
|
285 |
+
"paraphrase-multilingual-MiniLM-L12-v2": "https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2",
|
286 |
+
"sentence-bert-swedish-cased": "https://huggingface.co/KBLab/sentence-bert-swedish-cased",
|
287 |
+
"sentence-t5-base": "https://huggingface.co/sentence-transformers/sentence-t5-base",
|
288 |
+
"sentence-t5-large": "https://huggingface.co/sentence-transformers/sentence-t5-large",
|
289 |
+
"sentence-t5-xl": "https://huggingface.co/sentence-transformers/sentence-t5-xl",
|
290 |
+
"sentence-t5-xxl": "https://huggingface.co/sentence-transformers/sentence-t5-xxl",
|
291 |
+
"sup-simcse-bert-base-uncased": "https://huggingface.co/princeton-nlp/sup-simcse-bert-base-uncased",
|
292 |
"text-embedding-ada-002": "https://beta.openai.com/docs/guides/embeddings/types-of-embedding-models",
|
293 |
"text-similarity-ada-001": "https://beta.openai.com/docs/guides/embeddings/types-of-embedding-models",
|
294 |
"text-similarity-babbage-001": "https://beta.openai.com/docs/guides/embeddings/types-of-embedding-models",
|
|
|
300 |
"text-search-curie-001": "https://beta.openai.com/docs/guides/embeddings/types-of-embedding-models",
|
301 |
"text-search-babbage-001": "https://beta.openai.com/docs/guides/embeddings/types-of-embedding-models",
|
302 |
"text-search-davinci-001": "https://beta.openai.com/docs/guides/embeddings/types-of-embedding-models",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
303 |
"unsup-simcse-bert-base-uncased": "https://huggingface.co/princeton-nlp/unsup-simcse-bert-base-uncased",
|
304 |
+
"use-cmlm-multilingual": "https://huggingface.co/sentence-transformers/use-cmlm-multilingual",
|
305 |
+
"xlm-roberta-base": "https://huggingface.co/xlm-roberta-base",
|
306 |
+
"xlm-roberta-large": "https://huggingface.co/xlm-roberta-large",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
307 |
}
|
308 |
|
309 |
EXTERNAL_MODEL_TO_DIM = {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
310 |
"all-MiniLM-L12-v2": 384,
|
311 |
"all-MiniLM-L6-v2": 384,
|
312 |
"all-mpnet-base-v2": 768,
|
313 |
+
"allenai-specter": 768,
|
314 |
+
"bert-base-swedish-cased": 768,
|
315 |
"bert-base-uncased": 768,
|
316 |
"contriever-base-msmarco": 768,
|
317 |
+
"cross-en-de-roberta-sentence-transformer": 768,
|
318 |
+
"DanskBERT": 768,
|
319 |
+
"distiluse-base-multilingual-cased-v2": 512,
|
320 |
+
"dfm-encoder-large-v1": 1024,
|
321 |
+
"dfm-sentence-encoder-large-1": 1024,
|
322 |
+
"e5-base": 768,
|
323 |
+
"e5-small": 384,
|
324 |
+
"e5-large": 1024,
|
325 |
+
"electra-small-nordic": 256,
|
326 |
+
"electra-small-swedish-cased-discriminator": 256,
|
327 |
+
"LASER2": 1024,
|
328 |
+
"LaBSE": 768,
|
329 |
+
"gbert-base": 768,
|
330 |
+
"gbert-large": 1024,
|
331 |
+
"gelectra-base": 768,
|
332 |
+
"gelectra-large": 1024,
|
333 |
"glove.6B.300d": 300,
|
334 |
+
"gottbert-base": 768,
|
335 |
"gtr-t5-base": 768,
|
336 |
"gtr-t5-large": 768,
|
337 |
"gtr-t5-xl": 768,
|
338 |
"gtr-t5-xxl": 768,
|
339 |
"komninos": 300,
|
340 |
"msmarco-bert-co-condensor": 768,
|
341 |
+
"multilingual-e5-base": 768,
|
342 |
+
"multilingual-e5-small": 384,
|
343 |
+
"multilingual-e5-large": 1024,
|
344 |
+
"nb-bert-base": 768,
|
345 |
+
"nb-bert-large": 1024,
|
346 |
+
"norbert3-base": 768,
|
347 |
+
"norbert3-large": 1024,
|
348 |
"paraphrase-multilingual-MiniLM-L12-v2": 384,
|
349 |
"paraphrase-multilingual-mpnet-base-v2": 768,
|
350 |
+
"sentence-bert-swedish-cased": 768,
|
351 |
"sentence-t5-base": 768,
|
352 |
"sentence-t5-large": 768,
|
353 |
"sentence-t5-xl": 768,
|
354 |
"sentence-t5-xxl": 768,
|
355 |
"sup-simcse-bert-base-uncased": 768,
|
356 |
+
"use-cmlm-multilingual": 768,
|
357 |
+
"unsup-simcse-bert-base-uncased": 768,
|
358 |
"text-embedding-ada-002": 1536,
|
|
|
359 |
"text-similarity-ada-001": 1024,
|
360 |
"text-similarity-babbage-001": 2048,
|
361 |
"text-similarity-curie-001": 4096,
|
362 |
"text-similarity-davinci-001": 12288,
|
|
|
363 |
"text-search-ada-doc-001": 1024,
|
364 |
"text-search-ada-query-001": 1024,
|
365 |
"text-search-ada-001": 1024,
|
366 |
"text-search-babbage-001": 2048,
|
367 |
"text-search-curie-001": 4096,
|
368 |
+
"text-search-davinci-001": 12288,
|
369 |
+
"xlm-roberta-base": 768,
|
370 |
+
"xlm-roberta-large": 1024,
|
371 |
}
|
372 |
|
373 |
|
374 |
EXTERNAL_MODEL_TO_SEQLEN = {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
375 |
"all-MiniLM-L12-v2": 512,
|
376 |
"all-MiniLM-L6-v2": 512,
|
377 |
"all-mpnet-base-v2": 514,
|
378 |
"allenai-specter": 512,
|
379 |
+
"bert-base-swedish-cased": 512,
|
380 |
"bert-base-uncased": 512,
|
381 |
"contriever-base-msmarco": 512,
|
382 |
+
"cross-en-de-roberta-sentence-transformer": 514,
|
383 |
+
"DanskBERT": 514,
|
384 |
+
"dfm-encoder-large-v1": 512,
|
385 |
+
"dfm-sentence-encoder-large-1": 512,
|
386 |
+
"distiluse-base-multilingual-cased-v2": 512,
|
387 |
+
"e5-base": 512,
|
388 |
+
"e5-large": 512,
|
389 |
+
"e5-small": 512,
|
390 |
+
"electra-small-nordic": 512,
|
391 |
+
"electra-small-swedish-cased-discriminator": 512,
|
392 |
+
"gbert-base": 512,
|
393 |
+
"gbert-large": 512,
|
394 |
+
"gelectra-base": 512,
|
395 |
+
"gelectra-large": 512,
|
396 |
+
"gottbert-base": 512,
|
397 |
"glove.6B.300d": "N/A",
|
398 |
"gtr-t5-base": 512,
|
399 |
"gtr-t5-large": 512,
|
400 |
"gtr-t5-xl": 512,
|
401 |
"gtr-t5-xxl": 512,
|
402 |
"komninos": "N/A",
|
403 |
+
"LASER2": "N/A",
|
404 |
+
"LaBSE": 512,
|
405 |
"msmarco-bert-co-condensor": 512,
|
406 |
+
"multilingual-e5-base": 514,
|
407 |
+
"multilingual-e5-large": 514,
|
408 |
+
"multilingual-e5-small": 512,
|
409 |
+
"nb-bert-base": 512,
|
410 |
+
"nb-bert-large": 512,
|
411 |
+
"norbert3-base": 512,
|
412 |
+
"norbert3-large": 512,
|
413 |
"paraphrase-multilingual-MiniLM-L12-v2": 512,
|
414 |
"paraphrase-multilingual-mpnet-base-v2": 514,
|
415 |
+
"sentence-bert-swedish-cased": 512,
|
416 |
"sentence-t5-base": 512,
|
417 |
"sentence-t5-large": 512,
|
418 |
"sentence-t5-xl": 512,
|
419 |
"sentence-t5-xxl": 512,
|
420 |
"sup-simcse-bert-base-uncased": 512,
|
|
|
421 |
"text-embedding-ada-002": 8191,
|
|
|
422 |
"text-similarity-ada-001": 2046,
|
423 |
"text-similarity-babbage-001": 2046,
|
424 |
"text-similarity-curie-001": 2046,
|
425 |
"text-similarity-davinci-001": 2046,
|
|
|
426 |
"text-search-ada-doc-001": 2046,
|
427 |
"text-search-ada-query-001": 2046,
|
428 |
"text-search-ada-001": 2046,
|
429 |
"text-search-babbage-001": 2046,
|
430 |
"text-search-curie-001": 2046,
|
431 |
"text-search-davinci-001": 2046,
|
432 |
+
"use-cmlm-multilingual": 512,
|
433 |
"unsup-simcse-bert-base-uncased": 512,
|
434 |
+
"xlm-roberta-base": 514,
|
435 |
+
"xlm-roberta-large": 514,
|
436 |
}
|
437 |
|
438 |
EXTERNAL_MODEL_TO_SIZE = {
|
439 |
+
"allenai-specter": 0.44,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
440 |
"all-MiniLM-L12-v2": 0.13,
|
441 |
"all-MiniLM-L6-v2": 0.09,
|
442 |
+
"all-mpnet-base-v2": 0.44,
|
443 |
+
"bert-base-uncased": 0.44,
|
444 |
+
"bert-base-swedish-cased": 0.50,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
445 |
"cross-en-de-roberta-sentence-transformer": 1.11,
|
446 |
+
"contriever-base-msmarco": 0.44,
|
447 |
+
"DanskBERT": 0.50,
|
448 |
"distiluse-base-multilingual-cased-v2": 0.54,
|
449 |
+
"dfm-encoder-large-v1": 1.42,
|
450 |
+
"dfm-sentence-encoder-large-1": 1.63,
|
451 |
+
"e5-base": 0.44,
|
452 |
+
"e5-small": 0.13,
|
453 |
+
"e5-large": 1.34,
|
454 |
+
"electra-small-nordic": 0.09,
|
455 |
+
"electra-small-swedish-cased-discriminator": 0.06,
|
456 |
"gbert-base": 0.44,
|
457 |
"gbert-large": 1.35,
|
458 |
"gelectra-base": 0.44,
|
459 |
"gelectra-large": 1.34,
|
460 |
+
"glove.6B.300d": 0.48,
|
461 |
+
"gottbert-base": 0.51,
|
462 |
+
"gtr-t5-base": 0.22,
|
463 |
+
"gtr-t5-large": 0.67,
|
464 |
+
"gtr-t5-xl": 2.48,
|
465 |
+
"gtr-t5-xxl": 9.73,
|
466 |
+
"komninos": 0.27,
|
467 |
+
"LASER2": 0.17,
|
468 |
+
"LaBSE": 1.88,
|
469 |
+
"msmarco-bert-co-condensor": 0.44,
|
470 |
+
"multilingual-e5-base": 1.11,
|
471 |
+
"multilingual-e5-small": 0.47,
|
472 |
+
"multilingual-e5-large": 2.24,
|
473 |
+
"nb-bert-base": 0.71,
|
474 |
+
"nb-bert-large": 1.42,
|
475 |
+
"norbert3-base": 0.52,
|
476 |
+
"norbert3-large": 1.47,
|
477 |
+
"paraphrase-multilingual-mpnet-base-v2": 1.11,
|
478 |
+
"paraphrase-multilingual-MiniLM-L12-v2": 0.47,
|
479 |
+
"sentence-bert-swedish-cased": 0.50,
|
480 |
+
"sentence-t5-base": 0.22,
|
481 |
+
"sentence-t5-large": 0.67,
|
482 |
+
"sentence-t5-xl": 2.48,
|
483 |
+
"sentence-t5-xxl": 9.73,
|
484 |
+
"sup-simcse-bert-base-uncased": 0.44,
|
485 |
+
"unsup-simcse-bert-base-uncased": 0.44,
|
486 |
+
"use-cmlm-multilingual": 1.89,
|
487 |
+
"xlm-roberta-base": 1.12,
|
488 |
"xlm-roberta-large": 2.24,
|
|
|
489 |
}
|
490 |
|
491 |
MODELS_TO_SKIP = {
|
|
|
523 |
|
524 |
def add_task(examples):
|
525 |
# Could be added to the dataset loading script instead
|
526 |
+
if examples["mteb_dataset_name"] in TASK_LIST_CLASSIFICATION_NORM + TASK_LIST_CLASSIFICATION_DA + TASK_LIST_CLASSIFICATION_SV + TASK_LIST_CLASSIFICATION_NB:
|
527 |
examples["mteb_task"] = "Classification"
|
528 |
elif examples["mteb_dataset_name"] in TASK_LIST_CLUSTERING + TASK_LIST_CLUSTERING_DE:
|
529 |
examples["mteb_task"] = "Clustering"
|
|
|
657 |
out["Embedding Dimensions"], out["Sequence Length"], out["Model Size (GB)"] = get_dim_seq_size(model)
|
658 |
df_list.append(out)
|
659 |
df = pd.DataFrame(df_list)
|
660 |
+
# If there are any models that are the same, merge them
|
661 |
+
# E.g. if out["Model"] has the same value in two places, merge & take whichever one is not NaN else just take the first one
|
662 |
+
# Save to csv
|
663 |
+
df.to_csv("mteb.csv", index=False)
|
664 |
+
df = df.groupby("Model", as_index=False).first()
|
665 |
# Put 'Model' column first
|
666 |
cols = sorted(list(df.columns))
|
667 |
cols.insert(0, cols.pop(cols.index("Model")))
|
|
|
722 |
return DATA_OVERALL
|
723 |
|
724 |
get_mteb_average()
|
725 |
+
DATA_BITEXT_MINING = get_mteb_data(["BitextMining"], [], TASK_LIST_BITEXT_MINING)
|
726 |
+
DATA_BITEXT_MINING_OTHER = get_mteb_data(["BitextMining"], [], TASK_LIST_BITEXT_MINING_OTHER)
|
727 |
+
DATA_CLASSIFICATION_DA = get_mteb_data(["Classification"], [], TASK_LIST_CLASSIFICATION_DA)
|
728 |
+
DATA_CLASSIFICATION_NB = get_mteb_data(["Classification"], [], TASK_LIST_CLASSIFICATION_NB)
|
729 |
+
DATA_CLASSIFICATION_SV = get_mteb_data(["Classification"], [], TASK_LIST_CLASSIFICATION_SV)
|
730 |
+
DATA_CLASSIFICATION_OTHER = get_mteb_data(["Classification"], [], TASK_LIST_CLASSIFICATION_OTHER)
|
731 |
DATA_CLUSTERING_GERMAN = get_mteb_data(["Clustering"], [], TASK_LIST_CLUSTERING_DE)
|
732 |
DATA_STS = get_mteb_data(["STS"])
|
733 |
|
|
|
735 |
NUM_SCORES = 0
|
736 |
DATASETS = []
|
737 |
# LANGUAGES = []
|
738 |
+
for d in [DATA_BITEXT_MINING, DATA_BITEXT_MINING_OTHER, DATA_CLASSIFICATION_EN, DATA_CLASSIFICATION_DA, DATA_CLASSIFICATION_NB, DATA_CLASSIFICATION_SV, DATA_CLASSIFICATION_OTHER, DATA_CLUSTERING, DATA_CLUSTERING_GERMAN, DATA_PAIR_CLASSIFICATION, DATA_RERANKING, DATA_RETRIEVAL, DATA_STS, DATA_SUMMARIZATION]:
|
739 |
# NUM_SCORES += d.iloc[:, 1:].apply(lambda x: sum([1 for y in x if isinstance(y, float) and not np.isnan(y)]), axis=1).sum()
|
740 |
cols_to_ignore = 3 if "Average" in d.columns else 2
|
741 |
# Count number of scores including only non-nan floats & excluding the rank column
|
|
|
753 |
Massive Text Embedding Benchmark (MTEB) Leaderboard. To submit, refer to the <a href="https://github.com/embeddings-benchmark/mteb#leaderboard" target="_blank" style="text-decoration: underline">MTEB GitHub repository</a> π€ Refer to the [MTEB paper](https://arxiv.org/abs/2210.07316) for details on metrics, tasks and models.
|
754 |
|
755 |
- **Total Datasets**: {NUM_DATASETS}
|
756 |
+
- **Total Languages**: 113
|
757 |
- **Total Scores**: {NUM_SCORES}
|
758 |
- **Total Models**: {len(DATA_OVERALL)}
|
759 |
""")
|
|
|
775 |
)
|
776 |
with gr.Row():
|
777 |
data_run = gr.Button("Refresh")
|
778 |
+
data_run.click(get_mteb_average, inputs=None, outputs=data_overall)
|
779 |
with gr.TabItem("Bitext Mining"):
|
780 |
+
with gr.TabItem("English-X"):
|
781 |
+
with gr.Row():
|
782 |
+
gr.Markdown("""
|
783 |
+
**Bitext Mining Leaderboard π΄σ §σ ’σ ³σ £σ ΄σ Ώ**
|
784 |
+
|
785 |
+
- **Metric:** [F1](https://huggingface.co/spaces/evaluate-metric/f1)
|
786 |
+
- **Languages:** 117 (Pairs of: English & other language)
|
787 |
+
""")
|
788 |
+
with gr.Row():
|
789 |
+
data_bitext_mining = gr.components.Dataframe(
|
790 |
+
DATA_BITEXT_MINING,
|
791 |
+
datatype=["number", "markdown"] + ["number"] * len(DATA_BITEXT_MINING.columns),
|
792 |
+
type="pandas",
|
793 |
+
)
|
794 |
+
with gr.Row():
|
795 |
+
data_run = gr.Button("Refresh")
|
796 |
+
task_bitext_mining = gr.Variable(value=["BitextMining"])
|
797 |
+
lang_bitext_mining_other = gr.Variable(value=[])
|
798 |
+
datasets_bitext_mining_other = gr.Variable(value=TASK_LIST_BITEXT_MINING)
|
799 |
+
data_run.click(
|
800 |
+
get_mteb_data,
|
801 |
+
inputs=[task_bitext_mining, lang_bitext_mining_other, datasets_bitext_mining_other],
|
802 |
+
outputs=data_bitext_mining,
|
803 |
+
)
|
804 |
+
with gr.TabItem("Other"):
|
805 |
+
with gr.Row():
|
806 |
+
gr.Markdown("""
|
807 |
+
**Bitext Mining Other Leaderboard π**
|
808 |
+
|
809 |
+
- **Metric:** [F1](https://huggingface.co/spaces/evaluate-metric/f1)
|
810 |
+
- **Languages:** 2 (Pair of: Danish & Bornholmsk)
|
811 |
+
- **Credits:** [Kenneth Enevoldsen](https://github.com/KennethEnevoldsen)
|
812 |
+
""")
|
813 |
+
with gr.Row():
|
814 |
+
data_bitext_mining_other = gr.components.Dataframe(
|
815 |
+
DATA_BITEXT_MINING_OTHER,
|
816 |
+
datatype=["number", "markdown"] + ["number"] * len(DATA_BITEXT_MINING_OTHER.columns),
|
817 |
+
type="pandas",
|
818 |
+
)
|
819 |
+
with gr.Row():
|
820 |
+
data_run = gr.Button("Refresh")
|
821 |
+
task_bitext_mining_other = gr.Variable(value=["BitextMining"])
|
822 |
+
lang_bitext_mining_other = gr.Variable(value=[])
|
823 |
+
datasets_bitext_mining_other = gr.Variable(value=TASK_LIST_BITEXT_MINING_OTHER)
|
824 |
+
data_run.click(
|
825 |
+
get_mteb_data,
|
826 |
+
inputs=[
|
827 |
+
task_bitext_mining_other,
|
828 |
+
lang_bitext_mining_other,
|
829 |
+
datasets_bitext_mining_other,
|
830 |
+
],
|
831 |
+
outputs=data_bitext_mining_other,
|
832 |
+
)
|
833 |
with gr.TabItem("Classification"):
|
834 |
with gr.TabItem("English"):
|
835 |
with gr.Row():
|
|
|
857 |
],
|
858 |
outputs=data_classification_en,
|
859 |
)
|
860 |
+
with gr.TabItem("Danish"):
|
861 |
+
with gr.Row():
|
862 |
+
gr.Markdown("""
|
863 |
+
**Classification Danish Leaderboard π€π©π°**
|
864 |
+
|
865 |
+
- **Metric:** [Accuracy](https://huggingface.co/spaces/evaluate-metric/accuracy)
|
866 |
+
- **Languages:** Danish
|
867 |
+
- **Credits:** [Kenneth Enevoldsen](https://github.com/KennethEnevoldsen)
|
868 |
+
""")
|
869 |
+
with gr.Row():
|
870 |
+
data_classification_da = gr.components.Dataframe(
|
871 |
+
DATA_CLASSIFICATION_DA,
|
872 |
+
datatype=["number", "markdown"] + ["number"] * len(DATA_CLASSIFICATION_DA.columns),
|
873 |
+
type="pandas",
|
874 |
+
)
|
875 |
+
with gr.Row():
|
876 |
+
data_run_classification_da = gr.Button("Refresh")
|
877 |
+
task_classification_da = gr.Variable(value=["Classification"])
|
878 |
+
lang_classification_da = gr.Variable(value=[])
|
879 |
+
datasets_classification_da = gr.Variable(value=TASK_LIST_CLASSIFICATION_DA)
|
880 |
+
data_run_classification_da.click(
|
881 |
+
get_mteb_data,
|
882 |
+
inputs=[
|
883 |
+
task_classification_da,
|
884 |
+
lang_classification_da,
|
885 |
+
datasets_classification_da,
|
886 |
+
],
|
887 |
+
outputs=data_classification_da,
|
888 |
+
)
|
889 |
+
with gr.TabItem("Norwegian"):
|
890 |
+
with gr.Row():
|
891 |
+
gr.Markdown("""
|
892 |
+
**Classification Norwegian Leaderboard ππ³π΄**
|
893 |
+
|
894 |
+
- **Metric:** [Accuracy](https://huggingface.co/spaces/evaluate-metric/accuracy)
|
895 |
+
- **Languages:** Norwegian BokmΓ₯l
|
896 |
+
- **Credits:** [Kenneth Enevoldsen](https://github.com/KennethEnevoldsen)
|
897 |
+
""")
|
898 |
+
with gr.Row():
|
899 |
+
data_classification_nb = gr.components.Dataframe(
|
900 |
+
DATA_CLASSIFICATION_NB,
|
901 |
+
datatype=["number", "markdown"] + ["number"] * len(DATA_CLASSIFICATION_NB.columns),
|
902 |
+
type="pandas",
|
903 |
+
)
|
904 |
+
with gr.Row():
|
905 |
+
data_run_classification_nb = gr.Button("Refresh")
|
906 |
+
task_classification_nb = gr.Variable(value=["Classification"])
|
907 |
+
lang_classification_nb = gr.Variable(value=[])
|
908 |
+
datasets_classification_nb = gr.Variable(value=TASK_LIST_CLASSIFICATION_NB)
|
909 |
+
data_run_classification_nb.click(
|
910 |
+
get_mteb_data,
|
911 |
+
inputs=[
|
912 |
+
task_classification_nb,
|
913 |
+
lang_classification_nb,
|
914 |
+
datasets_classification_nb,
|
915 |
+
],
|
916 |
+
outputs=data_classification_nb,
|
917 |
+
)
|
918 |
+
with gr.TabItem("Swedish"):
|
919 |
+
with gr.Row():
|
920 |
+
gr.Markdown("""
|
921 |
+
**Classification Swedish Leaderboard ππΈπͺ**
|
922 |
+
|
923 |
+
- **Metric:** [Accuracy](https://huggingface.co/spaces/evaluate-metric/accuracy)
|
924 |
+
- **Languages:** Swedish
|
925 |
+
- **Credits:** [Kenneth Enevoldsen](https://github.com/KennethEnevoldsen)
|
926 |
+
""")
|
927 |
+
with gr.Row():
|
928 |
+
data_classification_sv = gr.components.Dataframe(
|
929 |
+
DATA_CLASSIFICATION_SV,
|
930 |
+
datatype=["number", "markdown"] + ["number"] * len(DATA_CLASSIFICATION_SV.columns),
|
931 |
+
type="pandas",
|
932 |
+
)
|
933 |
+
with gr.Row():
|
934 |
+
data_run_classification_sv = gr.Button("Refresh")
|
935 |
+
task_classification_sv = gr.Variable(value=["Classification"])
|
936 |
+
lang_classification_sv = gr.Variable(value=[])
|
937 |
+
datasets_classification_sv = gr.Variable(value=TASK_LIST_CLASSIFICATION_SV)
|
938 |
+
data_run_classification_sv.click(
|
939 |
+
get_mteb_data,
|
940 |
+
inputs=[
|
941 |
+
task_classification_sv,
|
942 |
+
lang_classification_sv,
|
943 |
+
datasets_classification_sv,
|
944 |
+
],
|
945 |
+
outputs=data_classification_sv,
|
946 |
+
)
|
947 |
+
with gr.TabItem("Other"):
|
948 |
with gr.Row():
|
949 |
gr.Markdown("""
|
950 |
+
**Classification Other Languages Leaderboard πππ**
|
951 |
|
952 |
- **Metric:** [Accuracy](https://huggingface.co/spaces/evaluate-metric/accuracy)
|
953 |
+
- **Languages:** 47 (Only languages not included in the other tabs)
|
954 |
""")
|
955 |
with gr.Row():
|
956 |
data_classification = gr.components.Dataframe(
|
957 |
+
DATA_CLASSIFICATION_OTHER,
|
958 |
+
datatype=["number", "markdown"] + ["number"] * len(DATA_CLASSIFICATION_OTHER) * 10,
|
959 |
type="pandas",
|
960 |
)
|
961 |
with gr.Row():
|
962 |
data_run = gr.Button("Refresh")
|
963 |
task_classification = gr.Variable(value=["Classification"])
|
964 |
+
lang_classification = gr.Variable(value=[])
|
965 |
+
datasets_classification = gr.Variable(value=TASK_LIST_CLASSIFICATION_OTHER)
|
966 |
data_run.click(
|
967 |
get_mteb_data,
|
968 |
+
inputs=[
|
969 |
+
task_classification,
|
970 |
+
lang_classification,
|
971 |
+
datasets_classification,
|
972 |
+
],
|
973 |
outputs=data_classification,
|
974 |
+
)
|
975 |
with gr.TabItem("Clustering"):
|
976 |
with gr.TabItem("English"):
|
977 |
with gr.Row():
|
|
|
1000 |
with gr.TabItem("German"):
|
1001 |
with gr.Row():
|
1002 |
gr.Markdown("""
|
1003 |
+
**Clustering German Leaderboard β¨π©πͺ**
|
1004 |
|
1005 |
- **Metric:** Validity Measure (v_measure)
|
1006 |
- **Languages:** German
|
|
|
1044 |
inputs=[task_pair_classification],
|
1045 |
outputs=data_pair_classification,
|
1046 |
)
|
1047 |
+
with gr.TabItem("Reranking"):
|
1048 |
with gr.Row():
|
1049 |
gr.Markdown("""
|
1050 |
+
**Reranking Leaderboard π₯**
|
1051 |
|
1052 |
+
- **Metric:** Mean Average Precision (MAP)
|
1053 |
- **Languages:** English
|
1054 |
""")
|
1055 |
with gr.Row():
|
1056 |
+
data_reranking = gr.components.Dataframe(
|
1057 |
+
DATA_RERANKING,
|
1058 |
+
datatype=["number", "markdown"] + ["number"] * len(DATA_RERANKING.columns),
|
|
|
1059 |
type="pandas",
|
1060 |
)
|
1061 |
with gr.Row():
|
1062 |
data_run = gr.Button("Refresh")
|
1063 |
+
task_reranking = gr.Variable(value=["Reranking"])
|
1064 |
+
metric_reranking = gr.Variable(value="map")
|
1065 |
data_run.click(
|
1066 |
+
get_mteb_data, inputs=[task_reranking], outputs=data_reranking
|
1067 |
)
|
1068 |
+
with gr.TabItem("Retrieval"):
|
1069 |
with gr.Row():
|
1070 |
gr.Markdown("""
|
1071 |
+
**Retrieval Leaderboard π**
|
1072 |
|
1073 |
+
- **Metric:** Normalized Discounted Cumulative Gain @ k (ndcg_at_10)
|
1074 |
- **Languages:** English
|
1075 |
""")
|
1076 |
with gr.Row():
|
1077 |
+
data_retrieval = gr.components.Dataframe(
|
1078 |
+
DATA_RETRIEVAL,
|
1079 |
+
# Add support for more columns than existing as a buffer for CQADupstack & other Retrieval tasks (e.g. MSMARCOv2)
|
1080 |
+
datatype=["number", "markdown"] + ["number"] * len(DATA_RETRIEVAL.columns) * 2,
|
1081 |
type="pandas",
|
1082 |
)
|
1083 |
with gr.Row():
|
1084 |
data_run = gr.Button("Refresh")
|
1085 |
+
task_retrieval = gr.Variable(value=["Retrieval"])
|
|
|
1086 |
data_run.click(
|
1087 |
+
get_mteb_data, inputs=[task_retrieval], outputs=data_retrieval
|
1088 |
+
)
|
1089 |
with gr.TabItem("STS"):
|
1090 |
with gr.TabItem("English"):
|
1091 |
with gr.Row():
|